1
|
Wang D, Xie D, Meng S, Mi J, Wang H, Li L, Zhang Y, Cui Y. Role and molecular mechanisms of HuangQiSiJunZi decoction for treating triple-negative breast cancer as explored via network pharmacology and bioinformatics analyses. BMC Cancer 2024; 24:1217. [PMID: 39350059 PMCID: PMC11443913 DOI: 10.1186/s12885-024-12957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
OBJECTIVE In this study, we evaluated the molecular mechanisms of HuangQiSiJunZi Decoction (HQSJZD) for treating triple-negative breast cancer (TNBC) using network pharmacology and bioinformatics analyses. METHODS Effective chemical components together with action targets of HQSJZD were selected based on the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Meanwhile, differentially expressed genes (DEGs) were extracted from TNBC sample data in The Cancer Genome Atlas (TCGA) database. Additionally, we built a protein-protein interaction (PPI) network and acquired hub genes. Gene Expression Omnibus(GEO) datasets were utilized to verify the accuracy of hub gene expression. Additionally, enrichment analyses were conducted on key genes. Furthermore, TNBC severity-related high-risk factors were screened through univariate together with multivariate Cox regressions; next, the logistic regression prediction model was built. Moreover, differential levels of 22 immune cell types in TNBC tissues compared with normal tissues were analyzed. The hub gene levels within pan-cancer and the human body were subsequently visualized and analyzed. Finally, quantitative PCR (RT-qPCR) was used to validate the correlation of the hub genes in TNBC cells. RESULTS The study predicted 256 targets of active ingredients and 1791 DEGs in TNBC, and obtained 16 hub genes against TNBC. The prognostic signature based on FOS, MMP9, and PGR was independent in predicting survival. A total of seven types of immune cells, such as CD4 + memory T cells, showed a significant difference in infiltration (p < 0.05), and immune cells were related to the hub genes. The HPA database was adopted for hub gene analyses, and as determined, FOS was highly expressed in most human organs. The results of RT-qPCR validation for the FOS hub gene were consistent with those of bioinformatic analyses. CONCLUSION HQSJZD might regulate the interleukin-17 and aging pathways via FOS genes to increase immune cell infiltration in TNBC tissues, and thus, may treat TNBC and improve the prognosis. The FOS genes are likely to be a new marker for TNBC.
Collapse
Affiliation(s)
- Decai Wang
- Aerospace Center Hospital, Beijing, 100049, China
| | - Dongqing Xie
- Ultrasound Diagnosis Department, The First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Shuai Meng
- Department of Traditional Chinese Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Jiwei Mi
- Department of Neurology, The Central People's Hospital, Zhanjiang, Guangdong, 524037, China
| | - Haiming Wang
- Department of Traditional Chinese Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Lingsheng Li
- Department of Traditional Chinese Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Yin Zhang
- Department of Traditional Chinese Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China.
| | - Yixin Cui
- Department of Traditional Chinese Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
2
|
Liu Q, Yang R, Wang D, Liu Q. Role of low-density cholesterol and Interleukin-17 interaction in breast cancer pathogenesis and treatment. Cell Biol Int 2024. [PMID: 39318044 DOI: 10.1002/cbin.12250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Breast cancer (BC) has become the most prevalent cancer worldwide, and further research is being conducted to deepen our understanding of its pathogenesis and treatment. Lipid metabolism disorder is a significant alteration in cancer cells, and the investigation into the role of Interleukin-17 (IL-17) in malignant tumors has emerged as a research focus in recent years. Thus, exploring changes in lipid metabolism and inflammatory factors in BC cells is crucial in identifying potential therapeutic targets. This article summarizes the progress made in the research on the main low-density cholesterol (LDL) transporter and IL-17 in lipid metabolism, and their potential involvement in the development of BC. The article aims to establish a theoretical foundation for the development of BC-related therapies.
Collapse
Affiliation(s)
- Qingqing Liu
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, The 2nd Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, China
| | - Rongyuan Yang
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, The 2nd Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, China
| | - Dawei Wang
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, The 2nd Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, China
- The 1st Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangdong, 510405, China
| | - Qing Liu
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, The 2nd Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, China
| |
Collapse
|
3
|
Neo SY, Tong L, Chong J, Liu Y, Jing X, Oliveira MMS, Chen Y, Chen Z, Lee K, Burduli N, Chen X, Gao J, Ma R, Lim JP, Huo J, Xu S, Alici E, Wickström SL, Haglund F, Hartman J, Wagner AK, Cao Y, Kiessling R, Lam KP, Westerberg LS, Lundqvist A. Tumor-associated NK cells drive MDSC-mediated tumor immune tolerance through the IL-6/STAT3 axis. Sci Transl Med 2024; 16:eadi2952. [PMID: 38748775 DOI: 10.1126/scitranslmed.adi2952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 04/19/2024] [Indexed: 08/03/2024]
Abstract
Apart from their killer identity, natural killer (NK) cells have integral roles in shaping the tumor microenvironment. Through immune gene deconvolution, the present study revealed an interplay between NK cells and myeloid-derived suppressor cells (MDSCs) in nonresponders of immune checkpoint therapy. Given that the mechanisms governing the outcome of NK cell-to-myeloid cell interactions remain largely unknown, we sought to investigate the cross-talk between NK cells and suppressive myeloid cells. Upon contact with tumor-experienced NK cells, monocytes and neutrophils displayed increased expression of MDSC-related suppressive factors along with increased capacities to suppress T cells. These changes were accompanied by impaired antigen presentation by monocytes and increased ER stress response by neutrophils. In a cohort of patients with sarcoma and breast cancer, the production of interleukin-6 (IL-6) by tumor-infiltrating NK cells correlated with S100A8/9 and arginase-1 expression by MDSCs. At the same time, NK cell-derived IL-6 was associated with tumors with higher major histocompatibility complex class I expression, which we further validated with b2m-knockout (KO) tumor mice models. Similarly in syngeneic wild-type and IL-6 KO mouse models, we then demonstrated that the accumulation of MDSCs was influenced by the presence of such regulatory NK cells. Inhibition of the IL-6/signal transducer and activator of transcription 3 (STAT3) axis alleviated suppression of T cell responses, resulting in reduced tumor growth and metastatic dissemination. Together, these results characterize a critical NK cell-mediated mechanism that drives the development of MDSCs during tumor immune escape.
