1
|
Plitt G, Brewer T, Yehia L, Rabinowitz L, Griffith CC, Eng C. The Genomic Landscape of Benign and Malignant Thyroid Tumors from Individuals Carrying Germline PTEN Variants Is Distinct from Sporadic Thyroid Cancers. Cancer Res 2024; 84:3657-3668. [PMID: 39316756 PMCID: PMC11534558 DOI: 10.1158/0008-5472.can-23-2216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/19/2023] [Accepted: 10/13/2023] [Indexed: 09/26/2024]
Abstract
Patients with PTEN hamartoma tumor syndrome (PHTS), a molecular diagnosis for those carrying germline PTEN pathogenic variants, have a high prevalence of benign and malignant thyroid disease. Characterizing the genomic landscape in PHTS thyroid tumors could provide insights into malignant potential and tumor progression to help optimize diagnosis, surveillance, and treatment in this population. To reveal the somatic alterations in PHTS-associated thyroid tumors, we conducted exome sequencing on 58 thyroid tumors (28 cancers, 30 benign nodules) from 19 patients with PHTS. A control cohort of 447 sporadic papillary thyroid cancers (PTC) from The Cancer Genome Atlas was used for comparison. PHTS-associated thyroid tumors had a unique genomic landscape in the setting of a pathogenic germline PTEN mutation, when compared with the general population. PHTS-associated thyroid tumors demonstrated a high frequency of second-hit somatic PTEN alterations, including variants and loss-of-heterozygosity events. Second-hit somatic PTEN alterations were more prevalent in PHTS-associated PTC than sporadic PTC (65.2% vs. 0.067%), occurring frequently in PHTS-associated follicular thyroid cancer (100%) and benign follicular nodules (90%). PHTS-associated PTC additionally harbored somatic alterations in BRAF, RAS family members, and genes associated with DNA double-stranded break repair, as well as somatic arm-level copy-number variations. Together, these findings suggest that biallelic PTEN alterations may function as foundational mutations in PHTS thyroid tissue, promoting benign growth and increasing potential for malignant transformation through impaired DNA double-stranded break repair and increased genomic instability. The unique genomic landscape of PHTS-associated thyroid tumors carries implications for molecular-targeted therapies for patients. Significance: Exome sequencing reveals the distinct mutational landscape of PTEN hamartoma tumor syndrome-associated thyroid cancers from sporadic counterparts, providing insights into tumor progression and behavior that could help improve diagnosis, surveillance, and treatment.
Collapse
Affiliation(s)
- Gilman Plitt
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Takae Brewer
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Center for Personalized Healthcare, Medical Specialties Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Laura Rabinowitz
- Department of Pathology, Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher C Griffith
- Department of Pathology, Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Center for Personalized Healthcare, Medical Specialties Institute, Cleveland Clinic, Cleveland, OH, USA
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
2
|
Atzeni R, Massidda M, Pieroni E, Rallo V, Pisu M, Angius A. A Novel Affordable and Reliable Framework for Accurate Detection and Comprehensive Analysis of Somatic Mutations in Cancer. Int J Mol Sci 2024; 25:8044. [PMID: 39125613 PMCID: PMC11311285 DOI: 10.3390/ijms25158044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Accurate detection and analysis of somatic variants in cancer involve multiple third-party tools with complex dependencies and configurations, leading to laborious, error-prone, and time-consuming data conversions. This approach lacks accuracy, reproducibility, and portability, limiting clinical application. Musta was developed to address these issues as an end-to-end pipeline for detecting, classifying, and interpreting cancer mutations. Musta is based on a Python command-line tool designed to manage tumor-normal samples for precise somatic mutation analysis. The core is a Snakemake-based workflow that covers all key cancer genomics steps, including variant calling, mutational signature deconvolution, variant annotation, driver gene detection, pathway analysis, and tumor heterogeneity estimation. Musta is easy to install on any system via Docker, with a Makefile handling installation, configuration, and execution, allowing for full or partial pipeline runs. Musta has been validated at the CRS4-NGS Core facility and tested on large datasets from The Cancer Genome Atlas and the Beijing Institute of Genomics. Musta has proven robust and flexible for somatic variant analysis in cancer. It is user-friendly, requiring no specialized programming skills, and enables data processing with a single command line. Its reproducibility ensures consistent results across users following the same protocol.
