1
|
Orbán Á, Schumacher JJ, Mucza S, Strinic A, Molnár P, Babai R, Halbritter A, Vértessy BG, Karl S, Krohns S, Kézsmárki I. Magneto-optical assessment of Plasmodium parasite growth via hemozoin crystal size. Sci Rep 2024; 14:14318. [PMID: 38906910 PMCID: PMC11192761 DOI: 10.1038/s41598-024-60988-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/30/2024] [Indexed: 06/23/2024] Open
Abstract
Hemozoin is a natural biomarker formed during the hemoglobin metabolism of Plasmodium parasites, the causative agents of malaria. The rotating-crystal magneto-optical detection (RMOD) has been developed for its rapid and sensitive detection both in cell cultures and patient samples. In the current article we demonstrate that, besides quantifying the overall concentration of hemozoin produced by the parasites, RMOD can also track the size distribution of the hemozoin crystals. We establish the relations between the magneto-optical signal, the mean parasite age and the median crystal size throughout one erythrocytic cycle of Plasmodium falciparum parasites, where the latter two are determined by optical and scanning electron microscopy, respectively. The significant correlation between the magneto-optical signal and the stage distribution of the parasites indicates that the RMOD method can be utilized for species-specific malaria diagnosis and for the quick assessment of drug efficacy.
Collapse
Affiliation(s)
- Ágnes Orbán
- Department of Physics, BME Budapest University of Technology and Economics, Budapest, 1111, Hungary.
| | - Jan-Jonas Schumacher
- Experimental Physics 5, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159, Augsburg, Germany
| | - Szilvia Mucza
- Department of Physics, BME Budapest University of Technology and Economics, Budapest, 1111, Hungary
| | - Ana Strinic
- Experimental Physics 5, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159, Augsburg, Germany
| | - Petra Molnár
- Malaria Research Laboratory, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Réka Babai
- Malaria Research Laboratory, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Department of Applied Biotechnology and Food Sciences, BME Budapest University of Technology and Economics, Budapest, 1111, Hungary
| | - András Halbritter
- Department of Physics, BME Budapest University of Technology and Economics, Budapest, 1111, Hungary
| | - Beáta G Vértessy
- Malaria Research Laboratory, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Department of Applied Biotechnology and Food Sciences, BME Budapest University of Technology and Economics, Budapest, 1111, Hungary
| | - Stephan Karl
- Vector-Borne Diseases Unit, PNG Institute of Medical Research, Madang, Madang Province, 511, Papua New Guinea
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLS, Australia
| | - Stephan Krohns
- Experimental Physics 5, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159, Augsburg, Germany
| | - István Kézsmárki
- Experimental Physics 5, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159, Augsburg, Germany.
| |
Collapse
|
2
|
Hellingman A, Sifoniou K, Buser T, Thommen BT, Walz A, Passecker A, Collins J, Hupfeld M, Wittlin S, Witmer K, Brancucci NMB. Next Generation Chemiluminescent Probes for Antimalarial Drug Discovery. ACS Infect Dis 2024; 10:1286-1297. [PMID: 38556981 PMCID: PMC11019541 DOI: 10.1021/acsinfecdis.3c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Malaria is caused by parasites of the Plasmodium genus and remains one of the most pressing human health problems. The spread of parasites resistant to or partially resistant to single or multiple drugs, including frontline antimalarial artemisinin and its derivatives, poses a serious threat to current and future malaria control efforts. In vitro drug assays are important for identifying new antimalarial compounds and monitoring drug resistance. Due to its robustness and ease of use, the [3H]-hypoxanthine incorporation assay is still considered a gold standard and is widely applied, despite limited sensitivity and the dependence on radioactive material. Here, we present a first-of-its-kind chemiluminescence-based antimalarial drug screening assay. The effect of compounds on P. falciparum is monitored by using a dioxetane-based substrate (AquaSpark β-D-galactoside) that emits high-intensity luminescence upon removal of a protective group (β-D-galactoside) by a transgenic β-galactosidase reporter enzyme. This biosensor enables highly sensitive, robust, and cost-effective detection of asexual, intraerythrocytic P. falciparum parasites without the need for parasite enrichment, washing, or purification steps. We are convinced that the ultralow detection limit of less than 100 parasites of the presented biosensor system will become instrumental in malaria research, including but not limited to drug screening.
