1
|
Gulati A, Adwani SG, Vijaya P, Agrawal NR, Ramakrishnan TCR, Rai HP, Jain D, Sundarachary NV, Pandian JD, Sardana V, Sharma M, Sidhu GK, Anand SS, Vibha D, Aralikatte S, Khurana D, Joshi D, Karadan U, Siddiqui MSI. Efficacy and Safety of Sovateltide in Patients with Acute Cerebral Ischaemic Stroke: A Randomised, Double-Blind, Placebo-Controlled, Multicentre, Phase III Clinical Trial. Drugs 2024:10.1007/s40265-024-02121-5. [PMID: 39542995 DOI: 10.1007/s40265-024-02121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND AND OBJECTIVES Sovateltide (Tycamzzi™), an endothelin-B (ET-B) receptor agonist, increases cerebral blood flow, has anti-apoptotic activity, and promotes neural repair following cerebral ischaemic stroke. The objectives of this study were to evaluate the efficacy and safety of sovateltide in adult participants with acute cerebral ischaemic stroke. METHODS This was a randomised, double-blind, placebo-controlled, multicentre, Phase III clinical trial of sovateltide in participants with cerebral ischaemic stroke receiving standard of care (SOC) in India. Patients aged 18-78 years presenting up to 24 h after the onset of symptoms with radiologic confirmation of ischaemic stroke and a National Institutes of Health Stroke Scale score (NIHSS) of ≥ 6 were enrolled. Patients with recurrent stroke, receiving endovascular therapy, or with intracranial haemorrhage were excluded. The study drug (saline or sovateltide [0.3 µg/kg] was administered intravenously in three doses at 3 ± 1 h intervals on Days 1, 3, and 6, and follow-up was 90 days). The Multivariate Imputation by Chained Equations (MICE) was used to impute the missing assessments on the endpoints. An unpaired t-test, two-way analysis of variance with Tukey's multiple comparison test, and the Chi-square test were used for the statistical analysis. The objective was to determine at Day 90 (1) the number of patients with a modified Rankin Scale score (mRS) 0-2, and (2) the number of patients with an NIHSS 0-5 at 90 days. RESULTS Patients were randomised with 80 patients in the sovateltide and 78 in the control group. Patients received the investigational drug at about 18 h of stroke onset in both control and sovateltide groups. The median NIHSS at randomisation was 10.00 (95% CI 9.99-11.65) in the control group and 9.00 (95% CI 9.11-10.46) in the sovateltide group. Seventy patients completed the 90-day follow-up in the control group and 67 in the sovateltide group. The proportion of intention-to-treat (ITT) patients with mRS 0-2 score at Day 90 post-randomisation was 22.67% higher (odds ratio [OR] 2.75, 95% CI 1.37-5.57); similarly, the proportion of patients with NIHSS score of 0-5 at Day 90 was 17.05% more (OR 2.67, 95% CI 1.27-5.90) in the sovateltide group than in the control group. An improvement of ≥ 2 points on the mRS was observed in 51.28% and 72.50% of patients in the control and sovateltide groups, respectively (OR 2.50, 95% CI 1.29-4.81). Seven of 78 patients (8.97%) in the control group and 7 of 80 (8.75%) in the sovateltide group developed intracranial haemorrhage (ICH). The adverse events were not related to sovateltide. CONCLUSIONS The sovateltide group had a greater number of cerebral ischaemic stroke patients with lower mRS and NIHSS scores at 90 days post-treatment than the control group. This trial supported the regulatory approval of sovateltide in India, but a multinational RESPECT-ETB trial will be conducted for US approval. TRIAL REGISTRATION Clinical Trials Registry, India (CTRI/2019/09/021373) and the United States National Library of Medicine, ClinicalTrials.gov (NCT04047563).
Collapse
Affiliation(s)
- Anil Gulati
- Pharmazz Inc., 50 West 75th Street, Suite 105, Willowbrook, IL, 60527, USA.
- Midwestern University, Downers Grove, IL, USA.