Collapse
Affiliation(s)
- Rossano Atzeni
- Center for Advanced Studies, Research and Development in Sardinia (CRS4), 09050 Pula, Italy; (R.A.); (E.P.); (M.P.)
| | - Matteo Massidda
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Enrico Pieroni
- Center for Advanced Studies, Research and Development in Sardinia (CRS4), 09050 Pula, Italy; (R.A.); (E.P.); (M.P.)
| | - Vincenzo Rallo
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Cagliari, 09042 Monserrato, Italy;
| | - Massimo Pisu
- Center for Advanced Studies, Research and Development in Sardinia (CRS4), 09050 Pula, Italy; (R.A.); (E.P.); (M.P.)
| | - Andrea Angius
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Cagliari, 09042 Monserrato, Italy;
| |
Collapse
|
3
|
Scimeca M, Bischof J, Bonfiglio R, Nale E, Iacovelli V, Carilli M, Vittori M, Agostini M, Rovella V, Servadei F, Giacobbi E, Candi E, Shi Y, Melino G, Mauriello A, Bove P. Molecular profiling of a bladder cancer with very high tumour mutational burden. Cell Death Discov 2024; 10:202. [PMID: 38688924 PMCID: PMC11061316 DOI: 10.1038/s41420-024-01883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 05/02/2024] Open
Abstract
The increasing incidence of urothelial bladder cancer is a notable global concern, as evidenced by the epidemiological data in terms of frequency, distribution, as well as mortality rates. Although numerous molecular alterations have been linked to the occurrence and progression of bladder cancer, currently there is a limited knowledge on the molecular signature able of accurately predicting clinical outcomes. In this report, we present a case of a pT3b high-grade infiltrating urothelial carcinoma with areas of squamous differentiation characterized by very high tumor mutational burden (TMB), with up-regulations of immune checkpoints. The high TMB, along with elevated expressions of PD-L1, PD-L2, and PD1, underscores the rationale for developing a personalized immunotherapy focused on the use of immune-checkpoint inhibitors. Additionally, molecular analysis revealed somatic mutations in several other cancer-related genes, including TP53, TP63 and NOTCH3. Mutations of TP53 and TP63 genes provide mechanistic insights on the molecular mechanisms underlying disease development and progression. Notably, the above-mentioned mutations and the elevated hypoxia score make the targeting of p53 and/or hypoxia related pathways a plausible personalized medicine option for this bladder cancer, particularly in combination with immunotherapy. Our data suggest a requirement for molecular profiling in bladder cancer to possibly select appropriate immune-checkpoint therapy.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Julia Bischof
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Rita Bonfiglio
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Elisabetta Nale
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Valerio Iacovelli
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy
| | - Marco Carilli
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy
| | - Matteo Vittori
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Valentina Rovella
- Department of System Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy.
| | - Pierluigi Bove
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy.
| |
Collapse
|
4
|
Cebeci YE, Erturk RA, Ergun MA, Baysan M. Improving somatic exome sequencing performance by biological replicates. BMC Bioinformatics 2024; 25:124. [PMID: 38519906 PMCID: PMC10958848 DOI: 10.1186/s12859-024-05742-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) technologies offer fast and inexpensive identification of DNA sequences. Somatic sequencing is among the primary applications of NGS, where acquired (non-inherited) variants are based on comparing diseased and healthy tissues from the same individual. Somatic mutations in genetic diseases such as cancer are tightly associated with genomic instability. Genomic instability increases heterogenity, complicating sequencing efforts further, a task already challenged by the presence of short reads and repetitions in human DNA. This leads to low concordance among studies and limits reproducibility. This limitation is a significant problem since identified mutations in somatic sequencing are major biomarkers for diagnosis and the primary input of targeted therapies. Benchmarking studies were conducted to assess the error rates and increase reproducibility. Unfortunately, the number of somatic benchmarking sets is very limited due to difficulties in validating true somatic variants. Moreover, most NGS benchmarking studies are based on relatively simpler germline (inherited) sequencing. Recently, a comprehensive somatic sequencing benchmarking set was published by Sequencing Quality Control Phase 2 (SEQC2). We chose this dataset for our experiments because it is a well-validated, cancer-focused dataset that includes many tumor/normal biological replicates. Our study has two primary goals. First goal is to determine how replicate-based consensus approaches can improve the accuracy of somatic variant detection systems. Second goal is to develop highly predictive machine learning (ML) models by employing replicate-based consensus variants as labels during the training phase. RESULTS Ensemble approaches that combine alternative algorithms are relatively common; here, as an alternative, we study the performance enhancement potential of biological replicates. We first developed replicate-based consensus approaches that utilize the biological replicates available in this study to improve variant calling performance. Subsequently, we trained ML models using these biological replicates and achieved performance comparable to optimal ML models, those trained using high-confidence variants identified in advance. CONCLUSIONS Our replicate-based consensus approach can be used to improve variant calling performance and develop efficient ML models. Given the relative ease of obtaining biological replicates, this strategy allows for the development of efficient ML models tailored to specific datasets or scenarios.