Collapse
Affiliation(s)
- Shi Yong Neo
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
| | - Le Tong
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Joni Chong
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
| | - Yaxuan Liu
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Xu Jing
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Mariana M S Oliveira
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Yi Chen
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Centre, New York, NY 10032, USA
| | - Ziqing Chen
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08540, USA
| | - Keene Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
| | - Nutsa Burduli
- Department of Medicine Huddinge, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Xinsong Chen
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Juan Gao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510631, China
| | - Ran Ma
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Technical Operations, Cepheid AB, 17154 Stockholm, Sweden
| | - Jia Pei Lim
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Jianxin Huo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
| | - Shengli Xu
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Republic of Singapore
| | - Evren Alici
- Department of Medicine Huddinge, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Stina L Wickström
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Felix Haglund
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Arnika K Wagner
- Department of Medicine Huddinge, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Theme Cancer, Patient Area Head and Neck, Lung and Skin Cancer, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Kong Peng Lam
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| |
Collapse
|
4
|
Siebert JN, Shah JV, Tan MC, Riman RE, Pierce MC, Lattime EC, Ganapathy V, Moghe PV. Early Detection of Myeloid-Derived Suppressor Cells in the Lung Pre-Metastatic Niche by Shortwave Infrared Nanoprobes. Pharmaceutics 2024; 16:549. [PMID: 38675210 PMCID: PMC11053826 DOI: 10.3390/pharmaceutics16040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Metastatic breast cancer remains a significant source of mortality amongst breast cancer patients and is generally considered incurable in part due to the difficulty in detection of early micro-metastases. The pre-metastatic niche (PMN) is a tissue microenvironment that has undergone changes to support the colonization and growth of circulating tumor cells, a key component of which is the myeloid-derived suppressor cell (MDSC). Therefore, the MDSC has been identified as a potential biomarker for PMN formation, the detection of which would enable clinicians to proactively treat metastases. However, there is currently no technology capable of the in situ detection of MDSCs available in the clinic. Here, we propose the use of shortwave infrared-emitting nanoprobes for the tracking of MDSCs and identification of the PMN. Our rare-earth albumin nanocomposites (ReANCs) are engineered to bind the Gr-1 surface marker of murine MDSCs. When delivered intravenously in murine models of breast cancer with high rates of metastasis, the targeted ReANCs demonstrated an increase in localization to the lungs in comparison to control ReANCs. However, no difference was seen in the model with slower rates of metastasis. This highlights the potential utility of MDSC-targeted nanoprobes to assess PMN development and prognosticate disease progression.
Collapse
Affiliation(s)
- Jake N. Siebert
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
| | - Jay V. Shah
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
| | - Mei Chee Tan
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd., Singapore 487372, Singapore
| | - Richard E. Riman
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Rd., Piscataway, NJ 08854, USA
| | - Mark C. Pierce
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
| | - Edmund C. Lattime
- Rutgers Cancer Institute of New Jersey, 195 Little Albany St., New Brunswick, NJ 08901, USA
| | - Vidya Ganapathy
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
- Alex’s Lemonade Stand Foundation for Childhood Cancer, 333 E. Lancaster Ave., #414, Wynnewood, PA 19096, USA
| | - Prabhas V. Moghe
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Rd., Piscataway, NJ 08854, USA
| |
Collapse
|
5
|
Bokil AA, Le Boulvais Børkja M, Wolowczyk C, Lamsal A, Prestvik WS, Nonstad U, Pettersen K, Andersen SB, Bofin AM, Bjørkøy G, Hak S, Giambelluca MS. Discovery of a new marker to identify myeloid cells associated with metastatic breast tumours. Cancer Cell Int 2023; 23:279. [PMID: 37980483 PMCID: PMC10656772 DOI: 10.1186/s12935-023-03136-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Myeloid cells play an essential role in cancer metastasis. The phenotypic diversity of these cells during cancer development has attracted great interest; however, their functional heterogeneity and plasticity have limited their role as prognostic markers and therapeutic targets. METHODS To identify markers associated with myeloid cells in metastatic tumours, we compared transcriptomic data from immune cells sorted from metastatic and non-metastatic mammary tumours grown in BALB/cJ mice. To assess the translational relevance of our in vivo findings, we assessed human breast cancer biopsies and evaluated the association between arginase 1 protein expression in breast cancer tissues with tumour characteristics and patient outcomes. RESULTS Among the differentially expressed genes, arginase 1 (ARG1) showed a unique expression pattern in tumour-infiltrating myeloid cells that correlated with the metastatic capacity of the tumour. Even though ARG1-positive cells were found almost exclusively inside the metastatic tumour, ARG1 protein was also present in the plasma. In human breast cancer biopsies, the presence of ARG1-positive cells was strongly correlated with high-grade proliferating tumours, poor prognosis, and low survival. CONCLUSION Our findings highlight the potential use of ARG1-positive myeloid cells as an independent prognostic marker to evaluate the risk of metastasis in breast cancer patients.