| | | | | | | | - T C R Ramakrishnan
- KG Hospital and Post Graduate Medical Institute, Coimbatore, Tamil Nadu, India
| | - Hari Prakash Rai
- Hi-Tech Hospital and Trauma Center, Jhansi, Uttar Pradesh, India
| | - Dinesh Jain
- Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | | | | | - Vijay Sardana
- Government Medical College and Attached Hospitals, Kota, Rajasthan, India
| | - Mridul Sharma
- Pushpanjali Hospital & Research Centre, Agra, Uttar Pradesh, India
| | | | | | - Deepti Vibha
- All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Saroja Aralikatte
- KLE's Dr. Prabhakar Kore Hospital & Medical Research Centre, Belagavi, Karnataka, India
| | - Dheeraj Khurana
- Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Deepika Joshi
- Institute of Medical Sciences, Varanasi, Uttar Pradesh, India
| | | | | |
Collapse
|
2
|
Moustakas D, Mani I, Pouliakis A, Iacovidou N, Xanthos T. The Effects of IRL-1620 in Post-ischemic Brain Injury: A Systematic Review and Meta-analysis of Experimental Studies. Neurocrit Care 2024; 41:665-680. [PMID: 38724864 DOI: 10.1007/s12028-024-01994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/02/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Sovateltide (IRL-1620), an endothelin B receptor agonist, has previously demonstrated neuroprotective and neuroregenerative effects in animal models of acute ischemic stroke. Recently, clinical trials indicated that it could also be effective in humans with stroke. Here, we systematically investigate whether IRL-1620 may be used for the treatment of ischemia-induced brain injury. METHODS A systematic review was performed following the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. MEDLINE (PubMed) and Scopus databases were searched for eligible studies up to December 2022. The databases ClinicalTrials.gov and Pharmazz Inc. were screened for unpublished or ongoing trials. Only studies in English were evaluated for eligibility. Meta-analysis of the included studies was also conducted. RESULTS Finally, seven studies were included in the review, all in animal rat models because of scarcity of clinical trials. Six studies, all in middle cerebral artery occlusion (MCAO) models, were selected for meta-analysis. In the two studies assessing mortality, no deaths were reported in the IRL-1620 group 24 h after MCAO, whereas the vehicle group had almost a five times higher mortality risk (risk ratio 5.3, 95% confidence interval 0.7-40.1, I2 = 0%). In all five studies evaluating outcome on day 7 after MCAO, IRL-1620 was associated with statistically significantly lower neurological deficit and improved motor performance compared with the vehicle. Infract volume, differentiation potential of neuronal progenitor cells, and mitochondrial fate also improved with IRL-1620 administration. CONCLUSIONS According to the above, in animal MCAO models, IRL-1620 enhanced neurogenesis and neuroprotection and improved outcome. Future studies are needed to expand our understanding of its effects in human study participants with acute ischemic stroke as well as in other common causes of cerebral ischemia including cardiac arrest.
Collapse
Affiliation(s)
- Dimitris Moustakas
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Iliana Mani
- 2d Department of Internal Medicine, Medical School, Hippokration General Hospital, National and Kapodistrian University of Athens, Vas. Sofias 114, 11527, Athens, Greece.
| | - Abraham Pouliakis
- 2d Department of Pathology, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikoletta Iacovidou
- Neonatal Department, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Xanthos
- School of Health Sciences, University of West Attica, Athens, Greece
| |
Collapse
|
3
|
Mavridis T, Mavridi A, Karampela E, Galanos A, Gkiokas G, Iacovidou N, Xanthos T. Sovateltide (ILR-1620) Improves Motor Function and Reduces Hyperalgesia in a Rat Model of Spinal Cord Injury. Neurocrit Care 2024; 41:455-468. [PMID: 38443708 DOI: 10.1007/s12028-024-01950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Spinal cord injury (SCI) presents a major global health challenge, with rising incidence rates and substantial disability. Although progress has been made in understanding SCI's pathophysiology and early management, there is still a lack of effective treatments to mitigate long-term consequences. This study investigates the potential of sovateltide, a selective endothelin B receptor agonist, in improving clinical outcomes in an acute SCI rat model. METHODS Thirty male Sprague-Dawley rats underwent sham surgery (group A) or SCI and treated with vehicle (group B) or sovateltide (group C). Clinical tests, including Basso, Beattie, and Bresnahan scoring, inclined plane, and allodynia testing with von Frey hair, were performed at various time points. Statistical analyses assessed treatment effects. RESULTS Sovateltide administration significantly improved motor function, reducing neurological deficits and enhancing locomotor recovery compared with vehicle-treated rats, starting from day 7 post injury. Additionally, the allodynic threshold improved, suggesting antinociceptive properties. Notably, the sovateltide group demonstrated sustained recovery, and even reached preinjury performance levels, whereas the vehicle group plateaued. CONCLUSIONS This study suggests that sovateltide may offer neuroprotective effects, enhancing neurogenesis and angiogenesis. Furthermore, it may possess anti-inflammatory and antinociceptive properties. Future clinical trials are needed to validate these findings, but sovateltide shows promise as a potential therapeutic strategy to improve functional outcomes in SCI. Sovateltide, an endothelin B receptor agonist, exhibits neuroprotective properties, enhancing motor recovery and ameliorating hyperalgesia in a rat SCI model. These findings could pave the way for innovative pharmacological interventions for SCI in clinical settings.
Collapse
Affiliation(s)
- Theodoros Mavridis
- First Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- Department of Neurology, Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital, Dublin, Incorporating the National Children's Hospital (AMNCH), Dublin, Ireland.
| | - Artemis Mavridi
- First Department of Pediatrics, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Antonis Galanos
- Laboratory for Research of the Musculoskeletal System, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - George Gkiokas
- Second Department of Surgery, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nicoletta Iacovidou
- Department of Neonatology, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Xanthos
- School of Health and Caring Sciences, University of West Attica, Athens, Greece
| |
Collapse
|
4
|
Hassan OI, Takamiya S, Asgarihafshejani A, Fehlings MG. Bridging the gap: a translational perspective in spinal cord injury. Exp Biol Med (Maywood) 2024; 249:10266. [PMID: 39391076 PMCID: PMC11464315 DOI: 10.3389/ebm.2024.10266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating and complex condition to treat with no curative options. In the past few decades, rapid advancements in our understanding of SCI pathophysiology as well as the mergence of new treatments has created more optimism. Focusing on clinical translation, this paper provides a comprehensive overview of SCI through its epidemiology, pathophysiology, currently employed management strategies, and emerging therapeutic approaches. Additionally, it emphasizes the importance of addressing the heavy quality of life (QoL) challenges faced by SCI patients and their desires, providing a basis to tailor patient-centric forms of care. Furthermore, this paper discusses the frequently encountered barriers in translation from preclinical models to clinical settings. It also seeks to summarize significant completed and ongoing SCI clinical trials focused on neuroprotective and neuroregenerative strategies. While developing a cohesive regenerative treatment strategy remains challenging, even modest improvements in sensory and motor function can offer meaningful benefits and motivation for patients coping with this highly debilitating condition.