Collapse
Affiliation(s)
- Yunus Emre Cebeci
- Department of Computer Engineering, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Rumeysa Aslihan Erturk
- Department of Computer Engineering, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Mehmet Arif Ergun
- Department of Computer Engineering, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Mehmet Baysan
- Department of Computer Engineering, Istanbul Technical University, 34469, Istanbul, Turkey.
| |
Collapse
|
5
|
Ostroverkhova D, Tyryshkin K, Beach AK, Moore EA, Masoudi-Sobhanzadeh Y, Barbari SR, Rogozin IB, Shaitan KV, Panchenko AR, Shcherbakova PV. DNA polymerase ε and δ variants drive mutagenesis in polypurine tracts in human tumors. Cell Rep 2024; 43:113655. [PMID: 38219146 PMCID: PMC10830898 DOI: 10.1016/j.celrep.2023.113655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/07/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024] Open
Abstract
Alterations in the exonuclease domain of DNA polymerase ε cause ultramutated cancers. These cancers accumulate AGA>ATA transversions; however, their genomic features beyond the trinucleotide motifs are obscure. We analyze the extended DNA context of ultramutation using whole-exome sequencing data from 524 endometrial and 395 colorectal tumors. We find that G>T transversions in POLE-mutant tumors predominantly affect sequences containing at least six consecutive purines, with a striking preference for certain positions within polypurine tracts. Using this signature, we develop a machine-learning classifier to identify tumors with hitherto unknown POLE drivers and validate two drivers, POLE-E978G and POLE-S461L, by functional assays in yeast. Unlike other pathogenic variants, the E978G substitution affects the polymerase domain of Pol ε. We further show that tumors with POLD1 drivers share the extended signature of POLE ultramutation. These findings expand the understanding of ultramutation mechanisms and highlight peculiar mutagenic properties of polypurine tracts in the human genome.
Collapse
Affiliation(s)
- Daria Ostroverkhova
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON, Canada
| | - Kathrin Tyryshkin
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON, Canada
| | - Annette K Beach
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Elizabeth A Moore
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yosef Masoudi-Sobhanzadeh
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON, Canada
| | - Stephanie R Barbari
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON, Canada.
| | - Polina V Shcherbakova
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
6
|
Westcott PMK, Muyas F, Hauck H, Smith OC, Sacks NJ, Ely ZA, Jaeger AM, Rideout WM, Zhang D, Bhutkar A, Beytagh MC, Canner DA, Jaramillo GC, Bronson RT, Naranjo S, Jin A, Patten JJ, Cruz AM, Shanahan SL, Cortes-Ciriano I, Jacks T. Mismatch repair deficiency is not sufficient to elicit tumor immunogenicity. Nat Genet 2023; 55:1686-1695. [PMID: 37709863 PMCID: PMC10562252 DOI: 10.1038/s41588-023-01499-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
DNA mismatch repair deficiency (MMRd) is associated with a high tumor mutational burden (TMB) and sensitivity to immune checkpoint blockade (ICB) therapy. Nevertheless, most MMRd tumors do not durably respond to ICB and critical questions remain about immunosurveillance and TMB in these tumors. In the present study, we developed autochthonous mouse models of MMRd lung and colon cancer. Surprisingly, these models did not display increased T cell infiltration or ICB response, which we showed to be the result of substantial intratumor heterogeneity of mutations. Furthermore, we found that immunosurveillance shapes the clonal architecture but not the overall burden of neoantigens, and T cell responses against subclonal neoantigens are blunted. Finally, we showed that clonal, but not subclonal, neoantigen burden predicts ICB response in clinical trials of MMRd gastric and colorectal cancer. These results provide important context for understanding immune evasion in cancers with a high TMB and have major implications for therapies aimed at increasing TMB.
Collapse
Affiliation(s)
- Peter M K Westcott
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | - Francesc Muyas
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Haley Hauck
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Olivia C Smith
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nathan J Sacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zackery A Ely
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alex M Jaeger
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William M Rideout
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel Zhang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mary C Beytagh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David A Canner
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Grissel C Jaramillo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Santiago Naranjo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Abbey Jin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J J Patten
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amanda M Cruz
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sean-Luc Shanahan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Isidro Cortes-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK.
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Rodent Histopathology Core, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Cereser B, Yiu A, Tabassum N, Del Bel Belluz L, Zagorac S, Ancheta KRZ, Zhong R, Miere C, Jeffries-Jones AR, Moderau N, Werner B, Stebbing J. The mutational landscape of the adult healthy parous and nulliparous human breast. Nat Commun 2023; 14:5136. [PMID: 37673861 PMCID: PMC10482899 DOI: 10.1038/s41467-023-40608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
The accumulation of somatic mutations in healthy human tissues has been extensively characterized, but the mutational landscape of the healthy breast is still poorly understood. Our analysis of whole-genome sequencing shows that in line with other healthy organs, the healthy breast during the reproduction years accumulates mutations with age, with the rate of accumulation in the epithelium of 15.24 ± 5 mutations/year. Both epithelial and stromal compartments contain mutations in breast-specific driver genes, indicative of subsequent positive selection. Parity- and age-associated differences are evident in the mammary epithelium, partly explaining the observed difference in breast cancer risk amongst women of different childbearing age. Parity is associated with an age-dependent increase in the clone size of mutated epithelial cells, suggesting that older first-time mothers have a higher probability of accumulating oncogenic events in the epithelium compared to younger mothers or nulliparous women. In conclusion, we describe the reference genome of the healthy female human breast during reproductive years and provide evidence of how parity affects the genomic landscape of the mammary gland.