Collapse
Affiliation(s)
- Ansooya A Bokil
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mathieu Le Boulvais Børkja
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Camilla Wolowczyk
- Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Apsana Lamsal
- Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Wenche S Prestvik
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Unni Nonstad
- Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristine Pettersen
- Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sonja B Andersen
- Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anna M Bofin
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geir Bjørkøy
- Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sjoerd Hak
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway
| | - Miriam S Giambelluca
- Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
- Department of Clinical Medicine, Faculty of Health Science, UiT- The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
6
|
Rodriguez C, Araujo Furlan CL, Tosello Boari J, Bossio SN, Boccardo S, Fozzatti L, Canale FP, Beccaria CG, Nuñez NG, Ceschin DG, Piaggio E, Gruppi A, Montes CL, Acosta Rodríguez EV. Interleukin-17 signaling influences CD8 + T cell immunity and tumor progression according to the IL-17 receptor subunit expression pattern in cancer cells. Oncoimmunology 2023; 12:2261326. [PMID: 37808403 PMCID: PMC10557545 DOI: 10.1080/2162402x.2023.2261326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
IL-17 immune responses in cancer are controversial, with both tumor-promoting and tumor-repressing effects observed. To clarify the role of IL-17 signaling in cancer progression, we used syngeneic tumor models from different tissue origins. We found that deficiencies in host IL-17RA or IL-17A/F expression had varying effects on the in vivo growth of different solid tumors including melanoma, sarcoma, lymphoma, and leukemia. In each tumor type, the absence of IL-17 led to changes in the expression of mediators associated with inflammation and metastasis in the tumor microenvironment. Furthermore, IL-17 signaling deficiencies in the hosts resulted in decreased anti-tumor CD8+ T cell immunity and caused tumor-specific changes in several lymphoid cell populations. Our findings were associated with distinct patterns of IL-17A/F cytokine and receptor subunit expression in the injected tumor cell lines. These patterns affected tumor cell responsiveness to IL-17 and downstream intracellular signaling, leading to divergent effects on cancer progression. Additionally, we identified IL-17RC as a critical determinant of the IL-17-mediated response in tumor cells and a potential biomarker for IL-17 signaling effects in tumor progression. Our study offers insight into the molecular mechanisms underlying IL-17 activities in cancer and lays the groundwork for developing personalized immunotherapies.
Collapse
Affiliation(s)
- Constanza Rodriguez
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Cintia L. Araujo Furlan
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Jimena Tosello Boari
- INSERM U932, Immunity and Cancer, Paris, France
- Department of Translational Research, PSL Research University, Paris, France
| | - Sabrina N. Bossio
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Santiago Boccardo
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Laura Fozzatti
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Fernando P. Canale
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Cristian G. Beccaria
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Nicolás G. Nuñez
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Danilo G. Ceschin
- Centro de Investigación en Medicina Traslacional “Severo R. Amuchástegui” (CIMETSA), Vinculado al Instituto de Investigación Médica Mercedes y Martín Ferreyra (CONICET-UNC), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Córdoba, Argentina
| | - Eliane Piaggio
- INSERM U932, Immunity and Cancer, Paris, France
- Department of Translational Research, PSL Research University, Paris, France
| | - Adriana Gruppi
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Carolina L. Montes
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Eva V. Acosta Rodríguez
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| |
Collapse
|
7
|
Liu H, Wang Z, Zhou Y, Yang Y. MDSCs in breast cancer: an important enabler of tumor progression and an emerging therapeutic target. Front Immunol 2023; 14:1199273. [PMID: 37465670 PMCID: PMC10350567 DOI: 10.3389/fimmu.2023.1199273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023] Open
Abstract
Women worldwide are more likely to develop breast cancer (BC) than any other type of cancer. The treatment of BC depends on the subtype and stage of the cancer, such as surgery, radiotherapy, chemotherapy, and immunotherapy. Although significant progress has been made in recent years, advanced or metastatic BC presents a poor prognosis, due to drug resistance and recurrences. During embryonic development, myeloid-derived suppressor cells (MDSCs) develop that suppress the immune system. By inhibiting anti-immune effects and promoting non-immune mechanisms such as tumor cell stemness, epithelial-mesenchymal transformation (EMT) and angiogenesis, MDSCs effectively promote tumor growth and metastasis. In various BC models, peripheral tissues, and tumor microenvironments (TME), MDSCs have been found to amplification. Clinical progression or poor prognosis are strongly associated with increased MDSCs. In this review, we describe the activation, recruitment, and differentiation of MDSCs production in BC, the involvement of MDSCs in BC progression, and the clinical characteristics of MDSCs as a potential BC therapy target.
Collapse
Affiliation(s)
- Haoyu Liu
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| | - Zhicheng Wang
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Yuntao Zhou
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Yanming Yang
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Hinshaw DC, Benavides GA, Metge BJ, Swain CA, Kammerud SC, Alsheikh HA, Elhamamsy A, Chen D, Darley-Usmar V, Rathmell JC, Welner RS, Samant RS, Shevde LA. Hedgehog Signaling Regulates Treg to Th17 Conversion Through Metabolic Rewiring in Breast Cancer. Cancer Immunol Res 2023; 11:687-702. [PMID: 37058110 PMCID: PMC10159910 DOI: 10.1158/2326-6066.cir-22-0426] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/18/2022] [Accepted: 02/28/2023] [Indexed: 04/15/2023]
Abstract
The tumor immune microenvironment dynamically evolves to support tumor growth and progression. Immunosuppressive regulatory T cells (Treg) promote tumor growth and metastatic seeding in patients with breast cancer. Deregulation of plasticity between Treg and Th17 cells creates an immune regulatory framework that enables tumor progression. Here, we discovered a functional role for Hedgehog (Hh) signaling in promoting Treg differentiation and immunosuppressive activity, and when Hh activity was inhibited, Tregs adopted a Th17-like phenotype complemented by an enhanced inflammatory profile. Mechanistically, Hh signaling promoted O-GlcNAc modifications of critical Treg and Th17 transcription factors, Foxp3 and STAT3, respectively, that orchestrated this transition. Blocking Hh reprogramed Tregs metabolically, dampened their immunosuppressive activity, and supported their transdifferentiation into inflammatory Th17 cells that enhanced the recruitment of cytotoxic CD8+ T cells into tumors. Our results demonstrate a previously unknown role for Hh signaling in the regulation of Treg differentiation and activity and the switch between Tregs and Th17 cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Dominique C. Hinshaw
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gloria A. Benavides
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon J. Metge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Courtney A. Swain
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarah C. Kammerud
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Heba A. Alsheikh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amr Elhamamsy
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dongquan Chen
- Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, VUMC, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robert S. Welner
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S. Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Birmingham VA Medical Center, Birmingham, AL, USA
| | - Lalita A. Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Senior author
| |
Collapse
|
9
|
Mussa A, Afolabi HA, Syed NH, Talib M, Murtadha AH, Hajissa K, Mokhtar NF, Mohamud R, Hassan R. The NF-κB Transcriptional Network Is a High-Dose Vitamin C-Targetable Vulnerability in Breast Cancer. Biomedicines 2023; 11:biomedicines11041060. [PMID: 37189677 DOI: 10.3390/biomedicines11041060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Breast cancer (BC) is the most common cancer type among women with a distinct clinical presentation, but the survival rate remains moderate despite advances in multimodal therapy. Consequently, a deeper understanding of the molecular etiology is required for the development of more effective treatments for BC. The relationship between inflammation and tumorigenesis is well established, and the activation of the pro-inflammatory transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is frequently identified in BC. Constitutive NF-κB activation is linked to cell survival, metastasis, proliferation, and hormonal, chemo-, and radiotherapy resistance. Moreover, the crosstalk between NF-κB and other transcription factors is well documented. It is reported that vitamin C plays a key role in preventing and treating a number of pathological conditions, including cancer, when administered at remarkably high doses. Indeed, vitamin C can regulate the activation of NF-κB by inhibiting specific NF-κB-dependent genes and multiple stimuli. In this review, we examine the various NF-κB impacts on BC development. We also provide some insight into how the NF-κB network may be targeted as a potential vulnerability by using natural pro-oxidant therapies such as vitamin C.
