1
|
Xiao Z, Yu P, Sun P, Kang Y, Niu Y, She Y, Zhao D. Inclusion complexes of β-cyclodextrin with isomeric ester aroma compounds: Preparation, characterization, mechanism study, and controlled release. Carbohydr Polym 2024; 333:121977. [PMID: 38494230 DOI: 10.1016/j.carbpol.2024.121977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
Cyclodextrins (CDs) have been discovered to provide an efficient solution to the limited application of ester aroma molecules used in food, tobacco, and medication due to their strong smell and unstable storage. This work combined molecular modeling and experimental to analyze the conformation and controlled release of isomeric ester aroma compounds/β-CD inclusion complexes (ICs). The investigation revealed that ester aroma compounds could be effectively encapsulated within the β-CD cavity, forming ICs with low binding affinity. Furthermore, the key driving forces in ICs were identified as hydrogen bonds and van der Waals interactions through theoretical simulation. Results from the Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) and Isothermal titration calorimetry (ITC) experiments confirmed the intermolecular interaction predicted by the molecular model. Notably, the release rate of aroma compounds from L-menthyl acetate/β-CD (LMA/β-CD) IC exceeded that of terpinyl acetate/β-CD (TA/β-CD) IC. This difference is attributed to the length of the chain of aroma molecules and the variation in the position of functional groups, influencing the stable formation of ICs with β-CD. These findings hold potential implications for refining the application of ICs across diverse industries.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Peiran Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Pingli Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yanxiang Kang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
2
|
Andor M, Temereancă C, Sbârcea L, Ledeți A, Man DE, Mornoș C, Ridichie A, Cîrcioban D, Vlase G, Barvinschi P, Caunii A, Văruţ RM, Trandafirescu CM, Buda V, Ledeți I, Rădulescu M. Host-Guest Interaction Study of Olmesartan Medoxomil with β-Cyclodextrin Derivatives. Molecules 2024; 29:2209. [PMID: 38792072 PMCID: PMC11123892 DOI: 10.3390/molecules29102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Olmesartan medoxomil (OLM) is a selective angiotensin II receptor antagonist used in the treatment of hypertension. Its therapeutic potential is limited by its poor water solubility, leading to poor bioavailability. Encapsulation of the drug substance by two methylated cyclodextrins, namely randomly methylated β-cyclodextrin (RM-β-CD) and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD), was carried out to overcome the limitation related to OLM solubility, which, in turn, is expected to result in an improved biopharmaceutical profile. Supramolecular entities were evaluated by means of thermoanalytical techniques (TG-thermogravimetry; DTG-derivative thermogravimetry), spectroscopic methods including powder X-ray diffractometry (PXRD), universal-attenuated total reflectance Fourier-transform infrared (UATR-FTIR) and UV spectroscopy, saturation solubility studies, and by a theoretical approach using molecular modeling. The phase solubility method reveals an AL-type diagram for both inclusion complexes, indicating a stoichiometry ratio of 1:1. The values of the apparent stability constant indicate the higher stability of the host-guest system OLM/RM-β-CD. The physicochemical properties of the binary systems are different from those of the parent compounds, emphasizing the formation of inclusion complexes between the drug and CDs when the kneading method was used. The molecular encapsulation of OLM in RM-β-CD led to an increase in drug solubility, thus the supramolecular adduct can be the subject of further research to design a new pharmaceutical formulation containing OLM, with improved bioavailability.
Collapse
Affiliation(s)
- Minodora Andor
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (M.A.); (D.E.M.); (C.M.); (M.R.)
| | - Claudia Temereancă
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania; (C.T.); (I.L.)
| | - Laura Sbârcea
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.S.); (A.R.); (D.C.); (A.C.); (C.M.T.); (V.B.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| | - Adriana Ledeți
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.S.); (A.R.); (D.C.); (A.C.); (C.M.T.); (V.B.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| | - Dana Emilia Man
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (M.A.); (D.E.M.); (C.M.); (M.R.)
| | - Cristian Mornoș
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (M.A.); (D.E.M.); (C.M.); (M.R.)
