1
|
Rodrigues T, Lima A, Wortham T, Arruda F, Janeiro A, Baptista J, Lima E. Essential Oil Composition and Anti-Cholinesterase Properties of Cryptomeria japonica Foliage Harvested in São Miguel Island (Azores) in Two Different Seasons. PLANTS (BASEL, SWITZERLAND) 2024; 13:3277. [PMID: 39683070 DOI: 10.3390/plants13233277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
The Azorean Cryptomeria japonica forest operations and wood industry generate considerable foliage biomass residues that are used for local essential oil (EO) production. However, research on seasonal variation of C. japonica EO remains scarce. In this study, the EOs from fresh Azorean C. japonica foliage (Az-CJF) collected in autumn (Aut) and spring (Spr) were obtained via hydrodistillation and investigated for their physical properties, yield, chemical composition, and bioactivities. Both EOs presented a strong odor, a yellowish color, a density around 0.9 g·mL-1, and similar yields (approximately 1% v/w, dry matter). Nevertheless, the GC-MS analyses showed a decrease in monoterpene hydrocarbons (MH) and an increase in oxygenated sesquiterpenes (OS) contents in Spr-EO compared with Aut-EO (16% vs. 35% for MH and 45% vs. 31% for OS, respectively). In addition, the predominant components were kaur-16-ene (23%) for Spr-EO and phyllocladene (19%) for Aut-EO, revealing that both EOs were rich in diterpene hydrocarbons (29% vs. 26%). Concerning its toxicity against brine shrimp, a low mortality (0-38%) was observed at a concentration range of 100-180 μg·mL-1. Regarding the anti-cholinesterase properties, both EOs were inactive against acetylcholinesterase but showed anti-butyrylcholinesterase activity superior to (-)-α-pinene, a major compound of Az-CJF EO (IC50 values: 84, 148, and 648 μg·mL-1 for Spr-EO, Aut-EO, and α-pinene, respectively). Overall, the results indicate the potential benefit of both seasonal EOs in Alzheimer's disease treatment. In conclusion, this study demonstrated that season strongly influences the Az-CJF EO quantitative composition and thus its bioactivity, aiding in the selection of the most high-quality raw materials for use in Azorean C. japonica EO aromatherapy industry.
Collapse
Affiliation(s)
- Tânia Rodrigues
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Portugal
- Department of Biology (DB), Faculty of Science and Technology, University of the Azores, 9500-321 Ponta Delgada, Portugal
| | - Ana Lima
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Portugal
- Department of Physics, Chemistry and Engineering (DCFQE), Faculty of Science and Technology, University of the Azores, 9500-321 Ponta Delgada, Portugal
| | - Tanner Wortham
- The Perfumery, 621 Park East Blvd., New Albany, IN 47150, USA
| | - Filipe Arruda
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Portugal
- Department of Biology (DB), Faculty of Science and Technology, University of the Azores, 9500-321 Ponta Delgada, Portugal
| | - Alexandre Janeiro
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Portugal
- Department of Physics, Chemistry and Engineering (DCFQE), Faculty of Science and Technology, University of the Azores, 9500-321 Ponta Delgada, Portugal
| | - José Baptista
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Portugal
- Department of Physics, Chemistry and Engineering (DCFQE), Faculty of Science and Technology, University of the Azores, 9500-321 Ponta Delgada, Portugal
| | - Elisabete Lima
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Portugal
- Department of Physics, Chemistry and Engineering (DCFQE), Faculty of Science and Technology, University of the Azores, 9500-321 Ponta Delgada, Portugal
| |
Collapse
|
2
|
Chatterjee D, Mitra A. Unveiling physiological responses and modulated accumulation patterns of specialized metabolites in Mentha rotundifolia acclimated to sub-tropical environment. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1363-1381. [PMID: 39184553 PMCID: PMC11341519 DOI: 10.1007/s12298-024-01489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 06/08/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024]
Abstract
Mints are aromatic plants of Lamiaceae, globally known for the phytochemical-rich essential oils. Most of the cultivated mints are menthol-rich, whereas spearmint being the only dominant carvone-rich species. In this study, another carvone-rich mint Mentha rotundifolia (L.) Huds., a native of temperate region was assessed for its acclimation in sub-tropical environment to see any possible changes in specialized metabolite accumulation. Plants grown under open environment was compared with glasshouse grown plants where, temperature, humidity and photoperiods were uniformly maintained. Thickened leaves with increased cuticular wax load (2.82 folds) and anthocyanin accumulation (202.97 µg/g) in the widened stems were observed in plants grown in open environment, while higher chlorophyll contents were exhibited by the glasshouse-grown plants. Enhanced antioxidant capacity in open environment, correlated with elevated concentration (86.4% increase for caffeic acid) of wall-bound phenolics