Collapse
Grants
- British Heart Foundation
- British Heart Foundation (BHF)
- The work is funded by Action Against Cancer (grants P62625, BC; P66683, NT; P66814, LDDB; P63015, SZ; P71728, NM), UKRI-IBIN (grant P82771, NM), UKRI-OOACTN (grant P91025, NM), British Heart Foundation (grant F36083, AY), Barts Charity Lectureship (grant MGU045, BW).
Collapse
Affiliation(s)
- Biancastella Cereser
- Cancer Genetics Group, Department of Surgery and Cancer, Imperial College London, London, UK.
| | - Angela Yiu
- Cancer Genetics Group, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Neha Tabassum
- Cancer Genetics Group, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Lisa Del Bel Belluz
- Cancer Genetics Group, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Sladjana Zagorac
- Cancer Genetics Group, Department of Surgery and Cancer, Imperial College London, London, UK
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Kenneth Russell Zapanta Ancheta
- Cancer Genetics Group, Department of Surgery and Cancer, Imperial College London, London, UK
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, UK
| | - Rongrong Zhong
- Cancer Genetics Group, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Cristian Miere
- Cancer Genetics Group, Department of Surgery and Cancer, Imperial College London, London, UK
| | | | - Nina Moderau
- Cancer Genetics Group, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Benjamin Werner
- Evolutionary Dynamics Group, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Justin Stebbing
- Cancer Genetics Group, Department of Surgery and Cancer, Imperial College London, London, UK.
- Department of Life Sciences, Anglia Ruskin University (ARU), Cambridge, UK.
| |
Collapse
|
8
|
Trevarton AJ, Chang JT, Symmans WF. Simple combination of multiple somatic variant callers to increase accuracy. Sci Rep 2023; 13:8463. [PMID: 37231022 DOI: 10.1038/s41598-023-34925-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Publications comparing variant caller algorithms present discordant results with contradictory rankings. Caller performances are inconsistent and wide ranging, and dependent upon input data, application, parameter settings, and evaluation metric. With no single variant caller emerging as a superior standard, combinations or ensembles of variant callers have appeared in the literature. In this study, a whole genome somatic reference standard was used to derive principles to guide strategies for combining variant calls. Then, manually annotated variants called from the whole exome sequencing of a tumor were used to corroborate these general principles. Finally, we examined the ability of these principles to reduce noise in targeted sequencing.
Collapse
Affiliation(s)
- Alexander J Trevarton
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand.
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Sciences Center, Houston, USA
| | - W Fraser Symmans
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
9
|
Zhai Y, Bardel C, Vallée M, Iwaz J, Roy P. Performance comparisons between clustering models for reconstructing NGS results from technical replicates. Front Genet 2023; 14:1148147. [PMID: 37007945 PMCID: PMC10060969 DOI: 10.3389/fgene.2023.1148147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
To improve the performance of individual DNA sequencing results, researchers often use replicates from the same individual and various statistical clustering models to reconstruct a high-performance callset. Here, three technical replicates of genome NA12878 were considered and five model types were compared (consensus, latent class, Gaussian mixture, Kamila–adapted k-means, and random forest) regarding four performance indicators: sensitivity, precision, accuracy, and F1-score. In comparison with no use of a combination model, i) the consensus model improved precision by 0.1%; ii) the latent class model brought 1% precision improvement (97%–98%) without compromising sensitivity (= 98.9%); iii) the Gaussian mixture model and random forest provided callsets with higher precisions (both >99%) but lower sensitivities; iv) Kamila increased precision (>99%) and kept a high sensitivity (98.8%); it showed the best overall performance. According to precision and F1-score indicators, the compared non-supervised clustering models that combine multiple callsets are able to improve sequencing performance vs. previously used supervised models. Among the models compared, the Gaussian mixture model and Kamila offered non-negligible precision and F1-score improvements. These models may be thus recommended for callset reconstruction (from either biological or technical replicates) for diagnostic or precision medicine purposes.