Collapse
|
10
|
Shibabaw T, Teferi B, Ayelign B. The role of Th-17 cells and IL-17 in the metastatic spread of breast cancer: As a means of prognosis and therapeutic target. Front Immunol 2023; 14:1094823. [PMID: 36993955 PMCID: PMC10040566 DOI: 10.3389/fimmu.2023.1094823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
Metastatic breast cancer is one of the most common and well-known causes of death for women worldwide. The inflammatory tumor cell and other cancer hallmarks dictate the metastatic form and dissemination of breast cancer. Taking these into account, from various components of the tumor microenvironment, a pro-inflammatory infiltrative cell known as Th-17 plays an immense role in breast cancer proliferation, invasiveness, and metastasis. It has been demonstrated that IL-17, a pleiotropic pro-inflammatory cytokine generated by Th-17, is upregulated in a metastatic form of breast cancer. Recent research updates stated that chronic inflammation and mediators like cytokines and chemokines are causative hallmarks in many human cancers, including breast cancer. Therefore, IL-17 and its multiple downward signaling molecules are the centers of research attention to develop potent treatment options for cancer. They provide information on the role of IL-17-activated MAPK, which results in tumor cell proliferation and metastasis via NF-kB-mediated expression of MMP signaling. Overall, this review article emphasizes IL-17A and its intermediate signaling molecules, such as ERK1/2, NF-kB, MMPs, and VEGF, as potential molecular targets for the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Tewodros Shibabaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Banchamlak Teferi
- Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Science, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
- Research School of Biology, College of Science, Australian National University, Canberra, ACT, Australia
- *Correspondence: Birhanu Ayelign,
| |
Collapse
|
11
|
Preite NW, Kaminski VDL, Borges BM, Calich VLG, Loures FV. Myeloid-derived suppressor cells are associated with impaired Th1 and Th17 responses and severe pulmonary paracoccidioidomycosis which is reversed by anti-Gr1 therapy. Front Immunol 2023; 14:1039244. [PMID: 36776848 PMCID: PMC9909482 DOI: 10.3389/fimmu.2023.1039244] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Previous studies on paracoccidioidomycosis (PCM), the most prevalent systemic mycosis in Latin America, revealed that host immunity is tightly regulated by several suppressive mechanisms mediated by tolerogenic plasmacytoid dendritic cells, the enzyme 2,3 indoleamine dioxygenase (IDO-1), and regulatory T-cells (Tregs). IDO-1 orchestrates local and systemic immunosuppressive effects through the recruitment and activation of myeloid-derived suppressor cells (MDSCs), a heterogeneous population of myeloid cells possessing a potent ability to suppress T-cell responses. However, the involvement of MDSCs in PCM remains uninvestigated. The presence, phenotype, and immunosuppressive activity of MDSCs were evaluated at 96 h, 2 weeks, and 8 weeks of pulmonary infection in C57BL/6 mice. Disease severity and immune responses were assessed in MDSC-depleted and nondepleted mice using an anti-Gr1 antibody. Both monocytic-like MDSCs (M-MDSCs) and polymorphonuclear-like MDSCs (PMN-MDSCs) massively infiltrated the lungs during Paracoccidioides brasiliensis infection. Partial reduction of MDSC frequency led to a robust Th1/Th17 lymphocyte response, resulting in regressive disease with a reduced fungal burden on target organs, diminishing lung pathology, and reducing mortality ratio compared with control IgG2b-treated mice. The suppressive activity of MDSCs on CD4 and CD8 T-lymphocytes and Th1/Th17 cells was also demonstrated in vitro using coculture experiments. Conversely, adoptive transfer of MDSCs to recipient P. brasiliensis-infected mice resulted in a more severe disease. Taken together, our data showed that the increased influx of MDSCs into the lungs was linked to more severe disease and impaired Th1 and Th17 protective responses. However, protective immunity was rescued by anti-Gr1 treatment, resulting in a less severe disease and controlled tissue pathology. In conclusion, MDSCs have emerged as potential target cells for the adjuvant therapy of PCM.