Collapse
Affiliation(s)
- Omar Imad Hassan
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Soichiro Takamiya
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Azam Asgarihafshejani
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Ranjan AK, Gulati A. Advances in Therapies to Treat Neonatal Hypoxic-Ischemic Encephalopathy. J Clin Med 2023; 12:6653. [PMID: 37892791 PMCID: PMC10607511 DOI: 10.3390/jcm12206653] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a condition that results in brain damage in newborns due to insufficient blood and oxygen supply during or after birth. HIE is a major cause of neurological disability and mortality in newborns, with over one million neonatal deaths occurring annually worldwide. The severity of brain injury and the outcome of HIE depend on several factors, including the cause of oxygen deprivation, brain maturity, regional blood flow, and maternal health conditions. HIE is classified into mild, moderate, and severe categories based on the extent of brain damage and resulting neurological issues. The pathophysiology of HIE involves different phases, including the primary phase, latent phase, secondary phase, and tertiary phase. The primary and secondary phases are characterized by episodes of energy and cell metabolism failures, increased cytotoxicity and apoptosis, and activated microglia and inflammation in the brain. A tertiary phase occurs if the brain injury persists, characterized by reduced neural plasticity and neuronal loss. Understanding the cellular and molecular aspects of the different phases of HIE is crucial for developing new interventions and therapeutics. This review aims to discuss the pathophysiology of HIE, therapeutic hypothermia (TH), the only approved therapy for HIE, ongoing developments of adjuvants for TH, and potential future drugs for HIE.
Collapse
Affiliation(s)
- Amaresh K Ranjan
- Research and Development, Pharmazz Inc., Willowbrook, IL 60527, USA
| | - Anil Gulati
- Research and Development, Pharmazz Inc., Willowbrook, IL 60527, USA
- Department of Bioengineering, The University of Illinois at Chicago, Chicago, IL 60607, USA
- College of Pharmacy, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
6
|
Abstract
Sovateltide (Tycamzzi™), a highly selective endothelin-B receptor agonist and synthetic analog of endothelin-1, is being developed by Pharmazz, Inc. as a neural progenitor cell therapeutic agent for the treatment of acute cerebral ischemic stroke (ACIS), hypoxic-ischemic encephalopathy (HIE), spinal cord injuries and Alzheimer's disease. In May 2023, sovateltide was approved in India for the treatment of cerebral ischemic stroke within 24 h of stroke onset. This article summarizes the milestones in the development of sovateltide leading to this first approval for use in patients with ACIS.
Collapse
Affiliation(s)
- Susan J Keam
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
7
|
Delahaye J, Stölting M, Geyer C, Vogl T, Eisenblätter M, Helfen A, Höltke C. Development, synthesis and evaluation of novel fluorescent Endothelin-B receptor probes. Eur J Med Chem 2023; 258:115568. [PMID: 37379676 DOI: 10.1016/j.ejmech.2023.115568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
The endothelin (ET) signaling system is comprised of three endothelin peptides (ET-1, -2 and -3) and two corresponding endothelin-A and -B receptors (ETAR and ETBR), which belong to the G-protein coupled receptor (GPCR) superfamily. The endothelin axis, as this system is also referred to, contributes to the maintenance of vascular tone, functions as regulator of inflammation and proliferation and helps in balancing water homeostasis. In pathological settings, the ET axis is known to contribute to endothelial activation in cardiovascular diseases, to cell proliferation, chemoresistance and metastasis in cancer and to inflammation and fibrosis in renal disease. Antagonists of ETAR and ETBR, either subtype-specific compounds or substances with high affinity to both receptors, have been developed for more than 30 years. In the preclinical context, in vivo imaging of endothelin receptor expression has been utilized to assess ET-axis contribution to e.g. cancer or myocardial infarction. In this work, we present the development and synthesis of two novel ETBR-specific fluorescent probes, based on the available antagonists BQ788 and IRL2500 and their preliminary evaluation in a breast cancer context.