| | - Amalia Ridichie
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.S.); (A.R.); (D.C.); (A.C.); (C.M.T.); (V.B.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| | - Denisa Cîrcioban
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.S.); (A.R.); (D.C.); (A.C.); (C.M.T.); (V.B.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| | - Gabriela Vlase
- Research Centre for Thermal Analysis in Environmental Problems, West University of Timisoara, Pestalozzi Street 16, 300115 Timisoara, Romania;
| | - Paul Barvinschi
- Faculty of Physics, West University of Timisoara, 4 Vasile Parvan Blvd, 300223 Timisoara, Romania;
| | - Angela Caunii
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.S.); (A.R.); (D.C.); (A.C.); (C.M.T.); (V.B.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| | - Renata-Maria Văruţ
- Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, 2–4 Petru Rares Str., 200349 Craiova, Romania;
| | - Cristina Maria Trandafirescu
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.S.); (A.R.); (D.C.); (A.C.); (C.M.T.); (V.B.)
| | - Valentina Buda
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.S.); (A.R.); (D.C.); (A.C.); (C.M.T.); (V.B.)
| | - Ionuț Ledeți
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania; (C.T.); (I.L.)
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.S.); (A.R.); (D.C.); (A.C.); (C.M.T.); (V.B.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| | - Matilda Rădulescu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (M.A.); (D.E.M.); (C.M.); (M.R.)
| |
Collapse
|
3
|
Enggi CK, Sulistiawati S, Himawan A, Raihan M, Iskandar IW, Saputra RR, Rahman L, Yulianty R, Manggau MA, Donelly RF, Aswad M, Permana AD. Application of Biomaterials in the Development of Hydrogel-Forming Microneedles Integrated with a Cyclodextrin Drug Reservoir for Improved Pharmacokinetic Profiles of Telmisartan. ACS Biomater Sci Eng 2024; 10:1554-1576. [PMID: 38407993 DOI: 10.1021/acsbiomaterials.3c01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Telmisartan (TEL) is a promising antihypertensive agent among other angiotensin receptor blockers. However, its oral application is limited by its poor water solubility. This study presents the successful utilization of biomaterial-based hydrogel-forming microneedles integrated with a direct compressed tablet reservoir (HFMN-DCT) for the transdermal delivery of telmisartan in the treatment of hypertension. The combination of PVP, PVA, and tartaric acid was used in the HFMN formulation. A range of cross-linking temperatures and times were employed to optimize the characteristics of the HFMN. The HFMN exhibited excellent swelling capacity, mechanical strength, and insertion properties. Additionally, the poorly soluble characteristic of TEL was improved by the inclusion complex formulation with β-cyclodextrin (βCD). Phase solubility analysis showed an Ap-type diagram, indicating a higher-order complex between TEL and βCD, with respect to βCD. A ratio of TEL:βCD of 1:4 mM demonstrates the highest solubility enhancement of TEL. The inclusion complex formation was confirmed by FTIR, XRD, DSC, and molecular docking studies. A significantly higher release of TEL (up to 20-fold) from the inclusion complex was observed in the in vitro release study. Subsequently, a DCT reservoir was developed using various concentrations of sodium starch glycolate. Essentially, both the HFMN and DCT reservoir exhibit hemocompatibility and did not induce any skin irritation. The optimized combination of the HFMN-DCT reservoir showed an ex vivo permeation profile of 83.275 ± 2.405%. Notably, the proposed system showed superior pharmacokinetic profiles in the in vivo investigation using male Wistar rats. Overall, this study highlights the potential of HFMN-DCT reservoir systems as a versatile platform for transdermal drug delivery applications.