Collapse
Affiliation(s)
- Yue Zhai
- Université Lyon 1, Lyon, France
- Université de Lyon, Lyon, France
- Laboratoire de Biométrie et Biologie Évolutive, Villeurbanne, France
- *Correspondence: Yue Zhai,
| | - Claire Bardel
- Université Lyon 1, Lyon, France
- Université de Lyon, Lyon, France
- Laboratoire de Biométrie et Biologie Évolutive, Villeurbanne, France
- Service de Biostatistique-Bioinformatique, Hospices Civils de Lyon, Lyon, France
- Service de Génétique, Hospices Civils de Lyon, Bron, France
| | - Maxime Vallée
- Cellule Bioinformatique de La Plateforme de Séquençage Haut Débit NGS-HCL, Hospices Civils de Lyon, Bron, France
| | - Jean Iwaz
- Université Lyon 1, Lyon, France
- Université de Lyon, Lyon, France
- Laboratoire de Biométrie et Biologie Évolutive, Villeurbanne, France
- Service de Biostatistique-Bioinformatique, Hospices Civils de Lyon, Lyon, France
| | - Pascal Roy
- Université Lyon 1, Lyon, France
- Université de Lyon, Lyon, France
- Laboratoire de Biométrie et Biologie Évolutive, Villeurbanne, France
- Service de Biostatistique-Bioinformatique, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
10
|
Redman JM, Friedman J, Robbins Y, Sievers C, Yang X, Lassoued W, Sinkoe A, Papanicolau-Sengos A, Lee CC, Marte JL, Turkbey E, Mydlarz W, Joshi A, London NR, Pierce M, Taylor R, Hong S, Nguyen A, Soon-Shiong P, Schlom J, Gulley JL, Allen CT. Enhanced neoepitope-specific immunity following neoadjuvant PD-L1 and TGF-β blockade in HPV-unrelated head and neck cancer. J Clin Invest 2022; 132:e161400. [PMID: 35727629 PMCID: PMC9479764 DOI: 10.1172/jci161400] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUNDHead and neck squamous cell carcinoma not associated with HPV (HPV-unrelated HNSCC) is associated with a high rate of recurrence and poor survival.METHODSWe conducted a clinical trial in 14 patients with newly diagnosed HPV-unrelated HNSCC to evaluate the safety and efficacy of neoadjuvant bintrafusp alfa, a bifunctional fusion protein that blocks programmed death ligand 1 (PD-L1) and neutralizes TGF-β.RESULTSBintrafusp alfa was well tolerated, and no treatment-associated surgical delays or complications occurred. Objective pathologic responses (PRs) were observed, and 12 of the 14 (86%) patients were alive and disease free at 1 year. Alterations in Treg infiltration and spatial distribution relative to proliferating CD8+ T cells indicated a reversal of Treg immunosuppression in the primary tumor. Detection of neoepitope-specific tumor T cell responses, but not virus-specific responses, correlated with the development of a PR. Detection of neoepitope-specific responses and PRs in tumors was not correlated with genomic features or tumor antigenicity but was associated with reduced pretreatment myeloid cell tumor infiltration. These results indicate that dual PD-L1 and TGF-β blockade can safely enhance tumor antigen-specific immunity and highlight the feasibility of multimechanism neoadjuvant immunotherapy for patients with HPV-unrelated HNSCC.CONCLUSIONOur studies provide insight into the ability of neoadjuvant immunotherapy to induce polyclonal neoadjuvant-specific T cell responses in tumors and suggest that features of the tumor microenvironment, such as myeloid cell infiltration, may be a major determinant of enhanced antitumor immunity following such treatment.TRIAL REGISTRATIONClinicalTrials.gov NCT04247282.FUNDINGThis work was funded by the Center for Cancer Research, the NCI, and the Intramural Research Program of the NIDCD, NIH. Bintrafusp alfa was provided by the health care business of Merck KGaA (Darmstadt, Germany), through a Cooperative Research and Development Agreement with the NCI. Additional funding was provided by ImmunityBio through a Cooperative Research and Development Agreement with the NIDCD.
Collapse
Affiliation(s)
- Jason M. Redman
- Genitourinary Malignancy Branch and
- Laboratory of Tumor Immunology and Biology, National Cancer Institute (NCI), Center for Cancer Research, NIH, Bethesda, Maryland, USA
| | - Jay Friedman
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Yvette Robbins
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Cem Sievers
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Xinping Yang
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Wiem Lassoued
- Tumor Immune Microenvironment Laboratory, Genitourinary Malignancy Branch, NCI, and
| | | | | | - Chyi-Chia Lee
- Laboratory of Pathology, Center for Cancer Research, NIH, Bethesda, Maryland, USA
| | | | - Evrim Turkbey
- Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, Maryland, USA
| | - Wojtek Mydlarz
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Arjun Joshi
- Division of Otolaryngology–Head and Neck Surgery, Department of Surgery, George Washington University, Washington, DC, USA
| | - Nyall R. London
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Matthew Pierce
- Department of Otolaryngology–Head and Neck Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Rodney Taylor
- Department of Otolaryngology–Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Steven Hong
- Department of Otolaryngology–Head and Neck Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | | | | | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, National Cancer Institute (NCI), Center for Cancer Research, NIH, Bethesda, Maryland, USA
| | | | - Clint T. Allen
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Brewer T, Yehia L, Bazeley P, Eng C. Exome sequencing reveals a distinct somatic genomic landscape in breast cancer from women with germline PTEN variants. Am J Hum Genet 2022; 109:1520-1533. [PMID: 35931053 PMCID: PMC9388380 DOI: 10.1016/j.ajhg.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
Germline PTEN variants (PTEN hamartoma tumor syndrome [PHTS]) confer up to 85% lifetime risk of female breast cancer (BC). BCs arising in PHTS are clinically distinct from sporadic BCs, including younger age of onset, multifocality, and an increased risk of second primary BCs. Yet, there is no previous investigation into the underlying genomic landscape of this entity. We sought to address the hypothesis that BCs arising in PHTS have a distinct genomic landscape compared to sporadic counterparts. We performed and analyzed exome sequencing data from 44 women with germline PTEN variants who developed BCs. The control cohort comprised of 497 women with sporadic BCs from The Cancer Genome Atlas (TCGA) dataset. We demonstrate that PHTS-derived BCs have a distinct somatic mutational landscape compared to the sporadic counterparts, namely second somatic hits in PTEN, distinct mutational signatures, and increased genomic instability. The PHTS group had a significantly higher frequency of somatic PTEN variants compared to TCGA (22.7% versus 5.6%; odds ratio [OR] 4.93; 95% confidence interval [CI] 2.21 to 10.98; p < 0.001) and a lower mutational frequency in PIK3CA (22.7% versus 33.4%; OR 0.59; 95% CI 0.28 to 1.22; p = 0.15). Somatic variants in PTEN and PIK3CA were mutually exclusive in PHTS (p = 0.01) but not in TCGA. Our findings have important implications for the personalized management of PTEN-related BCs, especially in the context of more accessible genetic testing.