Collapse
Affiliation(s)
| | - Miriam Stölting
- Clinic for Radiology, University Hospital Münster, Münster, Germany
| | - Christiane Geyer
- Clinic for Radiology, University Hospital Münster, Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Michel Eisenblätter
- Clinic for Radiology, University Hospital Münster, Münster, Germany; Department of Diagnostic and Interventional Radiology, Medical Faculty OWL, Bielefeld University, Bielefeld, Germany
| | - Anne Helfen
- Clinic for Radiology, University Hospital Münster, Münster, Germany
| | - Carsten Höltke
- Clinic for Radiology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
8
|
Ragni M, Fenaroli F, Ruocco C, Segala A, D’Antona G, Nisoli E, Valerio A. A balanced formula of essential amino acids promotes brain mitochondrial biogenesis and protects neurons from ischemic insult. Front Neurosci 2023; 17:1197208. [PMID: 37397466 PMCID: PMC10308218 DOI: 10.3389/fnins.2023.1197208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Mitochondrial dysfunction plays a key role in the aging process, and aging is a strong risk factor for neurodegenerative diseases or brain injury characterized by impairment of mitochondrial function. Among these, ischemic stroke is one of the leading causes of death and permanent disability worldwide. Pharmacological approaches for its prevention and therapy are limited. Although non-pharmacological interventions such as physical exercise, which promotes brain mitochondrial biogenesis, have been shown to exert preventive effects against ischemic stroke, regular feasibility is complex in older people, and nutraceutical strategies could be valuable alternatives. We show here that dietary supplementation with a balanced essential amino acid mixture (BCAAem) increased mitochondrial biogenesis and the endogenous antioxidant response in the hippocampus of middle-aged mice to an extent comparable to those elicited by treadmill exercise training, suggesting BCAAem as an effective exercise mimetic on brain mitochondrial health and disease prevention. In vitro BCAAem treatment directly exerted mitochondrial biogenic effects and induced antioxidant enzyme expression in primary mouse cortical neurons. Further, exposure to BCAAem protected cortical neurons from the ischemic damage induced by an in vitro model of cerebral ischemia (oxygen-glucose deprivation, OGD). BCAAem-mediated protection against OGD was abolished in the presence of rapamycin, Torin-1, or L-NAME, indicating the requirement of both mTOR and eNOS signaling pathways in the BCAAem effects. We propose BCAAem supplementation as an alternative to physical exercise to prevent brain mitochondrial derangements leading to neurodegeneration and as a nutraceutical intervention aiding recovery after cerebral ischemia in conjunction with conventional drugs.
Collapse
Affiliation(s)
- Maurizio Ragni
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Francesca Fenaroli
- Department of Molecular and Translational Medicine, Brescia University, Brescia, Italy
| | - Chiara Ruocco
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Agnese Segala
- Department of Molecular and Translational Medicine, Brescia University, Brescia, Italy
| | - Giuseppe D’Antona
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, Brescia University, Brescia, Italy
| |
Collapse
|
9
|
Gureev AP, Silachev DN, Sadovnikova IS, Krutskikh EP, Chernyshova EV, Volodina DE, Samoylova NA, Potanina DV, Burakova IY, Smirnova YD, Popov VN, Plotnikov EY. The Ketogenic Diet but not Hydroxycitric Acid Keeps Brain Mitochondria Quality Control and mtDNA Integrity Under Focal Stroke. Mol Neurobiol 2023:10.1007/s12035-023-03325-8. [PMID: 37074549 DOI: 10.1007/s12035-023-03325-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/20/2023] [Indexed: 04/20/2023]
Abstract
Mitochondrial dysfunction in the ischemic brain is one of the hallmarks of stroke. Dietary interventions such as the ketogenic diet and hydroxycitric acid supplementation (a caloric restriction mimetic) may potentially protect neurons from mitochondrial damage induced by focal stroke in mice. We showed that in control mice, the ketogenic diet and the hydroxycitric acid did not impact significantly on the mtDNA integrity and expression of genes involved in the maintenance of mitochondrial quality control in the brain, liver, and kidney. The ketogenic diet changed the bacterial composition of the gut microbiome, which via the gut-brain axis may affect the increase in anxiety behavior and reduce mice mobility. The hydroxycitric acid causes mortality and suppresses mitochondrial biogenesis in the liver. Focal stroke modelling caused a significant decrease in the mtDNA copy number in both ipsilateral and contralateral brain cortex and increased the levels of mtDNA damage in the ipsilateral hemisphere. These alterations were accompanied by a decrease in the expression of some of the genes involved in maintaining mitochondrial quality control. The ketogenic diet consumption before stroke protects mtDNA in the ipsilateral cortex, probably via activation of the Nrf2 signaling. The hydroxycitric acid, on the contrary, increased stroke-induced injury. Thus, the ketogenic diet is the most preferred variant of dietetic intervention for stroke protection compared with the hydroxycitric acid supplementation. Our data confirm some reports about hydroxycitric acid toxicity, not only for the liver but also for the brain under stroke condition.
Collapse
Affiliation(s)
- Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036, Voronezh, Russia
| | - Denis N Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Irina S Sadovnikova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Ekaterina P Krutskikh
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Ekaterina V Chernyshova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Daria E Volodina
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Natalia A Samoylova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Daria V Potanina
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036, Voronezh, Russia
| | - Inna Yu Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036, Voronezh, Russia
| | - Yuliya D Smirnova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036, Voronezh, Russia
| | - Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036, Voronezh, Russia
| | - Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234, Moscow, Russia.
| |
Collapse
|
10
|
Briyal S, Ranjan AK, Gulati A. Oxidative stress: A target to treat Alzheimer's disease and stroke. Neurochem Int 2023; 165:105509. [PMID: 36907516 DOI: 10.1016/j.neuint.2023.105509] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/01/2023] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
Oxidative stress has been established as a well-known pathological condition in several neurovascular diseases. It starts with increased production of highly oxidizing free-radicals (e.g. reactive oxygen species; ROS and reactive nitrogen species; RNS) and becomes too high for the endogenous antioxidant system to neutralize them, which results in a significantly disturbed balance between free-radicals and antioxidants levels and causes cellular damage. A number of studies have evidently shown that oxidative stress plays a critical role in activating multiple cell signaling pathways implicated in both progression as well as initiation of neurological diseases. Therefore, oxidative stress continues to remain a key therapeutic target for neurological diseases. This review discusses the mechanisms involved in reactive oxygen species (ROS) generation in the brain, oxidative stress, and pathogenesis of neurological disorders such as stroke and Alzheimer's disease (AD) and the scope of antioxidant therapies for these disorders.