Collapse
Affiliation(s)
| | | | - Achmad Himawan
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Muhammad Raihan
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | - Rizki Rachmad Saputra
- Faculty of Mathematics and Natural Sciences, University of Palangka Raya, Palangkaraya, Central Kalimantan 73111, Indonesia
| | - Latifah Rahman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Risfah Yulianty
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | - Ryan F Donelly
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Muhammad Aswad
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|
4
|
Mullaivendhan J, Ahamed A, Arif IA, Raman G, Akbar I. Mushroom tyrosinase enzyme catalysis: synthesis of larvicidal active geranylacetone derivatives against Culex quinquesfasciatus and molecular docking studies. Front Chem 2024; 11:1303479. [PMID: 38268759 PMCID: PMC10806150 DOI: 10.3389/fchem.2023.1303479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024] Open
Abstract
The grindstone process, which uses tyrosinase as a catalyst, was used to create analogues of geranylacetone. Tyrosinase was used to prepare the Mannich base under favourable reaction conditions, resulting in a high yield. All synthesized compounds were characterized using FTIR, Nuclear magnetic resonance, and mass spectral analyses. The active geranylacetone derivatives (1a-l) were investigated for larvicidal activity against Culex quinquefasciatus; compound 1b (LD50:20.7 μg/mL) was noticeably more effective than geranylacetone (LD50: >100 μg/mL) and permethrin (LD50: 24.4 μg/mL) lead compounds because of their ability to kill larvae and use them as pesticides. All compounds (1a-1l) were found to be low toxic, whereas compounds 1b, 1d, and 1k were screened for antifeedant screening of non -aquatic target for the toxicity measurement against marine fish Oreochromis mossambicus at 100 μg/mL caused 0% mortality in within 24 h. Molecular docking studies of synthesised compound 1b and permethrin docked with 3OGN, compound 1b demonstrated a greater binding affinity (-9.6 kcal/mol) compared to permethrin (-10.5 kcal/mol). According to these results, the newly synthesised geranylacetone derivatives can serve as lead molecules of larvicides agents.
Collapse
Affiliation(s)
- Janani Mullaivendhan
- Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Puthanampatti, Tamil Nadu, India
| | - Anis Ahamed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim A. Arif
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gurusamy Raman
- Department of Life Science, Yeungnam University, Gyeongsan, Republic of Korea
| | - Idhayadhulla Akbar
- Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Puthanampatti, Tamil Nadu, India
| |
Collapse
|
5
|
He Y, Xiang J, Chen J, Fang S, Guo Z, Liang X. Improving Bioaccessibility and Bioavailability of Isoflavone Aglycones from Chickpeas by Germination and Forming β-Cyclodextrin Inclusion Complexes. Pharmaceutics 2023; 15:2684. [PMID: 38140025 PMCID: PMC10747479 DOI: 10.3390/pharmaceutics15122684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Chickpea isoflavones have diverse pharmacological activities but with low water solubility and bioavailability. In this work, the isoflavone content in chickpeas was first increased by germination, and then the bioaccessibility and bioavailability of isoflavones in chickpea sprout extracts (CSE) were enhanced using β-cyclodextrin (β-CD) inclusion techniques. Firstly, the total content of isoflavones was increased by 182 times through sprouting, and isoflavones were presented mostly in the germ and radicle. Then, the chickpea sprout extract/β-cyclodextrin (CSE/β-CD) inclusion complex was prepared and characterized. The in vitro test showed that the cumulative release of two isoflavones, formononetin (FMN) and biochanin A (BCA), in the CSE/β-CD was significantly increased in a simulated digestive fluid. The in vivo rat pharmacokinetics demonstrated that the inclusion of FMN and BCA by β-CD effectively increased their bioavailability in rat plasma and tissues, especially in the liver. The study provides a feasible strategy for improving the bioavailability of isoflavones from chickpeas and is also beneficial to the utilization of other legume resources.
Collapse
Affiliation(s)
- Yuanfan He
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (Y.H.); (J.X.)
| | - Jiani Xiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (Y.H.); (J.X.)
| | - Jie Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; (J.C.); (S.F.)
| | - Sheng Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; (J.C.); (S.F.)
| | - Zili Guo
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Xianrui Liang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (Y.H.); (J.X.)