Collapse
Affiliation(s)
- Takae Brewer
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Peter Bazeley
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA,Corresponding author
| |
Collapse
|
12
|
Patiyal S, Dhall A, Raghava GPS. Prediction of risk-associated genes and high-risk liver cancer patients from their mutation profile: Benchmarking of mutation calling techniques. Biol Methods Protoc 2022; 7:bpac012. [PMID: 35734767 PMCID: PMC9204470 DOI: 10.1093/biomethods/bpac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Identification of somatic mutations with high precision is one of the major challenges in the prediction of high-risk liver-cancer patients. In the past, number of mutations calling techniques have been developed that include MuTect2, MuSE, Varscan2, and SomaticSniper. In this study, an attempt has been made to benchmark the potential of these techniques in predicting the prognostic biomarkers for liver cancer. Initially, we extracted somatic mutations in liver cancer patients using Variant Call Format (VCF) and Mutation Annotation Format (MAF) files from the cancer genome atlas. In terms of size, the MAF files are 42 times smaller than VCF files and containing only high-quality somatic mutations. Further, machine learning based models have been developed for predicting high-risk cancer patients using mutations obtained from different techniques. The performance of different techniques and data files have been compared based on their potential to discriminate high and low-risk liver-cancer patients. Based on correlation analysis, we selected 80 genes having significant negative-correlation with the overall survival of liver cancer patients. The univariate survival analysis revealed the prognostic role of highly mutated genes. Single-gene based analysis showed that MuTect2 technique based MAF file has achieved maximum hazard ratio (HRLAMC3) of 9.25 with p-value 1.78E-06. Further, we developed various prediction models using risk-associated top-10 genes for each technique. Our results indicate that MuTect2 technique based VCF files outperform all other methods with maximum Area Under the Receiver-Operating Characteristic (AUROC) curve of 0.765 and HR 4.50 (p-value 3.83E-15). Eventually, VCF file generated using MuTect2 technique performs better among other mutation calling techniques for the prediction of high-risk liver cancer patients. We hope that our findings will provide a useful and comprehensive comparison of various mutation calling techniques for the prognostic analysis of cancer patients. In order to serve the scientific community, we have provided a Python-based pipeline to develop the prediction models using mutation profiles (VCF/MAF) of cancer patients. It is available on GitHub at https://github.com/raghavagps/mutation_bench.
Collapse
Affiliation(s)
- Sumeet Patiyal
- Indraprastha Institute of Information Technology Department of Computational Biology, , Okhla Phase 3, New Delhi-110020, India
| | - Anjali Dhall
- Indraprastha Institute of Information Technology Department of Computational Biology, , Okhla Phase 3, New Delhi-110020, India
| | - Gajendra P S Raghava
- Indraprastha Institute of Information Technology Department of Computational Biology, , Okhla Phase 3, New Delhi-110020, India
| |
Collapse
|
13
|
Borden ES, Buetow KH, Wilson MA, Hastings KT. Cancer Neoantigens: Challenges and Future Directions for Prediction, Prioritization, and Validation. Front Oncol 2022; 12:836821. [PMID: 35311072 PMCID: PMC8929516 DOI: 10.3389/fonc.2022.836821] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
Prioritization of immunogenic neoantigens is key to enhancing cancer immunotherapy through the development of personalized vaccines, adoptive T cell therapy, and the prediction of response to immune checkpoint inhibition. Neoantigens are tumor-specific proteins that allow the immune system to recognize and destroy a tumor. Cancer immunotherapies, such as personalized cancer vaccines, adoptive T cell therapy, and immune checkpoint inhibition, rely on an understanding of the patient-specific neoantigen profile in order to guide personalized therapeutic strategies. Genomic approaches to predicting and prioritizing immunogenic neoantigens are rapidly expanding, raising new opportunities to advance these tools and enhance their clinical relevance. Predicting neoantigens requires acquisition of high-quality samples and sequencing data, followed by variant calling and variant annotation. Subsequently, prioritizing which of these neoantigens may elicit a tumor-specific immune response requires application and integration of tools to predict the expression, processing, binding, and recognition potentials of the neoantigen. Finally, improvement of the computational tools is held in constant tension with the availability of datasets with validated immunogenic neoantigens. The goal of this review article is to summarize the current knowledge and limitations in neoantigen prediction, prioritization, and validation and propose future directions that will improve personalized cancer treatment.