was observed. Increased proline, hydrogen peroxide and malondialdehyde contents in open environment indicated the plant's ability to cope up with abiotic stress. Higher amounts of terpenes like (-)-carvone (2.68 folds) and D-limonene (1.35 folds) were found in both internal volatile pool and essential oil of glasshouse-grown plants. Histochemical study of glandular trichomes also supported this finding. In conclusion, glasshouse-grown plants showed relatively better growth and higher terpene contents, nevertheless the plant survived well in warmer environment, with increased antioxidant capacities and phenolic contents. Future study includes mass propagation of this species in different geographical locations with distinct climatic variations to determine the suitable sub-tropical locations for cultivation as a potential alternative to spearmint for commercial-scale (-)-carvone production. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01489-8.
Collapse
Affiliation(s)
- Dipanjali Chatterjee
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Adinpunya Mitra
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| |
Collapse
|
3
|
Šamajová V, Marešová J, Majdák A, Jakuš R, Blaženec M. The spruce bark volatiles and internal phloem chemical profiles after the forest gap formation: the annual course. FOLIA OECOLOGICA 2024; 51:165-174. [DOI: 10.2478/foecol-2024-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract
Our study explores the impact of sudden gap formation on the bark volatile and internal chemical profiles of Norway spruce trees during the initial dry year of research plot 2018 following gap formation. We investigated the annual variation in two main physiological traits of Norway spruce trees at the forest edge (FE) and in the forest interior (FI): bark monoterpene (MT) emission spectra and internal phloem MT composition. Given that gap formation increases the solar radiation dose and temperature for trees at the forest edge, we hypothesized that the concentrations of airborne terpenes released from the tree bark and internal phloem terpenes will increase as a consequence of induced tree defenses. Our findings demonstrate significant increases in both airborne terpene concentrations and internal terpene composition in trees at the forest edge compared to the control trees in the forest interior. This study provides novel insights into the annual dynamics of bark monoterpenes following forest edge establishment and underscores the physiological changes experienced by trees in response to the gap formation.
Collapse
Affiliation(s)
- Veronika Šamajová
- Faculty of Ecology and Environmental Sciences , Technical University in Zvolen , T. G. Masaryka 24 , Zvolen , Slovakia
- Institute of Forest Ecology of the Slovak Academy of Sciences , Ľ. Štúra 2 , Zvolen , Slovakia
| | - Jana Marešová
- Institute of Forest Ecology of the Slovak Academy of Sciences , Ľ. Štúra 2 , Zvolen , Slovakia
| | - Andrej Majdák
- Institute of Forest Ecology of the Slovak Academy of Sciences , Ľ. Štúra 2 , Zvolen , Slovakia
| | - Rastislav Jakuš
- Institute of Forest Ecology of the Slovak Academy of Sciences , Ľ. Štúra 2 , Zvolen , Slovakia
| | - Miroslav Blaženec
- Institute of Forest Ecology of the Slovak Academy of Sciences , Ľ. Štúra 2 , Zvolen , Slovakia
| |
Collapse
|
4
|
Ossola R, Rossell RK, Riches M, Osburn C, Farmer D. Development of a sampling protocol for collecting leaf surface material for multiphase chemistry studies. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1008-1021. [PMID: 38770594 PMCID: PMC11188671 DOI: 10.1039/d4em00065j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Plant leaves and water drops residing on them interact with atmospheric oxidants, impacting the deposition and emission of trace gases and mediating leaf damage from air pollution. Characterizing the chemical composition and reactivity of the water-soluble material on leaf surfaces is thus essential for improving our understanding of atmosphere-biosphere interactions. However, the limited knowledge of sources and nature of these chemicals challenges sampling decisions. This work investigates how sampling variables and environmental factors impact the quantity and composition of water-soluble material sampled from wet leaves and proposes a flexible protocol for its collection. The ratio of solvent volume-to-leaf area, the solvent-to-leaf contact time, and environmental parameters - including the occurrence of rain, plant location and its metabolism - drive solute concentration in leaf soaks. Despite minor variations, UV-vis absorption spectra of leaf soaks are comparable to authentic raindrops collected from the same tree and share features with microbial dissolved organic matter - including overall low aromaticity, low chromophore content, and low average molecular weight. In addition to guiding the development of a sampling protocol, our data corroborate recent hypotheses on the amount, origin, nature, and reactivity of water-soluble organics on wet leaves, providing new directions of research into this highly interdisciplinary topic.