| |
Collapse
|
6
|
Afahanam LE, Louis H, Benjamin I, Gber TE, Ikot IJ, Manicum ALE. Heteroatom (B, N, P, and S)-Doped Cyclodextrin as a Hydroxyurea (HU) Drug Nanocarrier: A Computational Approach. ACS OMEGA 2023; 8:9861-9872. [PMID: 36969463 PMCID: PMC10035006 DOI: 10.1021/acsomega.2c06630] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Theoretical examination of hydroxyurea adsorption capabilities toward the cyclodextrin surface for proper drug delivery systems was carried out utilizing DFT simulations. The study aims to assess the efficacy of doped cyclodextrin (doped with boron, nitrogen, phosphorus, and sulfur atoms) in increasing its stability and efficiency in intermolecular interactions, hence facilitating optimal drug delivery. The adsorption energies were found to follow a decreasing order of B@ACD-HU>N@ACD-HU>P@ACD-HU>S@ACD-HU with energies of -0.046, -0.0326, -0.015, and 0.944 kcal/mol, respectively. The S@ACD-HU complex, unlike previous systems, had a physical adsorption energy. The N@ACD-HU and B@ACD-HU complexes had the shortest bond lengths of 1.42 Å (N122-C15) and 1.54 Å (B126-C15), respectively. The HOMO and LUMO values were also high in identical systems, -6.367 and -2.918 eV (B@ACD-HU) and -6.278 and -1.736 eV (N@ACD-HU), respectively, confirming no chemical interaction. The N@ACD-HU has the largest energy gap of 4.54 eV. For the QTAIM analysis and plots, the maximum electron density and ellipticity index were detected in B@ACD-HU, 0.600 au (H70-N129) and 0.8685 au (H70-N129), respectively, but N@ACD-HU exhibited a high Laplacian energy of 0.7524 a.u (H133-N122). The fragments' TDOS, OPDOS, and PDOS exhibited a strong bond interaction of greater than 1, and they had different Fermi levels, with the highest value of -8.16 eV in the N@ACD-HU complex. Finally, the NCI analysis revealed that the complexes were noncovalent. According to the literature, the van der Waals form of interactions is used in the intermolecular forces of cyclodextrin cavities. The B@ACD-HU and N@ACD-HU systems were more greenish in color with no spatial interaction. These two systems have outperformed other complexes in intermolecular interactions, resulting in more efficient drug delivery. They had the highest negative adsorption energies, the shortest bond length, the highest HOMO/LUMO energies, the highest energy gap, the highest stabilization energy, the strongest bonding effect, the highest electron density, the highest ellipticity index, and a strong van der Waals interaction that binds the drug and the surface together.
Collapse
Affiliation(s)
- Lucy E. Afahanam
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar P.M.B 1115, Nigeria
| | - Hitler Louis
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar P.M.B 1115, Nigeria
- Department
of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar P.M.B 1115, Nigeria
| | - Innocent Benjamin
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar P.M.B 1115, Nigeria
- Department
of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar P.M.B 1115, Nigeria
| | - Terkumbur E. Gber
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar P.M.B 1115, Nigeria
- Department
of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar P.M.B 1115, Nigeria
| | - Immaculata J. Ikot
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar P.M.B 1115, Nigeria
- Department
of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar P.M.B 1115, Nigeria
| | - Amanda-Lee E. Manicum
- Department
of Chemistry, Tshwane University of Technology, Pretoria 0183, South Africa
| |
Collapse
|
7
|
Preparation, characterization, and antioxidant activity of β-cyclodextrin nanoparticles loaded Rosa damascena essential oil for application in beverage. Food Chem 2023; 403:134410. [DOI: 10.1016/j.foodchem.2022.134410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/20/2022]
|
8
|
Paiva-Santos AC, Ferreira L, Peixoto D, Silva F, Soares MJ, Zeinali M, Zafar H, Mascarenhas-Melo F, Raza F, Mazzola PG, Veiga F. Cyclodextrins as an encapsulation molecular strategy for volatile organic compounds – pharmaceutical applications. Colloids Surf B Biointerfaces 2022; 218:112758. [DOI: 10.1016/j.colsurfb.2022.112758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 01/07/2023]
|
9
|
Dong G, Zhou J, Zhou G, Yin P, Yang J, Lu W, Gao C, Liao X, Wang B, Yang B. A heat-controlled release system of ethyl vanillin based on acyclic cucurbit[n]urils. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2022-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Ethyl vanillin (EVA) is one of the most popular spices in the world, but it is unstable and is prone to lose its aroma. Host–Guest encapsulation by supramolecular hosts can improve stability of fragrance molecules and endow them with excellent heat-controlled release properties to satisfy requirements in food, cosmetic and tobacco, etc. Herein, two acyclic cucurbit[n]urils (ACBs, M1 and M2) inclusion complexes of EVA were prepared. Their binding behaviors were investigated by 1H NMR, SEM, XRD, FT-IR and TGA. The stoichiometric ratio was 1:1 by Job’s plot and the binding constant was determined by fluorescence titration. The intermolecular interaction between host and guest was studied by 2D-ROESY NMR and the inclusion mode was proposed. Finally, the heat-controlled release experiment indicated that the inclusion complexes of ACBs/EVA possess less volatilization at higher temperature, longer retention time and heat-controlled release. This study provides theoretical and technical guidance for expanding the application of EVA.