Collapse
Affiliation(s)
- Nycolas Willian Preite
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | - Valéria de Lima Kaminski
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | - Bruno Montanari Borges
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | - Vera Lúcia Garcia Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Flávio Vieira Loures
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil,*Correspondence: Flávio Vieira Loures,
| |
Collapse
|
12
|
Regulatory T Cells in Pancreatic Cancer: Of Mice and Men. Cancers (Basel) 2022; 14:cancers14194582. [PMID: 36230505 PMCID: PMC9559359 DOI: 10.3390/cancers14194582] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Regulatory T cells (Treg) are a major immunosuppressive cell subset in the pancreatic tumor microenvironment. Tregs influence tumor growth by acting either directly on cancer cells or via the inhibition of effector immune cells. Treg cells form a partially redundant network with other immunosuppressive cells such as myeloid-derived suppressor cells (MDSC) that confer robustness to tumor immunosuppression and resistance to immunotherapy. The results obtained in preclinical studies, whereupon Treg depletion, MDSCs concomitantly decreased in early tumors whereas an inverse association was seen in advanced PCa, urge a comprehensive analysis of the immunosuppressive profile of PCa throughout tumorigenesis. One relevant context to analyse these compensatory mechanisms may be patients with locally advanced PCa undergoing neoadjuvant therapy (neoTx). In order to understand these dynamics and to uncover stage-specific actional strategies involving Tregs, pre-clinical models that allow the administration of neoTx to different stages of PCa may be a very useful platform. Abstract Regulatory T cells (Treg) are one of the major immunosuppressive cell subsets in the pancreatic tumor microenvironment. Tregs influence tumor growth by acting either directly on cancer cells or via the inhibition of effector immune cells. Treg cells mechanisms form a partially redundant network with other immunosuppressive cells such as myeloid-derived suppressor cells (MDSC) that confer robustness to tumor immunosuppression and resistance to immunotherapy. The results obtained in preclinical studies where after Treg depletion, MDSCs concomitantly decreased in early tumors whereas an inverse association was seen in advanced PCa, urge a comprehensive analysis of the immunosuppressive profile of PCa throughout tumorigenesis. One relevant context to analyse these complex compensatory mechanisms may be the tumors of patients who underwent neoTx. Here, we observed a parallel decrease in the numbers of both intratumoral Tregs and MDSC after neoTx even in locally advanced PCa. NeoTx also led to decreased amounts of αSMA+ myofibroblastic cancer-associated fibroblasts (myCAF) and increased proportions of CD8+ cytotoxic T lymphocytes in the tumor. In order to understand these dynamics and to uncover stage-specific actional strategies involving Tregs, pre-clinical models that allow the administration of neoTx to different stages of PCa may be a very useful platform.
Collapse
|
13
|
Hum NR, Sebastian A, Martin KA, Rios-Arce ND, Gilmore SF, Gravano DM, Wheeler EK, Coleman MA, Loots GG. IL-17A Increases Doxorubicin Efficacy in Triple Negative Breast Cancer. Front Oncol 2022; 12:928474. [PMID: 35924165 PMCID: PMC9340269 DOI: 10.3389/fonc.2022.928474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Due to lack of targetable receptors and intertumoral heterogeneity, triple negative breast cancer (TNBC) remains particularly difficult to treat. Doxorubicin (DOX) is typically used as nonselective neoadjuvant chemotherapy, but the diversity of treatment efficacy remains unclear. Comparable to variability in clinical response, an experimental model of TNBC using a 4T1 syngeneic mouse model was found to elicit a differential response to a seven-day treatment regimen of DOX. Single-cell RNA sequencing identified an increase in T cells in tumors that responded to DOX treatment compared to tumors that continued to grow uninhibited. Additionally, compared to resistant tumors, DOX sensitive tumors contained significantly more CD4 T helper cells (339%), γδ T cells (727%), Naïve T cells (278%), and activated CD8 T cells (130%). Furthermore, transcriptional profiles of tumor infiltrated T cells in DOX responsive tumors revealed decreased exhaustion, increased chemokine/cytokine expression, and increased activation and cytotoxic activity. γδ T cell derived IL-17A was identified to be highly abundant in the sensitive tumor microenvironment. IL-17A was also found to directly increase sensitivity of TNBC cells in combination with DOX treatment. In TNBC tumors sensitive to DOX, increased IL-17A levels lead to a direct effect on cancer cell responsiveness and chronic stimulation of tumor infiltrated T cells leading to improved chemotherapeutic efficacy. IL-17A’s role as a chemosensitive cytokine in TNBC may offer new opportunities for treating chemoresistant breast tumors and other cancer types.
Collapse
Affiliation(s)
- Nicholas R. Hum
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- Stem Cell Instrumentation Foundry, University of California Merced, Merced, CA, United States
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Kelly A. Martin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Naiomy D. Rios-Arce
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Sean F. Gilmore
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - David M. Gravano
- Stem Cell Instrumentation Foundry, University of California Merced, Merced, CA, United States
| | - Elizabeth K. Wheeler
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Matthew A. Coleman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, United States
| | - Gabriela G. Loots
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- Stem Cell Instrumentation Foundry, University of California Merced, Merced, CA, United States
- *Correspondence: Gabriela G. Loots,
| |
Collapse
|
14
|
Roberts LM, Perez MJ, Balogh KN, Mingledorff G, Cross JV, Munson JM. Myeloid Derived Suppressor Cells Migrate in Response to Flow and Lymphatic Endothelial Cell Interaction in the Breast Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14123008. [PMID: 35740673 PMCID: PMC9221529 DOI: 10.3390/cancers14123008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 12/07/2022] Open
Abstract
At the site of the tumor, myeloid derived suppressor cells (MDSCs) infiltrate and interact with elements of the tumor microenvironment in complex ways. Within the invading tumor, MDSCs are exposed to interstitial fluid flow (IFF) that exists within the chronic inflammatory tumor microenvironment at the tumor-lymphatic interface. As drivers of cell migration and invasion, the link between interstitial fluid flow, lymphatics, and MDSCs have not been clearly established. Here, we hypothesized that interstitial fluid flow and cells within the breast tumor microenvironment modulate migration of MDSCs. We developed a novel 3D model to mimic the breast tumor microenvironment and incorporated MDSCs harvested from 4T1-tumor bearing mice. Using live imaging, we found that sorted GR1+ splenocytes had reduced chemotactic index compared to the unsorted population, but their speed and displacement were similar. Using our adapted tissue culture insert assay, we show that interstitial fluid flow promotes MDSC invasion, regardless of absence or presence of tumor cells. Coordinating with lymphatic endothelial cells, interstitial fluid flow further enhanced invasion of MDSCs in the presence of 4T1 cells. We also show that VEGFR3 inhibition reduced both MDSC and 4T1 flow response. Together, these findings indicate a key role of interstitial fluid flow in MDSC migration as well as describe a tool to explore the immune microenvironment in breast cancer.