Collapse
Affiliation(s)
- Seema Briyal
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA.
| | - Amaresh K Ranjan
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA
| | - Anil Gulati
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA; Pharmazz Inc. Research and Development, Willowbrook, IL, USA
| |
Collapse
|
11
|
Neuroprotective Strategies for Ischemic Stroke-Future Perspectives. Int J Mol Sci 2023; 24:ijms24054334. [PMID: 36901765 PMCID: PMC10002358 DOI: 10.3390/ijms24054334] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Ischemic stroke is the main cause of death and the most common cause of acquired physical disability worldwide. Recent demographic changes increase the relevance of stroke and its sequelae. The acute treatment for stroke is restricted to causative recanalization and restoration of cerebral blood flow, including both intravenous thrombolysis and mechanical thrombectomy. Still, only a limited number of patients are eligible for these time-sensitive treatments. Hence, new neuroprotective approaches are urgently needed. Neuroprotection is thus defined as an intervention resulting in the preservation, recovery, and/or regeneration of the nervous system by interfering with the ischemic-triggered stroke cascade. Despite numerous preclinical studies generating promising data for several neuroprotective agents, successful bench-to-bedside translations are still lacking. The present study provides an overview of current approaches in the research field of neuroprotective stroke treatment. Aside from "traditional" neuroprotective drugs focusing on inflammation, cell death, and excitotoxicity, stem-cell-based treatment methods are also considered. Furthermore, an overview of a prospective neuroprotective method using extracellular vesicles that are secreted from various stem cell sources, including neural stem cells and bone marrow stem cells, is also given. The review concludes with a short discussion on the microbiota-gut-brain axis that may serve as a potential target for future neuroprotective therapies.
Collapse
|
12
|
Khaing ZZ, Chen JY, Safarians G, Ezubeik S, Pedroncelli N, Duquette RD, Prasse T, Seidlits SK. Clinical Trials Targeting Secondary Damage after Traumatic Spinal Cord Injury. Int J Mol Sci 2023; 24:3824. [PMID: 36835233 PMCID: PMC9960771 DOI: 10.3390/ijms24043824] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Spinal cord injury (SCI) often causes loss of sensory and motor function resulting in a significant reduction in quality of life for patients. Currently, no therapies are available that can repair spinal cord tissue. After the primary SCI, an acute inflammatory response induces further tissue damage in a process known as secondary injury. Targeting secondary injury to prevent additional tissue damage during the acute and subacute phases of SCI represents a promising strategy to improve patient outcomes. Here, we review clinical trials of neuroprotective therapeutics expected to mitigate secondary injury, focusing primarily on those in the last decade. The strategies discussed are broadly categorized as acute-phase procedural/surgical interventions, systemically delivered pharmacological agents, and cell-based therapies. In addition, we summarize the potential for combinatorial therapies and considerations.
Collapse
Affiliation(s)
- Zin Z. Khaing
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Jessica Y. Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Gevick Safarians
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sohib Ezubeik
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Nicolas Pedroncelli
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rebecca D. Duquette
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Tobias Prasse
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
- Department of Orthopedics and Trauma Surgery, University of Cologne, 50931 Cologne, Germany
| | - Stephanie K. Seidlits
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
13
|
Kim HS, Shin SM, Kim S, Nam Y, Yoo A, Moon M. Relationship between adult subventricular neurogenesis and Alzheimer’s disease: Pathologic roles and therapeutic implications. Front Aging Neurosci 2022; 14:1002281. [PMID: 36185481 PMCID: PMC9518691 DOI: 10.3389/fnagi.2022.1002281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that is characterized by irreversible cognitive declines. Senile plaques formed by amyloid-β (Aβ) peptides and neurofibrillary tangles, consisting of hyperphosphorylated tau protein accumulation, are prominent neuropathological features of AD. Impairment of adult neurogenesis is also a well-known pathology in AD. Adult neurogenesis is the process by which neurons are generated from adult neural stem cells. It is closely related to various functions, including cognition, as it occurs throughout life for continuous repair and development of specific neural pathways. Notably, subventricular zone (SVZ) neurogenesis, which occurs in the lateral ventricles, transports neurons to several brain regions such as the olfactory bulb, cerebral cortex, striatum, and hippocampus. These migrating neurons can affect cognitive function and behavior in different neurodegenerative diseases. Despite several studies indicating the importance of adult SVZ neurogenesis in neurodegenerative disorders, the pathological alterations and therapeutic implications of impaired adult neurogenesis in the SVZ in AD have not yet been fully explained. In this review, we summarize recent progress in understanding the alterations in adult SVZ neurogenesis in AD animal models and patients. Moreover, we discuss the potential therapeutic approaches for restoring impaired adult SVZ neurogenesis. Our goal is to impart to readers the importance of adult SVZ neurogenesis in AD and to provide new insights through the discussion of possible therapeutic approaches.