Collapse
Affiliation(s)
- Elizabeth S Borden
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, United States.,Department of Research and Internal Medicine (Dermatology), Phoenix Veterans Affairs Health Care System, Phoenix, AZ, United States
| | - Kenneth H Buetow
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.,Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States
| | - Melissa A Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.,Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States
| | - Karen Taraszka Hastings
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, United States.,Department of Research and Internal Medicine (Dermatology), Phoenix Veterans Affairs Health Care System, Phoenix, AZ, United States
| |
Collapse
|
14
|
Decap D, de Schaetzen van Brienen L, Larmuseau M, Costanza P, Herzeel C, Wuyts R, Marchal K, Fostier J. Halvade somatic: Somatic variant calling with Apache Spark. Gigascience 2022; 11:6505120. [PMID: 35022699 PMCID: PMC8756192 DOI: 10.1093/gigascience/giab094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/27/2021] [Accepted: 12/09/2021] [Indexed: 12/02/2022] Open
Abstract
Background The accurate detection of somatic variants from sequencing data is of key importance for cancer treatment and research. Somatic variant calling requires a high sequencing depth of the tumor sample, especially when the detection of low-frequency variants is also desired. In turn, this leads to large volumes of raw sequencing data to process and hence, large computational requirements. For example, calling the somatic variants according to the GATK best practices guidelines requires days of computing time for a typical whole-genome sequencing sample. Findings We introduce Halvade Somatic, a framework for somatic variant calling from DNA sequencing data that takes advantage of multi-node and/or multi-core compute platforms to reduce runtime. It relies on Apache Spark to provide scalable I/O and to create and manage data streams that are processed on different CPU cores in parallel. Halvade Somatic contains all required steps to process the tumor and matched normal sample according to the GATK best practices recommendations: read alignment (BWA), sorting of reads, preprocessing steps such as marking duplicate reads and base quality score recalibration (GATK), and, finally, calling the somatic variants (Mutect2). Our approach reduces the runtime on a single 36-core node to 19.5 h compared to a runtime of 84.5 h for the original pipeline, a speedup of 4.3 times. Runtime can be further decreased by scaling to multiple nodes, e.g., we observe a runtime of 1.36 h using 16 nodes, an additional speedup of 14.4 times. Halvade Somatic supports variant calling from both whole-genome sequencing and whole-exome sequencing data and also supports Strelka2 as an alternative or complementary variant calling tool. We provide a Docker image to facilitate single-node deployment. Halvade Somatic can be executed on a variety of compute platforms, including Amazon EC2 and Google Cloud. Conclusions To our knowledge, Halvade Somatic is the first somatic variant calling pipeline that leverages Big Data processing platforms and provides reliable, scalable performance. Source code is freely available.
Collapse
Affiliation(s)
- Dries Decap
- IDLab, Ghent University - imec, Technologiepark 126, B-9052 Ghent, Belgium
| | | | - Maarten Larmuseau
- IDLab, Ghent University - imec, Technologiepark 126, B-9052 Ghent, Belgium
| | | | | | - Roel Wuyts
- imec, Kapeldreef 75, B-3001 Leuven, Belgium
| | - Kathleen Marchal
- IDLab, Ghent University - imec, Technologiepark 126, B-9052 Ghent, Belgium
| | - Jan Fostier
- IDLab, Ghent University - imec, Technologiepark 126, B-9052 Ghent, Belgium
| |
Collapse
|
15
|
Chang TC, Xu K, Cheng Z, Wu G. Somatic and Germline Variant Calling from Next-Generation Sequencing Data. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1361:37-54. [DOI: 10.1007/978-3-030-91836-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Laganà A. The Architecture of a Precision Oncology Platform. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1361:1-22. [DOI: 10.1007/978-3-030-91836-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Comprehensive multiomic characterization of human papillomavirus-driven recurrent respiratory papillomatosis reveals distinct molecular subtypes. Commun Biol 2021; 4:1416. [PMID: 34931021 PMCID: PMC8688513 DOI: 10.1038/s42003-021-02942-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Recurrent respiratory papillomatosis (RRP) is a debilitating neoplastic disorder of the upper aerodigestive tract caused by chronic infection with low-risk human papillomavirus types 6 or 11. Patients with severe RRP can require hundreds of lifetime surgeries to control their disease and pulmonary papillomatosis can be fatal. Here we report the comprehensive genomic and transcriptomic characterization of respiratory papillomas. We discovered and characterized distinct subtypes with transcriptional resemblance to either a basal or differentiated cell state that associate with disease aggressiveness and differ in key molecular, immune and APOBEC mutagenesis profiles. Through integrated comparison with high-risk HPV-associated head and neck squamous cell carcinoma, our analysis revealed divergent molecular and immune papilloma subtypes that form independent of underlying genomic alterations. Cumulatively our results support the development of dysregulated cellular proliferation and suppressed anti-viral immunity through distinct programs of squamous cell differentiation and associated expression of low-risk HPV genes. These analyses provide insight into the pathogenesis of respiratory papillomas and provide a foundation for the development of therapeutic strategies. Cem Sievers et al. performed genomic and transcriptomic analysis in human recurrent respiratory papillomatosis (RRP). They found that RRP harbors few genomic alterations, but that distinct transcriptional subtypes correlate with HPV gene expression and frequency of clinically-indicated interventions.