Collapse
Affiliation(s)
- Rachele Ossola
- Department of Chemistry, Colorado State University, 80523, Fort Collins, Colorado, USA.
| | - Rose K Rossell
- Department of Chemistry, Colorado State University, 80523, Fort Collins, Colorado, USA.
| | - Mj Riches
- Department of Chemistry, Colorado State University, 80523, Fort Collins, Colorado, USA.
| | - Cameron Osburn
- Department of Chemistry, Colorado State University, 80523, Fort Collins, Colorado, USA.
| | - Delphine Farmer
- Department of Chemistry, Colorado State University, 80523, Fort Collins, Colorado, USA.
| |
Collapse
|
5
|
Ossola R, Farmer D. The Chemical Landscape of Leaf Surfaces and Its Interaction with the Atmosphere. Chem Rev 2024; 124:5764-5794. [PMID: 38652704 PMCID: PMC11082906 DOI: 10.1021/acs.chemrev.3c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Atmospheric chemists have historically treated leaves as inert surfaces that merely emit volatile hydrocarbons. However, a growing body of evidence suggests that leaves are ubiquitous substrates for multiphase reactions-implying the presence of chemicals on their surfaces. This Review provides an overview of the chemistry and reactivity of the leaf surface's "chemical landscape", the dynamic ensemble of compounds covering plant leaves. We classified chemicals as endogenous (originating from the plant and its biome) or exogenous (delivered from the environment), highlighting the biological, geographical, and meteorological factors driving their contributions. Based on available data, we predicted ≫2 μg cm-2 of organics on a typical leaf, leading to a global estimate of ≫3 Tg for multiphase reactions. Our work also highlighted three major knowledge gaps: (i) the overlooked role of ambient water in enabling the leaching of endogenous substances and mediating aqueous chemistry; (ii) the importance of phyllosphere biofilms in shaping leaf surface chemistry and reactivity; (iii) the paucity of studies on the multiphase reactivity of atmospheric oxidants with leaf-adsorbed chemicals. Although biased toward available data, we hope this Review will spark a renewed interest in the leaf surface's chemical landscape and encourage multidisciplinary collaborations to move the field forward.