Collapse
Affiliation(s)
- Gaofeng Dong
- R&D Center of China Tobacco Yunnan Industrial Co. , Kunming 650231 , P. R. China
| | - Jiawei Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , P. R. China
| | - Guiyuan Zhou
- R&D Center of China Tobacco Yunnan Industrial Co. , Kunming 650231 , P. R. China
| | - Peipei Yin
- R&D Center of China Tobacco Yunnan Industrial Co. , Kunming 650231 , P. R. China
| | - Jing Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , P. R. China
| | - Wei Lu
- R&D Center of China Tobacco Yunnan Industrial Co. , Kunming 650231 , P. R. China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , P. R. China
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , P. R. China
| | - Baoxing Wang
- R&D Center of China Tobacco Yunnan Industrial Co. , Kunming 650231 , P. R. China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , P. R. China
| |
Collapse
|
10
|
Abstract
Due to their unique structural, physical and chemical properties, cyclodextrins and their derivatives have been of great interest to scientists and researchers in both academia and industry for over a century. Many of the industrial applications of cyclodextrins have arisen from their ability to encapsulate, either partially or fully, other molecules, especially organic compounds. Cyclodextrins are non-toxic oligopolymers of glucose that help to increase the solubility of organic compounds with poor aqueous solubility, can mask odors from foul-smelling compounds, and have been widely studied in the area of drug delivery. In this review, we explore the structural and chemical properties of cyclodextrins that give rise to this encapsulation (i.e., the formation of inclusion complexes) ability. This review is unique from others written on this subject because it provides powerful insights into factors that affect cyclodextrin encapsulation. It also examines these insights in great detail. Later, we provide an overview of some industrial applications of cyclodextrins, while emphasizing the role of encapsulation in these applications. We strongly believe that cyclodextrins will continue to garner interest from scientists for many years to come, and that novel applications of cyclodextrins have yet to be discovered.
Collapse
|
11
|
Xiao Z, Zhang Y, Niu Y, Ke Q, Kou X. Cyclodextrins as carriers for volatile aroma compounds: A review. Carbohydr Polym 2021; 269:118292. [PMID: 34294318 DOI: 10.1016/j.carbpol.2021.118292] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Cyclodextrins (CDs) are edible and biocompatible natural cyclic compounds that can encapsulate essential oils, flavours, volatile aroma compounds, and other substances. Complexation with CD-based materials improves the solubility and stability of volatile compounds and protects the bioactivity of the core materials. Therefore, the development of CD/volatile compound nanosystems is a key research area in the food, cosmetic, and pharmaceutical industries. This review briefly introduces the main types of natural CD; preparation methods of CD-based materials as carriers for aromatic substances or essential oils; characterisation methods used to calculate the interaction between CDs and volatile aroma compounds; molecular docking and simulation methods; and the application of CD-based nanosystems in different industries. The review aims to provide guidance for relevant practitioners in selecting appropriate CD materials and characterisation methods.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yaqi Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Qinfei Ke
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Xingran Kou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
12
|
Repurposing Bedaquiline for Effective Non-Small Cell Lung Cancer (NSCLC) Therapy as Inhalable Cyclodextrin-Based Molecular Inclusion Complexes. Int J Mol Sci 2021; 22:ijms22094783. [PMID: 33946414 PMCID: PMC8124211 DOI: 10.3390/ijms22094783] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
There is growing evidence that repurposed drugs demonstrate excellent efficacy against many cancers, while facilitating accelerated drug development process. In this study, bedaquiline (BDQ), an FDA approved anti-mycobacterial agent, was repurposed and an inhalable cyclodextrin complex formulation was developed to explore its anti-cancer activity in non-small cell lung cancer (NSCLC). A sulfobutyl ether derivative of β-cyclodextrin (SBE-β-CD) was selected based on phase solubility studies and molecular modeling to prepare an inclusion complex of BDQ and cyclodextrin. Aqueous solubility of BDQ was increased by 2.8 × 103-fold after complexation with SBE-β-CD, as compared to its intrinsic solubility. Solid-state characterization studies confirmed the successful incorporation of BDQ in the SBE-β-CD cavity. In vitro lung deposition study results demonstrated excellent inhalable properties (mass median aerodynamic diameter: 2.9 ± 0.6 µm (<5 µm) and fine particle fraction: 83.3 ± 3.8%) of BDQ-CD complex. Accelerated stability studies showed BDQ-CD complex to be stable up to 3 weeks. From cytotoxicity studies, a slight enhancement in the anti-cancer efficacy was observed with BDQ-cyclodextrin complex, compared to BDQ alone in H1299 cell line. The IC50 values for BDQ and BDQ-CD complex were found to be ~40 µM in case of H1299 cell line at 72 h, whereas BDQ/BDQ-CD were not found to be cytotoxic up to concentrations of 50 µM in A549 cell line. Taken together, BDQ-CD complex offers a promising inhalation strategy with efficient lung deposition and cytotoxicity for NSCLC treatment.