Collapse
Affiliation(s)
- Hyeon Soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Seong Min Shin
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
- Research Institute for Dementia Science, Konyang University, Daejeon, South Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Anji Yoo
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
- Research Institute for Dementia Science, Konyang University, Daejeon, South Korea
- *Correspondence: Minho Moon,
| |
Collapse
|
14
|
Khan H, Kaur Grewal A, Gurjeet Singh T. Mitochondrial dynamics related neurovascular approaches in cerebral ischemic injury. Mitochondrion 2022; 66:54-66. [DOI: 10.1016/j.mito.2022.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/14/2022] [Accepted: 08/02/2022] [Indexed: 12/30/2022]
|
15
|
Sovateltide Mediated Endothelin B Receptors Agonism and Curbing Neurological Disorders. Int J Mol Sci 2022; 23:ijms23063146. [PMID: 35328566 PMCID: PMC8955091 DOI: 10.3390/ijms23063146] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
Neurological/neurovascular disorders constitute the leading cause of disability and the second leading cause of death globally. Major neurological/neurovascular disorders or diseases include cerebral stroke, Alzheimer’s disease, spinal cord injury, neonatal hypoxic-ischemic encephalopathy, and others. Their pathophysiology is considered highly complex and is the main obstacle in developing any drugs for these diseases. In this review, we have described the endothelin system, its involvement in neurovascular disorders, the importance of endothelin B receptors (ETBRs) as a novel potential drug target, and its agonism by IRL-1620 (INN—sovateltide), which we are developing as a drug candidate for treating the above-mentioned neurological disorders/diseases. In addition, we have highlighted the results of our preclinical and clinical studies related to these diseases. The phase I safety and tolerability study of sovateltide has shown it as a safe and tolerable compound at therapeutic dosages. Furthermore, preclinical and clinical phase II studies have demonstrated the efficacy of sovateltide in treating acute ischemic stroke. It is under development as a first-in-class drug. In addition, efficacy studies in Alzheimer’s disease (AD), acute spinal cord injury, and neonatal hypoxic-ischemic encephalopathy (HIE) are ongoing. Successful completion of these studies will validate that ETBRs signaling can be an important target in developing drugs to treat neurological/neurovascular diseases.
Collapse
|
16
|
Tian H, Chen X, Liao J, Yang T, Cheng S, Mei Z, Ge J. Mitochondrial quality control in stroke: From the mechanisms to therapeutic potentials. J Cell Mol Med 2022; 26:1000-1012. [PMID: 35040556 PMCID: PMC8831937 DOI: 10.1111/jcmm.17189] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/17/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial damage is a critical contributor to stroke‐induced injury, and mitochondrial quality control (MQC) is the cornerstone of restoring mitochondrial homeostasis and plays an indispensable role in alleviating pathological process of stroke. Mitochondria quality control promotes neuronal survival via various adaptive responses for preserving mitochondria structure, morphology, quantity and function. The processes of mitochondrial fission and fusion allow for damaged mitochondria to be segregated and facilitate the equilibration of mitochondrial components such as DNA, proteins and metabolites. The process of mitophagy is responsible for the degradation and recycling of damaged mitochondria. This review aims to offer a synopsis of the molecular mechanisms involved in MQC for recapitulating our current understanding of the complex role that MQC plays in the progression of stroke. Speculating on the prospect that targeted manipulation of MQC mechanisms may be exploited for the rationale design of novel therapeutic interventions in the ischaemic stroke and haemorrhagic stroke. In the review, we highlight the potential of MQC as therapeutic targets for stroke treatment and provide valuable insights for clinical strategies.
Collapse
Affiliation(s)
- Heyan Tian
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Xiangyu Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Jun Liao
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Shaowu Cheng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
17
|
Ramos MD, Briyal S, Prazad P, Gulati A. Neuroprotective Effect of Sovateltide (IRL 1620, PMZ 1620) in a Neonatal Rat Model of Hypoxic-Ischemic Encephalopathy. Neuroscience 2022; 480:194-202. [PMID: 34826534 DOI: 10.1016/j.neuroscience.2021.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022]
Abstract
Therapeutic hypothermia with modest results is the only treatment currently available for neonatal hypoxic ischemic encephalopathy (HIE). Endothelin B (ETB) receptors in the brain are shown to have neural restorative capacity. ETB receptors agonist sovateltide alone or as an adjuvant therapy may enhance neurovascular remodeling in HIE. Sprague-Dawley rat pups were grouped based on treatments into (1) Control; (2) HIE + Vehicle; (3) HIE + Hypothermia; (4) HIE + sovateltide; and (5) HIE + sovateltide + hypothermia. HIE was induced on postnatal day (PND) 7, followed by sovateltide (5 µg/kg) intracerebroventricular injection and/or hypothermia. On PND 10, brains were analyzed for the expression of vascular endothelial growth factor (VEGF), nerve growth factor (NGF), ETB receptors, oxidative stress and cellular damage markers. Vehicle-treated animals had high oxidative stress level as indicated by an increase in lipid peroxidation factor, malondialdehyde, and decreased antioxidants, reduced glutathione and superoxide dismutase, compared to control. These effects were reversed in sovateltide alone (p < 0.001) or in combination with the therapeutic hypothermia (p < 0.001), indicating that ETB receptor activation reduces oxidative stress injury following HIE. Animals receiving sovateltide demonstrated a significant (p < 0.0001) upregulation of ETB receptor, VEGF, and NGF expression in the brain compared to vehicle-treated animals. Additionally, sovateltide alone or in combination with therapeutic hypothermia significantly (p < 0.001) reduced cell death when compared to vehicle or therapeutic hypothermia alone, demonstrating that sovateltide is neuroprotective and attenuates neural damage following HIE. These findings are important and merit additional studies for development of new interventions for improving neurodevelopmental outcomes after HIE.