Collapse
Affiliation(s)
- Angela Hellingman
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| | - Kleopatra Sifoniou
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| | - Tamara Buser
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| | - Basil T. Thommen
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| | - Annabelle Walz
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| | - Armin Passecker
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| | | | | | - Sergio Wittlin
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| | - Kathrin Witmer
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
- NEMIS
Technologies AG, 8804 Au, ZH, Switzerland
| | - Nicolas M. B. Brancucci
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| |
Collapse
|
3
|
Onyango OH, Mwenda CM, Gitau G, Muoma J, Okoth P. In-silico analysis of potent Mosquirix vaccine adjuvant leads. J Genet Eng Biotechnol 2023; 21:155. [PMID: 38032502 PMCID: PMC10689608 DOI: 10.1186/s43141-023-00590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND World Health Organization recommend the use of malaria vaccine, Mosquirix, as a malaria prevention strategy. However, Mosquirix has failed to reduce the global burden of malaria because of its inefficacy. The Mosquirix vaccine's modest effectiveness against malaria, 36% among kids aged 5 to 17 months who need at least four doses, fails to aid malaria eradication. Therefore, highly effective and efficacious malaria vaccines are required. The well-characterized P. falciparum circumsporozoite surface protein can be used to discover adjuvants that can increase the efficacy of Mosquirix. Therefore, the study sought to undertake an in-silico discovery of Plasmodium falciparum circumsporozoite surface protein inhibitors with pharmacological properties on Mosquirix using hierarchical virtual screening and molecular dynamics simulation. RESULTS Monoclonal antibody L9, an anti-Plasmodium falciparum circumsporozoite surface protein molecule, was used to identify Plasmodium falciparum circumsporozoite surface protein inhibitors with pharmacological properties on Mosquirix during a virtual screening process in ZINCPHARMER that yielded 23 hits. After drug-likeness and absorption, distribution, metabolism, excretion, and toxicity property analysis in the SwissADME web server, only 9 of the 23 hits satisfied the requirements. The 9 compounds were docked with Plasmodium falciparum circumsporozoite surface protein using the PyRx software to understand their interactions. ZINC25374360 (-8.1 kcal/mol), ZINC40144754 (-8.3 kcal/mol), and ZINC71996727 (-8.9 kcal/mol) bound strongly to Plasmodium falciparum circumsporozoite surface protein with binding affinities of less than -8.0 kcal/mol. The stability of these molecularly docked Plasmodium falciparum circumsporozoite surface protein-inhibitor complexes were assessed through molecular dynamics simulation using GROMACS 2022. ZINC25374360 and ZINC71996727 formed stable complexes with Plasmodium falciparum circumsporozoite surface protein. They were subjected to in vitro validation for their inhibitory potential. The IC50 values ranging between 250 and 350 ng/ml suggest inhibition of parasite development. CONCLUSION Therefore, the two Plasmodium falciparum circumsporozoite surface protein inhibitors can be used as vaccine adjuvants to increase the efficacy of the existing Mosquirix vaccine. Nevertheless, additional in vivo tests, structural optimization studies, and homogenization analysis are essential to determine the anti-plasmodial action of these adjuvants in humans.