Collapse
Affiliation(s)
- Rachele Ossola
- Department of Chemistry, Colorado
State University, 80523 Fort Collins, Colorado (United States)
| | - Delphine Farmer
- Department of Chemistry, Colorado
State University, 80523 Fort Collins, Colorado (United States)
| |
Collapse
|
6
|
Al-Khayri JM, Rashmi R, Toppo V, Chole PB, Banadka A, Sudheer WN, Nagella P, Shehata WF, Al-Mssallem MQ, Alessa FM, Almaghasla MI, Rezk AAS. Plant Secondary Metabolites: The Weapons for Biotic Stress Management. Metabolites 2023; 13:716. [PMID: 37367873 DOI: 10.3390/metabo13060716] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
The rise in global temperature also favors the multiplication of pests and pathogens, which calls into question global food security. Plants have developed special coping mechanisms since they are sessile and lack an immune system. These mechanisms use a variety of secondary metabolites as weapons to avoid obstacles, adapt to their changing environment, and survive in less-than-ideal circumstances. Plant secondary metabolites include phenolic compounds, alkaloids, glycosides, and terpenoids, which are stored in specialized structures such as latex, trichomes, resin ducts, etc. Secondary metabolites help the plants to be safe from biotic stressors, either by repelling them or attracting their enemies, or exerting toxic effects on them. Modern omics technologies enable the elucidation of the structural and functional properties of these metabolites along with their biosynthesis. A better understanding of the enzymatic regulations and molecular mechanisms aids in the exploitation of secondary metabolites in modern pest management approaches such as biopesticides and integrated pest management. The current review provides an overview of the major plant secondary metabolites that play significant roles in enhancing biotic stress tolerance. It examines their involvement in both indirect and direct defense mechanisms, as well as their storage within plant tissues. Additionally, this review explores the importance of metabolomics approaches in elucidating the significance of secondary metabolites in biotic stress tolerance. The application of metabolic engineering in breeding for biotic stress resistance is discussed, along with the exploitation of secondary metabolites for sustainable pest management.
Collapse
Affiliation(s)
- Jameel M Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ramakrishnan Rashmi
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Varsha Toppo
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Pranjali Bajrang Chole
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Akshatha Banadka
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Wudali Narasimha Sudheer
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Wael Fathi Shehata
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Muneera Qassim Al-Mssallem
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fatima Mohammed Alessa
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mustafa Ibrahim Almaghasla
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Plant Pests, and Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Adel Abdel-Sabour Rezk
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Virus and Phytoplasma, Plant Pathology Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
7
|
Li C, Mo Y, Wang N, Xing L, Qu Y, Chen Y, Yuan Z, Ali A, Qi J, Fernández V, Wang Y, Kopittke PM. The overlooked functions of trichomes: Water absorption and metal detoxication. PLANT, CELL & ENVIRONMENT 2023; 46:669-687. [PMID: 36581782 DOI: 10.1111/pce.14530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Trichomes are epidermal outgrowths on plant shoots. Their roles in protecting plants against herbivores and in the biosynthesis of specialized metabolites have long been recognized. Recently, studies are increasingly showing that trichomes also play important roles in water absorption and metal detoxication, with these roles having important implications for ecology, the environment, and agriculture. However, these two functions of trichomes have been largely overlooked and much remains unknown. In this review, we show that the trichomes of 37 plant species belonging to 14 plant families are involved in water absorption, while the trichomes of 33 species from 13 families are capable of sequestering metals within their trichomes. The ability of trichomes to absorb water results from their decreased hydrophobicity compared to the remainder of the leaf surface as well as the presence of special structures for collecting and absorbing water. In contrast, the metal detoxication function of trichomes results not only from the good connection of their basal cells to the underlying vascular tissues, but also from the presence of metal-chelating ligands and transporters within the trichomes themselves. Knowledge gaps and critical future research questions regarding these two trichome functions are highlighted. This review improves our understanding on trichomes.