Collapse
Affiliation(s)
- Michelle Davis Ramos
- Advocate Children's Hospital, Department of Neonatology, Park Ridge, IL 60068 United States.
| | - Seema Briyal
- Midwestern University, College of Pharmacy, Downers Grove, IL 60515, United States.
| | - Preetha Prazad
- Advocate Children's Hospital, Department of Neonatology, Park Ridge, IL 60068 United States
| | - Anil Gulati
- Midwestern University, College of Pharmacy, Downers Grove, IL 60515, United States; Pharmazz Inc. Research and Development, Willowbrook, IL 60527, United States
| |
Collapse
|
18
|
Gillotin S, Sahni V, Lepko T, Hanspal MA, Swartz JE, Alexopoulou Z, Marshall FH. Targeting impaired adult hippocampal neurogenesis in ageing by leveraging intrinsic mechanisms regulating Neural Stem Cell activity. Ageing Res Rev 2021; 71:101447. [PMID: 34403830 DOI: 10.1016/j.arr.2021.101447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Deficits in adult neurogenesis may contribute to the aetiology of many neurodevelopmental, psychiatric and neurodegenerative diseases. Genetic ablation of neurogenesis provides proof of concept that adult neurogenesis is required to sustain complex and dynamic cognitive functions, such as learning and memory, mostly by providing a high degree of plasticity to neuronal circuits. In addition, adult neurogenesis is reactive to external stimuli and the environment making it particularly susceptible to impairment and consequently contributing to comorbidity. In the human brain, the dentate gyrus of the hippocampus is the main active source of neural stem cells that generate granule neurons throughout life. The regulation and preservation of the pool of neural stem cells is central to ensure continuous and healthy adult hippocampal neurogenesis (AHN). Recent advances in genetic and metabolic profiling alongside development of more predictive animal models have contributed to the development of new concepts and the emergence of molecular mechanisms that could pave the way to the implementation of new therapeutic strategies to treat neurological diseases. In this review, we discuss emerging molecular mechanisms underlying AHN that could be embraced in drug discovery to generate novel concepts and targets to treat diseases of ageing including neurodegeneration. To support this, we review cellular and molecular mechanisms that have recently been identified to assess how AHN is sustained throughout life and how AHN is associated with diseases. We also provide an outlook on strategies for developing correlated biomarkers that may accelerate the translation of pre-clinical and clinical data and review clinical trials for which modulation of AHN is part of the therapeutic strategy.
Collapse
|
19
|
Ranjan AK, Zhang Z, Briyal S, Gulati A. Centhaquine Restores Renal Blood Flow and Protects Tissue Damage After Hemorrhagic Shock and Renal Ischemia. Front Pharmacol 2021; 12:616253. [PMID: 34012389 PMCID: PMC8126696 DOI: 10.3389/fphar.2021.616253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/24/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Centhaquine (CQ) (Lyfaquin®) is in late stage clinical development as a safe and effective first-in-class resuscitative agent for hemorrhagic shock patients (NCT02408731, NCT04056065, and NCT04045327). Acute kidney injury (AKI) is known to be associated with hemorrhagic shock. Hence, effect of CQ on protection of kidneys from damage due to hemorrhagic shock was investigated. Methods: To assess effect of CQ on AKI in shock, we created a rat model with hemorrhagic shock and AKI. Renal arteries were clamped and de-clamped to induce AKI like ischemia/reperfusion model and hemorrhage was carried out by withdrawing blood for 30 min. Rats were resuscitated with CQ (0.02 mg/kg) for 10 min. MAP, heart rate (HR), and renal blood flow (RBF) were monitored for 120 min. Results: CQ produced a significant improvement in RBF compared to vehicle (p< 0.003) even though MAP and HR was similar in CQ and vehicle groups. Blood lactate level was lower (p = 0.0064) in CQ than vehicle at 120 min post-resuscitation. Histopathological analysis of tissues indicated greater renal damage in vehicle than CQ. Western blots showed higher HIF-1α (p = 0.0152) and lower NGAL (p = 0.01626) levels in CQ vs vehicle. Immunofluorescence in the kidney cortex and medulla showed significantly higher (p< 0.045) expression of HIF-1α and lower expression of Bax (p< 0.044) in CQ. Expression of PHD 3 (p< 0.0001) was higher, while the expression of Cytochrome C (p = 0.01429) was lower in the cortex of CQ than vehicle. Conclusion: Results show CQ (Lyfaquin®) increased renal blood flow, augmented hypoxia response, decreased tissue damage and apoptosis following hemorrhagic shock induced AKI, and may be explored to prevent/treat AKI. Translational Statement: Centhaquine (CQ) is safe for human use and currently in late stage clinical development as a first-in-class resuscitative agent to treat hemorrhagic shock. In the current study, we have explored a novel role of CQ in protection from hemorrhagic shock induced AKI, indicating its potential to treat/prevent AKI.