Collapse
Affiliation(s)
- LaDeidra Monét Roberts
- Department of Biomedical Engineering and Mechanics, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA;
| | - Matthew J. Perez
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA;
| | - Kristen N. Balogh
- Department of Pathology, University of Virginia, Charlottesville, VA 22904, USA; (K.N.B.); (J.V.C.)
| | - Garnett Mingledorff
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22904, USA;
| | - Janet V. Cross
- Department of Pathology, University of Virginia, Charlottesville, VA 22904, USA; (K.N.B.); (J.V.C.)
| | - Jennifer M. Munson
- Department of Biomedical Engineering and Mechanics, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA;
- Correspondence:
| |
Collapse
|
15
|
A Mechanistic Insight into the Pathogenic Role of Interleukin 17A in Systemic Autoimmune Diseases. Mediators Inflamm 2022; 2022:6600264. [PMID: 35620115 PMCID: PMC9129985 DOI: 10.1155/2022/6600264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/04/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
Interleukin 17A (IL-17A) has been put forward as a strong ally in our fight against invading pathogens across exposed epithelial surfaces by serving an antimicrobial immunosurveillance role in these tissues to protect the barrier integrity. Amongst other mechanisms that prevent tissue injury mediated by potential microbial threats and promote restoration of epithelial homeostasis, IL-17A attracts effector cells to the site of inflammation and support the host response by driving the development of ectopic lymphoid structures. Accumulating evidence now underscores an integral role of IL-17A in driving the pathophysiology and clinical manifestations in three potentially life-threatening autoimmune diseases, namely, systemic lupus erythematosus, Sjögren’s syndrome, and systemic sclerosis. Available studies provide convincing evidence that the abundance of IL-17A in target tissues and its prime source, which is T helper 17 cells (Th17) and double negative T cells (DNT), is not an innocent bystander but in fact seems to be prerequisite for organ pathology. In this regard, IL-17A has been directly implicated in critical steps of autoimmunity. This review reports on the synergistic interactions of IL-17A with other critical determinants such as B cells, neutrophils, stromal cells, and the vasculature that promote the characteristic immunopathology of these autoimmune diseases. The summary of observations provided by this review may have empowering implications for IL-17A-based strategies to prevent clinical manifestations in a broad spectrum of autoimmune conditions.
Collapse
|
16
|
Xie X, Lee J, Iwase T, Kai M, Ueno NT. Emerging drug targets for triple-negative breast cancer: A guided tour of the preclinical landscape. Expert Opin Ther Targets 2022; 26:405-425. [PMID: 35574694 DOI: 10.1080/14728222.2022.2077188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is the most fatal molecular subtype of breast cancer because of its aggressiveness and resistance to chemotherapy. FDA-approved therapies for TNBC are limited to poly(ADP-ribose) polymerase inhibitors, immune checkpoint inhibitors, and trophoblast cell surface antigen 2-targeted antibody-drug conjugate. Therefore, developing a novel effective targeted therapy for TNBC is an urgent unmet need. AREAS COVERED In this narrative review, we discuss emerging targets for TNBC treatment discovered in early translational studies. We focus on cancer cell membrane molecules, hyperactive intracellular signaling pathways, and the tumor microenvironment (TME) based on their druggability, therapeutic potency, specificity to TNBC, and application in immunotherapy. EXPERT OPINION The significant challenges in the identification and validation of TNBC-associated targets are 1) application of appropriate genetic, molecular, and immunological approaches for modulating the target, 2) establishment of a proper mouse model that accurately represents the human immune TME, 3) TNBC molecular heterogeneity, and 4) failure translation of preclinical findings to clinical practice. To overcome those difficulties, future research needs to apply novel technology, such as single-cell RNA sequencing, thermostable group II intron reverse transcriptase sequencing, and humanized mouse models. Further, combination treatment targeting multiple pathways in both the TNBC tumor and its TME is essential for effective disease control.
Collapse
Affiliation(s)
- Xuemei Xie
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jangsoon Lee
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Toshiaki Iwase
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Megumi Kai
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naoto T Ueno
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
17
|
Capietto AH, Lee S, Clever D, Eul E, Ellis H, Ma CX, Faccio R. Effective Treatment of Established Bone Metastases Can Be Achieved by Combinatorial Osteoclast Blockade and Depletion of Granulocytic Subsets. Cancer Immunol Res 2021; 9:1400-1412. [PMID: 34551967 PMCID: PMC8642282 DOI: 10.1158/2326-6066.cir-21-0232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/14/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
Osteoclast (OC) blockade has been successful in reducing tumor growth in bone in preclinical settings, but antiresorptive drugs, such as zoledronic acid (ZA), fail to improve the overall survival rate of patients with bone metastasis despite ameliorating skeletal complications. To address this unmet clinical need, we interrogated what other cells modulated tumor growth in bone in addition to OCs. Because myeloid-derived suppressor cells (MDSC)-heterogeneous populations expressing CD11b, Ly6C, and Ly6G markers-originate in the bone marrow and promote tumor progression, we hypothesized that their accumulation hinders ZA antitumor effects. By using a murine model of bone metastasis insensitive to OC blockade, we assessed the antitumor effect of MDSC depletion using anti-Gr1 in mice bearing skeletal lung [Lewis lung carcinoma (LLC)], melanoma (B16-F10), and mammary (4T1) tumors. Differently from soft tissue tumors, anti-Gr1 did not reduce bone metastases and led to the paradoxical accumulation of bone marrow-resident CD11b+Ly6CintLy6Gint cells that differentiated into OCs when cultured in vitro Anti-Gr1-mediated depletion of Ly6G+ granulocytic MDSCs combined with ZA-induced OC blockade reduced growth of established skeletal metastases compared with each agent alone. CD15+ granulocytic populations were increased in patients with breast cancer with progressive bone disease after antiresorptive treatment compared with those with stable bone disease. We provide evidence that antiresorptive therapies fail to reduce bone metastases in the presence of elevated granulocytic populations and that effective treatment of established skeletal metastases requires combinatorial depletion of granulocytes and OC blockade.
Collapse
Affiliation(s)
- Aude-Hélène Capietto
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
- Shriners Hospitals for Children, St. Louis, Missouri
| | - Seunghyun Lee
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - David Clever
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Emily Eul
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Haley Ellis
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Cynthia X Ma
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Roberta Faccio
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri.