Collapse
Affiliation(s)
- Cui Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yingying Mo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Nina Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Longyi Xing
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yang Qu
- Baoji Academy of Agriculture Sciences, Baoji, China
| | - Yanlong Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zuoqiang Yuan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Arshad Ali
- College of Life Sciences, Hebei University, Hebei, China
| | - Jiyan Qi
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Victoria Fernández
- School of Forest Engineering, Technical University of Madrid, Madrid, Spain
| | - Yuheng Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
8
|
Xiao L, Labandeira CC, Ren D. Insect herbivory immediately before the eclipse of the gymnosperms: The Dawangzhangzi plant assemblage of Northeastern China. INSECT SCIENCE 2022; 29:1483-1520. [PMID: 34874612 DOI: 10.1111/1744-7917.12988] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/28/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The Early Cretaceous terrestrial revolution involved global shifts from gymnosperm- to angiosperm-dominated floras. However, responses of insect herbivores to these changes remain unexamined. We evaluated 2 176 highly sampled plant specimens representing 62 species/morphotypes from the 126 Ma Dawangzhangzi plant assemblage of Northeastern China. Our study consisted of horsetails, ferns, ginkgoaleans, czekanowskialeans, conifers, and an angiosperm. Their herbivory was evaluated by the functional feeding groups of hole feeding, margin feeding, and surface feeding (ectophytic feeders); piercer and suckers, and ovipositing insects (ectoendophytic feeders); mining, galling, and borings (endophytic feeders); and pathogens, collectively constituting 65 damage types (DTs). The plant assemblage was assessed for herbivory richness by DT richness, component community structure, and DT specialization on plant hosts; for herbivory intensity, it was evaluated for DT frequency, herbivorized surface area, and feeding event occurrences. Using feeding event occurrences, the data supported seven species/morphotypes as most intensely herbivorized: Liaoningocladus boii (76.6%), Czekanowskia sp. 1 (8.4%), Czekanowskia rigida (4.10%), Lindleycladus lanceolatus (3.5%), Ginkgoites sp. 2 (2.0%), Podozamites sp. 1 (1.1%), and Solenites sp. 1 (0.9%). The most herbivorized taxa were pinaleans (conifers), then czekanowskialeans, and lastly ginkgoaleans; the monodominant component community was the conifer Liaoningocladus boii. DT host specialization levels were low. The plant assemblage had an overall low 0.86% of foliage removed by herbivores, explained by physical and chemical antiherbivore defenses, and parasitoid attack. Although Paleozoic, gymnosperm-dominated assemblages had greater herbivory, component community structure of the three most herbivorized taxa are more similar to modern bracken fern and willow than modern gymnosperm taxa.
Collapse
Affiliation(s)
- Lifang Xiao
- College of Life Science and Academy for Multidisciplinary Studies, Capital Normal University, Beijing, China
| | - Conrad C Labandeira
- College of Life Science and Academy for Multidisciplinary Studies, Capital Normal University, Beijing, China
- Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
- Department of Entomology and Bees Program, University of Maryland, College Park, MD, USA
| | - Dong Ren
- College of Life Science and Academy for Multidisciplinary Studies, Capital Normal University, Beijing, China
| |
Collapse
|
9
|
Gagalova KK, Warren RL, Coombe L, Wong J, Nip KM, Yuen MMS, Whitehill JGA, Celedon JM, Ritland C, Taylor GA, Cheng D, Plettner P, Hammond SA, Mohamadi H, Zhao Y, Moore RA, Mungall AJ, Boyle B, Laroche J, Cottrell J, Mackay JJ, Lamothe M, Gérardi S, Isabel N, Pavy N, Jones SJM, Bohlmann J, Bousquet J, Birol I. Spruce giga-genomes: structurally similar yet distinctive with differentially expanding gene families and rapidly evolving genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1469-1485. [PMID: 35789009 DOI: 10.1111/tpj.15889] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Spruces (Picea spp.) are coniferous trees widespread in boreal and mountainous forests of the northern hemisphere, with large economic significance and enormous contributions to global carbon sequestration. Spruces harbor very large genomes with high repetitiveness, hampering their comparative analysis. Here, we present and compare the genomes of four different North American spruces: the genome assemblies for Engelmann spruce (Picea engelmannii) and Sitka spruce (Picea sitchensis) together with improved and more contiguous genome assemblies for white spruce (Picea glauca) and for a naturally occurring introgress of these three species known as interior spruce (P. engelmannii × glauca × sitchensis). The genomes were structurally similar, and a large part of scaffolds could be anchored to a genetic map. The composition of the interior spruce genome indicated asymmetric contributions from the three ancestral genomes. Phylogenetic analysis of the nuclear and organelle genomes revealed a topology indicative of ancient reticulation. Different patterns of expansion of gene families among genomes were observed and related with presumed diversifying ecological adaptations. We identified rapidly evolving genes that harbored high rates of non-synonymous polymorphisms relative to synonymous ones, indicative of positive selection and its hitchhiking effects. These gene sets were mostly distinct between the genomes of ecologically contrasted species, and signatures of convergent balancing selection were detected. Stress and stimulus response was identified as the most frequent function assigned to expanding gene families and rapidly evolving genes. These two aspects of genomic evolution were complementary in their contribution to divergent evolution of presumed adaptive nature. These more contiguous spruce giga-genome sequences should strengthen our understanding of conifer genome structure and evolution, as their comparison offers clues into the genetic basis of adaptation and ecology of conifers at the genomic level. They will also provide tools to better monitor natural genetic diversity and improve the management of conifer forests. The genomes of four closely related North American spruces indicate that their high similarity at the morphological level is paralleled by the high conservation of their physical genome structure. Yet, the evidence of divergent evolution is apparent in their rapidly evolving genomes, supported by differential expansion of key gene families and large sets of genes under positive selection, largely in relation to stimulus and environmental stress response.