Collapse
Affiliation(s)
- Okello Harrison Onyango
- Department of Biological Sciences (Molecular Biology, Computational Biology, and Bioinformatics Section), School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P.O. BOX 190-50100, Kakamega, Kenya.
| | - Cynthia Mugo Mwenda
- Department of Biological Sciences, School of Pure and Applied Sciences, Meru University of Science and Technology, P.O. BOX 972-60200, Meru, Kenya
| | - Grace Gitau
- Department of Biochemistry and Biotechnology, School of Biological and Life Sciences, The Technical University of Kenya, P.O. BOX 52428-00200, Nairobi, Kenya
| | - John Muoma
- Department of Biological Sciences (Molecular Biology, Computational Biology, and Bioinformatics Section), School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P.O. BOX 190-50100, Kakamega, Kenya
| | - Patrick Okoth
- Department of Biological Sciences (Molecular Biology, Computational Biology, and Bioinformatics Section), School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P.O. BOX 190-50100, Kakamega, Kenya
| |
Collapse
|
4
|
Rao SPS, Manjunatha UH, Mikolajczak S, Ashigbie PG, Diagana TT. Drug discovery for parasitic diseases: powered by technology, enabled by pharmacology, informed by clinical science. Trends Parasitol 2023; 39:260-271. [PMID: 36803572 DOI: 10.1016/j.pt.2023.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/22/2023]
Abstract
While prevention is a bedrock of public health, innovative therapeutics are needed to complement the armamentarium of interventions required to achieve disease control and elimination targets for neglected diseases. Extraordinary advances in drug discovery technologies have occurred over the past decades, along with accumulation of scientific knowledge and experience in pharmacological and clinical sciences that are transforming many aspects of drug R&D across disciplines. We reflect on how these advances have propelled drug discovery for parasitic infections, focusing on malaria, kinetoplastid diseases, and cryptosporidiosis. We also discuss challenges and research priorities to accelerate discovery and development of urgently needed novel antiparasitic drugs.
Collapse
Affiliation(s)
| | | | | | - Paul G Ashigbie
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA.
| | | |
Collapse
|
5
|
Fernando D, Thota P, Semege S, Booso R, Bell D, de A. W. Gunasekera KT, Ranaweera P. Evaluation of a haemozoin-based rapid diagnostic test for diagnosis of imported malaria during the phase of prevention of reestablishment in Sri Lanka. Malar J 2022; 21:263. [PMID: 36088431 PMCID: PMC9464370 DOI: 10.1186/s12936-022-04283-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022] Open
Abstract
Background Sri Lanka, an island nation, has eliminated endemic malaria transmission. Maintaining elimination in the continued presence of vectors requires vigilance in screening people travelling from high malaria-risk areas and a rapid response with focal screening for infections identified in the community. Such screening requires accurate and very rapid assays that enable an immediate response. Both microscopy and rapid diagnostic tests (RDTs) have limitations including sensitivity and speed in screening large numbers, while polymerase chain reaction (PCR) is practical only as laboratory confirmation. This study assessed the utility of ‘Gazelle’, a novel rapid malaria assay based on magneto-optical detection of haemozoin, a by-product of malaria parasite metabolism. Methods Between October 2020 and March 2021, two groups of individuals were screened for malaria by four methods, namely, microscopy, Rapid Diagnostic Test (RDT), Gazelle and PCR. Passive case detection was carried out for confirmation of diagnosis amongst individuals suspected of having malaria. Individuals at high-risk of acquiring malaria, namely persons returning from malaria endemic countries, were screened by active case detection. Results Of the 440 individuals screened for malaria, nine malaria positives were diagnosed by PCR, microscopy and the HRP2 band of RDT, which included five Plasmodium falciparum infections, two Plasmodium ovale, and one each of Plasmodium vivax and Plasmodium malariae. Gazelle correctly detected the P. vivax, P. ovale and P. malariae infections within the 2 min test time, but did not detect two P. falciparum infections giving a sensitivity of 77.8%. Specificity was 100%. Discussion The Gazelle, a portable bench top device proved useful to screen a large number of blood samples for non-falciparum parasites within 5 minutes of sample input. Species differentiation, and improvement in P. falciparum detection, will be important to broaden utility. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04283-7.