Collapse
|
13
|
Risperidone/Randomly Methylated β-Cyclodextrin Inclusion Complex-Compatibility Study with Pharmaceutical Excipients. Molecules 2021; 26:molecules26061690. [PMID: 33802960 PMCID: PMC8002621 DOI: 10.3390/molecules26061690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Risperidone (RSP) is an atypical antipsychotic drug used in treating schizophrenia, behavioral, and psychological symptoms of dementia and irritability associated with autism. The drug substance is practically insoluble in water and exhibits high lipophilicity. It also presents incompatibilities with pharmaceutical excipients such as magnesium stearate, lactose, and cellulose microcrystalline. RSP encapsulation by randomly methylated β-cyclodextrin (RM-β-CD) was performed in order to enhance drug solubility and stability and improve its biopharmaceutical profile. The inclusion complex formation was evaluated using thermal methods, powder X-ray diffractometry (PXRD), universal-attenuated total reflectance Fourier transform infrared (UATR-FTIR), UV spectroscopy, and saturation solubility studies. The 1:1 stoichiometry ratio and the apparent stability constant of the inclusion complex were determined by means of the phase solubility method. The compatibility between the supramolecular adduct and pharmaceutical excipients starch, anhydrous lactose, magnesium stearate, and cellulose microcrystalline was studied employing thermoanalytical tools (TG-thermogravimetry/DTG-derivative thermogravimetry/HF-heat flow) and spectroscopic techniques (UATR-FTIR, PXRD). The compatibility study reveals that there are no interactions between the supramolecular adduct with starch, magnesium stearate, and cellulose microcrystalline, while incompatibility with anhydrous lactose is observed even under ambient conditions. The supramolecular adduct of RSP with RM-β-CD represents a valuable candidate for further research in developing new formulations with enhanced bioavailability and stability, and the results of this study allow a pertinent selection of three excipients that can be incorporated in solid dosage forms.
Collapse
|
14
|
Encapsulation of Risperidone by Methylated β-Cyclodextrins: Physicochemical and Molecular Modeling Studies. Molecules 2020; 25:molecules25235694. [PMID: 33287127 PMCID: PMC7730204 DOI: 10.3390/molecules25235694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
Risperidone (RSP) is an atypical antipsychotic drug which acts as a potent antagonist of serotonin-2 (5TH2) and dopamine-2 (D2) receptors in the brain; it is used to treat schizophrenia, behavioral and psychological symptoms of dementia and irritability associated with autism. It is a poorly water soluble benzoxazole derivative with high lipophilicity. Supramolecular adducts between drug substance and two methylated β-cyclodextrins, namely heptakis(2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD) and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD) were obtained in order to enhance RSP solubility and improve its biopharmaceutical profile. The inclusion complexes were evaluated by means of thermoanalytical methods (TG—thermogravimetry/DTG—derivative thermogravimetry/HF—heat flow), powder X-ray diffractometry (PXRD), universal-attenuated total reflectance Fourier transform infrared (UATR-FTIR), UV spectroscopy and saturation solubility studies. Job’s method was employed for the determination of the stoichiometry of the inclusion complexes, which was found to be 2:1 for both guest–host systems. Molecular modeling studies were carried out for an in-depth characterization of the interaction between drug substance and cyclodextrins (CDs). The physicochemical properties of the supramolecular systems differ from those of RSP, demonstrating the inclusion complex formation between drug and CDs. The RSP solubility was enhanced as a result of drug encapsulation in the CDs cavity, the higher increase being obtained with DM-β-CD as host; the guest–host system RSP/DM-β-CD can thus be a starting point for further research in developing new formulations containing RSP, with enhanced bioavailability.
Collapse
|