Collapse
|
18
|
Benchmarking pipelines for subclonal deconvolution of bulk tumour sequencing data. Nat Commun 2021; 12:6396. [PMID: 34737285 PMCID: PMC8569188 DOI: 10.1038/s41467-021-26698-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
Intratumour heterogeneity provides tumours with the ability to adapt and acquire treatment resistance. The development of more effective and personalised treatments for cancers, therefore, requires accurate characterisation of the clonal architecture of tumours, enabling evolutionary dynamics to be tracked. Many methods exist for achieving this from bulk tumour sequencing data, involving identifying mutations and performing subclonal deconvolution, but there is a lack of systematic benchmarking to inform researchers on which are most accurate, and how dataset characteristics impact performance. To address this, we use the most comprehensive tumour genome simulation tool available for such purposes to create 80 bulk tumour whole exome sequencing datasets of differing depths, tumour complexities, and purities, and use these to benchmark subclonal deconvolution pipelines. We conclude that i) tumour complexity does not impact accuracy, ii) increasing either purity or purity-corrected sequencing depth improves accuracy, and iii) the optimal pipeline consists of Mutect2, FACETS and PyClone-VI. We have made our benchmarking datasets publicly available for future use.
Collapse
|
19
|
Robbins Y, Friedman J, Clavijo PE, Sievers C, Bai K, Donahue RN, Schlom J, Sinkoe A, Hinrichs CS, Allen C, Abdul Sater H, Gulley JL, Norberg S. Dual PD-L1 and TGF-b blockade in patients with recurrent respiratory papillomatosis. J Immunother Cancer 2021; 9:jitc-2021-003113. [PMID: 34462327 PMCID: PMC8407210 DOI: 10.1136/jitc-2021-003113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 12/26/2022] Open
Abstract
Background Recurrent respiratory papillomatosis (RRP) is a human papillomavirus (HPV) driven neoplastic disorder of the upper aerodigestive tract that causes significant morbidity and can lead to fatal airway obstruction. Prior clinical study demonstrated clinical benefit with the programmed death-ligand 1 (PD-L1) monoclonal antibody avelumab. Bintrafusp alfa is a bifunctional inhibitor of PD-L1 and transforming growth factor-beta (TGF-b) that has shown clinical activity in several cancer types. Methods We conducted a phase II clinical trial evaluating bintrafusp alfa in adults with RRP. Papilloma samples before and after treatment with bintrafusp alfa were assessed for correlates of response with multiplex immunofluorescence as well as immunological and genomic analyses. Post hoc analyses of papilloma samples before and after treatment with avelumab were assessed for comparison. Results Dual PD-L1/TGF-b inhibition failed to abrogate papilloma growth in most subjects and increased the frequency of clinically indicated interventions after treatment in four of eight subjects based on each subject’s own historical control. TGF-b neutralization consistently decreased pSMAD3 and p21 and increased Ki67 expression within the basal layers of papillomas, indicating that TGF-b restrained proliferation. These alterations were not observed in papillomas treated with PD-L1 blockade alone. Dual PD-L1/TGF-b inhibition did not enhance anti-HPV immunity within papillomas beyond that observed with PD-L1 blockade. Genomic alterations in TGF-b superfamily genes were infrequent in papillomas and normal mucosa but present in a significant fraction of head and neck carcinomas. Conclusions Intact TGF-b signaling restrains proliferation within papillomas, and the use of clinical agents that abrogate this pathway should be avoided in patients with RRP. Trial registration numbers NCT03707587 and NCT02859454.
Collapse
Affiliation(s)
- Yvette Robbins
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Jay Friedman
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Paul E Clavijo
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Cem Sievers
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Ke Bai
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Andrew Sinkoe
- Genitourinary Malignancies Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Clint Allen
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Houssein Abdul Sater
- Genitourinary Malignancies Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Scott Norberg
- Genitourinary Malignancies Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|