Collapse
Affiliation(s)
- Kristina K Gagalova
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - René L Warren
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Lauren Coombe
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Johnathan Wong
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Ka Ming Nip
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Macaire Man Saint Yuen
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Justin G A Whitehill
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jose M Celedon
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Carol Ritland
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Greg A Taylor
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Dean Cheng
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Patrick Plettner
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - S Austin Hammond
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
- Next-Generation Sequencing Facility, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Hamid Mohamadi
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Yongjun Zhao
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Brian Boyle
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, GIV 0A6, Canada
| | - Jérôme Laroche
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, GIV 0A6, Canada
| | - Joan Cottrell
- Forest Research, U.K. Forestry Commission, Northern Research Station, Roslin, EH25 9SY, Midlothian, UK
| | - John J Mackay
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Manuel Lamothe
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, G1V 4C7, Canada
| | - Sébastien Gérardi
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, GIV 0A6, Canada
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Nathalie Isabel
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, G1V 4C7, Canada
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Nathalie Pavy
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, GIV 0A6, Canada
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jean Bousquet
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, GIV 0A6, Canada
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| |
Collapse
|
10
|
Herrera F, Shi G, Bickner MA, Ichinnorov N, Leslie AB, Crane PR, Herendeen PS. Early Cretaceous abietoid Pinaceae from Mongolia and the history of seed scale shedding. AMERICAN JOURNAL OF BOTANY 2021; 108:1483-1499. [PMID: 34458982 DOI: 10.1002/ajb2.1713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/10/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Seed cones of extant Pinaceae exhibit two mechanisms of seed release. In "flexers" the cone scales remain attached to the central axis, while flexing and separating from each other to release the seeds. In "shedders" scales are shed from the axis, with the seeds either remaining attached to the scale or becoming detached. The early fossil history of Pinaceae from the Jurassic to Early Cretaceous is dominated by flexing seed cones, while the systematic information provided by shedding fossil cones has been overlooked and rarely integrated with data based on compression and permineralized specimens. We describe the earliest and best-documented evidence of a "shedder" seed cone from the Aptian-Albian of Mongolia. METHODS Lignite samples from Tevshiin Govi locality were disaggregated in water, washed, and dried in air. Fossils were compared to material of extant Pinaceae using LM and CT scans. RESULTS Lepidocasus mellonae gen. et sp. nov. is characterized by a seed cone that disarticulated at maturity and shed obovate bract-scale complexes that have a distinctive ribbed surface and an abaxial surface covered with abundant trichomes. The ovuliferous scale has ca. 30-40 resin canals, but only scarce xylem near the attachment to the cone axis. Resin vesicles are present in the seed integument. Phylogenetic analysis places Lepidocasus as sister to extant Cedrus within the abietoid grade. CONCLUSIONS The exquisite preservation of the trichomes in L. mellonae raises questions about their potential ecological function in the cones of fossil and living Pinaceae. Lepidocasus mellonae also shows that a shedding dispersal syndrome, a feature that has often been overlooked, evolved early in the history of Pinaceae during the Early Cretaceous.
Collapse
Affiliation(s)
| | - Gongle Shi
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, 210008, China
| | | | - Niiden Ichinnorov
- Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar-15160, Mongolia
| | - Andrew B Leslie
- Department of Geological Sciences, Stanford University, California, 94305, USA
| | - Peter R Crane
- Oak Spring Garden Foundation, Oak Spring, Upperville, Virginia, 20184, USA
- Yale School of the Environment, Yale University, New Haven, Connecticut, 06511, USA
| | | |
Collapse
|