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
18
|
Mouchemore KA, Anderson RL. Immunomodulatory effects of G-CSF in cancer: Therapeutic implications. Semin Immunol 2021; 54:101512. [PMID: 34763974 DOI: 10.1016/j.smim.2021.101512] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/23/2021] [Indexed: 01/04/2023]
Abstract
Numerous preclinical studies have reported a pro-tumour role for granulocyte colony-stimulating factor (G-CSF) that is predominantly mediated by neutrophils and MDSCs, the major G-CSF receptor expressing populations. In the presence of G-CSF (either tumour-derived or exogenous) these myeloid populations commonly exhibit a T cell suppressive phenotype. However, the direct effects of this cytokine on other immune lineages, such as T and NK cells, are not as well established. Herein we discuss the most recent data relating to the effect of G-CSF on the major immune populations, exclusively in the context of cancer. Recent publications have drawn attention to the other tumour-promoting effects of G-CSF on myeloid cells, including NETosis, promotion of cancer stemness and skewed differentiation of bone marrow progenitors towards myelopoiesis. Although G-CSF is safely and commonly used as a supportive therapy to prevent or treat chemotherapy-associated neutropenia in cancer patients, we also discuss the potential impacts of G-CSF on other anti-cancer treatments. Importantly, considerations for immune checkpoint blockade are highlighted, as many publications report a T cell suppressive effect of G-CSF that may diminish the effectiveness of this immunotherapy.
Collapse
Affiliation(s)
- Kellie A Mouchemore
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Robin L Anderson
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
19
|
Cai J, Cui Y, Yang J, Wang S. Epithelial-mesenchymal transition: When tumor cells meet myeloid-derived suppressor cells. Biochim Biophys Acta Rev Cancer 2021; 1876:188564. [PMID: 33974950 DOI: 10.1016/j.bbcan.2021.188564] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous myeloid cell population characterized by protumoral functions in the tumor immune network. An increasing number of studies have focused on the biological functions of MDSCs in tumor immunity. Epithelial-mesenchymal transition (EMT) is a cellular plasticity process accompanied by a loss of epithelial phenotypes and an acquisition of mesenchymal phenotypes. In general, tumor cells that undergo EMT are more likely to invade and metastasize. Recently, extensive evidence suggests that EMT is closely related to a highly immunosuppressive environment. This review will summarize the immunosuppressive capacities of MDSC subsets and their distinct role in tumor EMT and further discuss immunotherapy for tumor EMT by targeting MDSCs.
Collapse
Affiliation(s)
- Jingshan Cai
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yudan Cui
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jun Yang
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
20
|
Corral-Jara KF, Rosas da Silva G, Fierro NA, Soumelis V. Modeling the Th17 and Tregs Paradigm: Implications for Cancer Immunotherapy. Front Cell Dev Biol 2021; 9:675099. [PMID: 34026764 PMCID: PMC8137995 DOI: 10.3389/fcell.2021.675099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
CD4 + T cell differentiation is governed by gene regulatory and metabolic networks, with both networks being highly interconnected and able to adapt to external stimuli. Th17 and Tregs differentiation networks play a critical role in cancer, and their balance is affected by the tumor microenvironment (TME). Factors from the TME mediate recruitment and expansion of Th17 cells, but these cells can act with pro or anti-tumor immunity. Tregs cells are also involved in tumor development and progression by inhibiting antitumor immunity and promoting immunoevasion. Due to the complexity of the underlying molecular pathways, the modeling of biological systems has emerged as a promising solution for better understanding both CD4 + T cell differentiation and cancer cell behavior. In this review, we present a context-dependent vision of CD4 + T cell transcriptomic and metabolic network adaptability. We then discuss CD4 + T cell knowledge-based models to extract the regulatory elements of Th17 and Tregs differentiation in multiple CD4 + T cell levels. We highlight the importance of complementing these models with data from omics technologies such as transcriptomics and metabolomics, in order to better delineate existing Th17 and Tregs bifurcation mechanisms. We were able to recompilate promising regulatory components and mechanisms of Th17 and Tregs differentiation under normal conditions, which we then connected with biological evidence in the context of the TME to better understand CD4 + T cell behavior in cancer. From the integration of mechanistic models with omics data, the transcriptomic and metabolomic reprograming of Th17 and Tregs cells can be predicted in new models with potential clinical applications, with special relevance to cancer immunotherapy.
Collapse
Affiliation(s)
- Karla F. Corral-Jara
- Computational Systems Biology Team, Institut de Biologie de l’Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, Ecole Normale Supérieure, PSL Research University, Paris, France
| | | | - Nora A. Fierro
- Department of Immunology, Biomedical Research Institute, National Autonomous University of Mexico, Mexico City, Mexico
| | - Vassili Soumelis
- Université de Paris, INSERM U976, France and AP-HP, Hôpital Saint-Louis, Immunology-Histocompatibility Department, Paris, France
| |
Collapse
|
21
|
Zhang Z, Huang X, Wang E, Huang Y, Yang R. Identification and characterization of B220 +/B220 - subpopulations in murine Gr1 +CD11b + cells during tumorigenesis. Oncoimmunology 2021; 10:1912472. [PMID: 33948392 PMCID: PMC8057082 DOI: 10.1080/2162402x.2021.1912472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Although all murine MDSCs are defined as Gr1+CD11b+, their true immunophenotype remains elusive. In this study, we found murine Gr1+CD11b+ cells can be divided into two subsets: Gr1+CD11b+B220- and Gr1+CD11b+B220+, especially in the spleen tissues. Unlike the dominant B220- subset, the B220+ subpopulation was not induced by tumor in vivo. Moreover, Gr1+CD11b+B220+ cells from tumor-bearing mice spleens were unable to induce arginase 1 and inducible nitric oxide synthase expression, inhibit T cell proliferation, or promote tumor growth in primary tumor site. Nevertheless, these cells suppressed tumor metastasis in vivo and reduced cancer cell motility in vitro, while Gr1+CD11b+B220- cells from tumor-bearing mice spleens promoted tumor metastasis and enhanced cancer cell motility. Furthermore, both the polymorphonuclear (PMN-MDSCs) and monocytic MDSCs (Mo-MDSCs) could be further divided into B220- and B220+ subsets; interestingly, tumor only induced the expansion of B220- PMN-MDSCs and B220- Mo-MDSCs, but not the B220+ counterparts. Compared with B220- PMN-MDSCs and B220- Mo-MDSCs, the Ly6G+Ly6C-CD11b+B220+ and Ly6G-Ly6C+CD11b+B220+ cells from tumor-bearing mice spleens exhibited a more mature phenotype without immunosuppressive activity. Additionally, IL-6 deficiency attenuated the tumor-induced accumulation of MDSCs, B220- MDSCs and B220- PMN-MDSCs but increased the percentages of Gr1+CD11b+B220+, Ly6G+Ly6C-CD11b+B220+, and Ly6G-Ly6C+CD11b+B220+ cells, indicating the opposing roles of the IL-6 signaling pathway in the expansion of B220- MDSCs and their B220+ counterparts. Taken together, our findings indicate that the B220+ subset is a distinct subset of Gr1+CD11b+ cells functionally different from the B220- subpopulation during tumorigenesis and induction of MDSCs to B220+ cells may be helpful for cancer therapy.