Collapse
Affiliation(s)
- Amaresh K. Ranjan
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| | - Zhong Zhang
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| | - Seema Briyal
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| | - Anil Gulati
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
- Pharmazz Inc. Research and Development, Willlowbrook, IL, United States
| |
Collapse
|
20
|
Gulati A, Agrawal N, Vibha D, Misra UK, Paul B, Jain D, Pandian J, Borgohain R. Safety and Efficacy of Sovateltide (IRL-1620) in a Multicenter Randomized Controlled Clinical Trial in Patients with Acute Cerebral Ischemic Stroke. CNS Drugs 2021; 35:85-104. [PMID: 33428177 PMCID: PMC7872992 DOI: 10.1007/s40263-020-00783-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Sovateltide (IRL-1620, PMZ-1620), an endothelin-B receptor agonist, has been previously shown to increase cerebral blood flow, have anti-apoptotic activity and produce neurovascular remodeling when administered intravenously following acute cerebral ischemic stroke in rats. Its safety and tolerability were confirmed in healthy human volunteers (CTRI/2016/11/007509). OBJECTIVE Our objective was to determine the safety, tolerability and efficacy of sovateltide as an addition to standard of care (SOC) in patients with acute cerebral ischemic stroke. METHODS A prospective, multicentric, randomized, double-blind, placebo-controlled study was conducted to compare the safety (primary objective) and efficacy (secondary objective) of sovateltide in patients with acute cerebral ischemic stroke. Adult males or females aged 18-70 years who had experienced a radiologically confirmed ischemic stroke within the last 24 h were included in the study. Patients with intracranial hemorrhage and those receiving endovascular therapy were excluded. Patients randomized to the sovateltide group received three doses of sovateltide (each dose 0.3 µg/kg) administered as an intravenous bolus over 1 min at an interval of 3 ± 1 h on day 1, day 3 and day 6 (total dose of 0.9 µg/kg/day). Patients randomized to the placebo group received an equal volume of saline. Every patient in both groups received SOC for stroke. Efficacy was evaluated using neurological outcomes based on National Institute of Health Stroke Scale (NIHSS), modified Rankin Scale (mRS) and Barthel Index (BI) scores from day 1 through day 90. Quality of life was measured using the EuroQoL-5 Dimensions (EQ-5D) and Stroke-Specific Quality of Life (SSQoL) at 60 and 90 days of follow-up. RESULTS A total of 40 patients with acute cerebral ischemic stroke were enrolled in this study, of whom 36 completed the 90-day follow-up. Patients received saline (n = 18; 11 male and 7 female) or sovateltide (n = 18; 15 male and 3 female) within 24 h of onset of stroke. The number of patients receiving investigational drug within 20 h of onset of stroke was 14/18 in the saline group and 10/18 in the sovateltide group. The baseline characteristics and SOC in both cohorts was similar. Sovateltide was well-tolerated, and all patients received complete treatment with no incidence of drug-related adverse events. Hemodynamic, biochemical or hematological parameters were not affected by sovateltide. Sovateltide treatment resulted in improved mRS and BI scores on day 6 compared with day 1 (p < 0.0001), an effect not seen in the saline group. Sovateltide increased the frequency of favorable outcomes at 3 months. An improvement of ≥ 2 points on the mRS was observed in 60 and 40% of patients in the sovateltide and saline groups, respectively (p = 0.0519; odds ratio [OR] 5.25). An improvement on the BI of ≥ 40 points was seen in 64 and 36% of the sovateltide and saline groups, respectively (p = 0.0112; OR 12.44). An improvement of ≥6 points on the NIHSS was seen in 56% of patients in the sovateltide group versus 43% in the saline group (p = 0.2714; OR 2.275). The number of patients with complete recovery (defined as an NIHSS score of 0 and a BI of 100) was significantly greater (p < 0.05) in the sovateltide group than in the saline group. An assessment of complete recovery using an mRS score of 0 did not show a statistically significant difference between the treatment groups. Sovateltide treatment resulted in improved quality of life as measured by the EQ-5D and SSQoL on day 90. CONCLUSION Sovateltide was safe and well-tolerated and resulted in improved neurological outcomes in patients with acute cerebral ischemic stroke 90 days post-treatment. TRIAL REGISTRATION The study is registered at CTRI/2017/11/010654 and NCT04046484.
Collapse
Affiliation(s)
- Anil Gulati
- Pharmazz, Inc., 50 West 75th Street, Suite 105, Willowbrook, IL, 60527, USA.
- Midwestern University, Downers Grove, IL, USA.
| | | | - Deepti Vibha
- All India Inst of Medical Sciences, New Delhi, India
| | - U K Misra
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | | | | | | | |
Collapse
|