Collapse
Affiliation(s)
- Zhiqian Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xu Huang
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Enlin Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yugang Huang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Rongcun Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
22
|
Moaaz M, Lotfy H, Motawea MA, Fadali G. The interplay of interleukin-17A and breast cancer tumor microenvironment as a novel immunotherapeutic approach to increase tumor immunogenicity. Immunobiology 2021; 226:152068. [PMID: 33556742 DOI: 10.1016/j.imbio.2021.152068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/16/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022]
Abstract
Based on its known role in mediating tumor progression and the correlation with poor response to chemotherapy, we hypothesized that blocking interleukin-17A (IL-17A) by anti-IL-17 monoclonal antibodies might have the ability to suppress programmed death-ligand-1 (PD-L1) and to modulate the expression and function of myeloid-derived suppressor cells (MDSCs) in BC microenvironment. We also compared the apoptotic activity of anti-IL-17 with those acquired from our previous work on monoclonal antibodies against IL-6. The influence of anti-IL-17 was investigated in two doses on localized freshly resected tissues from 50 patients with BC. Results revealed increased IL-17A in BC tumor tissues versus surrounding tissues. Additionally, PD-L1 expression was inhibited in cultures treated with both doses of anti-IL-17. Frequencies of MDSCs were reduced in those cultures with anti-IL-17 with reduced suppressive activity. The induced apoptosis in the tumor cells was significantly increased. Anti-IL-17 antibodies effect was related to late stages, vascular metastasis, and hormonal status. Results of the current work suggest a promising role for anti-IL-17 monoclonal antibodies in enhancement of anti-tumor immunological activity in BC, potentially involving suppression of immune checkpoint PD-L1 and MDSCs inhibition with a marked response in aggressive disease.
Collapse
Affiliation(s)
- Mai Moaaz
- Department of Immunology and Allergy, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Hassan Lotfy
- Department of Surgery, Vascular Surgery Unit, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed Atef Motawea
- Department of Surgery, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Gaylan Fadali
- Department of Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
23
|
Dendritic Cells and Myeloid Derived Suppressor Cells Fully Responsive to Stimulation via Toll-Like Receptor 4 Are Rapidly Induced from Bone-Marrow Cells by Granulocyte-Macrophage Colony-Stimulating Factor. Vaccines (Basel) 2020; 8:vaccines8030522. [PMID: 32932705 PMCID: PMC7564202 DOI: 10.3390/vaccines8030522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) are commonly generated from bone marrow (BM) progenitor cells with granulocyte-macrophage colony-stimulating factor (GM-CSF) alone or in combination with interleukin 4 (IL-4). These cells are often harvested post day 5, when they acquire maturation markers and can stimulate T cells. Apart from DCs, myeloid derived suppressor cells (MDSCs) are also found within these cultures. However, little is known about the functional characteristics of DCs and MDSCs before day 5. Herein, using a murine model, it is shown that early DCs and MDSCs, even in cultures with GM-CSF alone, upregulate fully maturation and activation surface molecules in response to the toll-like receptor 4 (TLR4) ligand lipopolysaccharide (LPS) stimulation. Despite initially displaying lower marker expression levels, these cells efficiently induced T cell stimulation and cytokine production. Interestingly, Gr-1int MDSCs increased their T cell co-stimulatory activity upon TLR4 stimulation. Additionally, early DCs and MDSCs exhibited differential endocytic capacity for viral sized nanoparticles and bacterial sized microparticles. DCs internalized both particle sizes, whilst MDSCs only internalized the larger microparticles, with reduced endocytic activity over time in the culture. These findings have unveiled an important role for the rapid initiation of productive immunity by GM-CSF, with promising implications for future vaccine and DC immunotherapy developments.
Collapse
|
24
|
Cheng R, Xue X, Liu X. Expression of IL17A in endometrial carcinoma and effects of IL17A on biological behaviour in Ishikawa cells. J Int Med Res 2020; 48:300060520950563. [PMID: 32878530 PMCID: PMC7780559 DOI: 10.1177/0300060520950563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Objective A growing body of evidence suggests chronic inflammation triggers the process of endometrial carcinogenesis. Interleukin (IL) 17A is an important proinflammatory factor involved in the tumour angiogenesis processes of many solid tumours. This study aimed to characterize the function of IL17A in endometrioid-type endometrial carcinoma. Methods Levels of IL17A in human endometrial tissues were analysed by immunohistochemistry. In vitro proliferation and migration were analysed in Ishikawa cells treated with IL17A, using cell counting kit-8, wound healing and transwell assays. Western blots were used to analyse levels of oestrogen receptor (ER)α and ERβ proteins in Ishikawa cells treated with IL17A. Results IL17A levels were significantly higher in endometrial carcinoma tissues than in endometrial hyperplasic tissues. Significantly increased proliferation and migration was observed in Ishikawa cells treated with IL17A versus controls. Investigation of the molecular mechanism revealed that IL17A treatment upregulated the ERα/ERβ protein ratio in Ishikawa cells. Conclusions IL17A may be an important proinflammatory factor involved in promoting endometrial carcinogenesis.
Collapse
Affiliation(s)
- Ran Cheng
- Department of Gynaecology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoou Xue
- Department of Gynaecology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoli Liu
- Department of Gynaecology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|