Collapse
|
6
|
Towards rainbow portable Cytophone with laser diodes for global disease diagnostics. Sci Rep 2022; 12:8671. [PMID: 35606373 PMCID: PMC9126638 DOI: 10.1038/s41598-022-11452-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/18/2022] [Indexed: 11/08/2022] Open
Abstract
In vivo, Cytophone has demonstrated the capability for the early diagnosis of cancer, infection, and cardiovascular disorders through photoacoustic detection of circulating disease markers directly in the bloodstream with an unprecedented 1,000-fold improvement in sensitivity. Nevertheless, a Cytophone with higher specificity and portability is urgently needed. Here, we introduce a novel Cytophone platform that integrates a miniature multispectral laser diode array, time-color coding, and high-speed time-resolved signal processing. Using two-color (808 nm/915 nm) laser diodes, we demonstrated spectral identification of white and red clots, melanoma cells, and hemozoin in malaria-infected erythrocytes against a blood background and artifacts. Data from a Plasmodium yoelii murine model and cultured human P. falciparum were verified in vitro with confocal photothermal and fluorescent microscopy. With these techniques, we detected infected cells within 4 h after invasion, which makes hemozoin promising as a spectrally selective marker at the earliest stages of malaria progression. Along with the findings from our previous application of Cytophone with conventional lasers for the diagnosis of melanoma, bacteremia, sickle anemia, thrombosis, stroke, and abnormal hemoglobin forms, this current finding suggests the potential for the development of a portable rainbow Cytophone with multispectral laser diodes for the identification of these and other diseases.
Collapse
|
7
|
Baptista V, Costa MS, Calçada C, Silva M, Gil JP, Veiga MI, Catarino SO. The Future in Sensing Technologies for Malaria Surveillance: A Review of Hemozoin-Based Diagnosis. ACS Sens 2021; 6:3898-3911. [PMID: 34735120 DOI: 10.1021/acssensors.1c01750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Early and effective malaria diagnosis is vital to control the disease spread and to prevent the emergence of severe cases and death. Currently, malaria diagnosis relies on optical microscopy and immuno-rapid tests; however, these require a drop of blood, are time-consuming, or are not specific and sensitive enough for reliable detection of low-level parasitaemia. Thus, there is an urge for simpler, prompt, and accurate alternative diagnostic methods. Particularly, hemozoin has been increasingly recognized as an attractive biomarker for malaria detection. As the disease proliferates, parasites digest host hemoglobin, in the process releasing toxic haem that is detoxified into an insoluble crystal, the hemozoin, which accumulates along with infection progression. Given its magnetic, optical, and acoustic unique features, hemozoin has been explored for new label-free diagnostic methods. Thereby, herein, we review the hemozoin-based malaria detection methods and critically discuss their challenges and potential for the development of an ideal diagnostic device.
Collapse
Affiliation(s)
- Vitória Baptista
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Mariana S. Costa
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Carla Calçada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Miguel Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - José Pedro Gil
- Stockholm Malaria Center, Department of Microbiology and Tumour Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Susana O. Catarino
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| |
Collapse
|
8
|
Orbán Á, Longley RJ, Sripoorote P, Maneechai N, Nguitragool W, Butykai Á, Mueller I, Sattabongkot J, Karl S, Kézsmárki I. Sensitive detection of Plasmodium vivax malaria by the rotating-crystal magneto-optical method in Thailand. Sci Rep 2021; 11:18547. [PMID: 34535695 PMCID: PMC8448879 DOI: 10.1038/s41598-021-97532-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022] Open
Abstract
The rotating-crystal magneto-optical detection (RMOD) method has been developed for the rapid and quantitative diagnosis of malaria and tested systematically on various malaria infection models. Very recently, an extended field trial in a high-transmission region of Papua New Guinea demonstrated its great potential for detecting malaria infections, in particular Plasmodium vivax. In the present small-scale field test, carried out in a low-transmission area of Thailand, RMOD confirmed malaria in all samples found to be infected with Plasmodium vivax by microscopy, our reference method. Moreover, the magneto-optical signal for this sample set was typically 1–3 orders of magnitude higher than the cut-off value of RMOD determined on uninfected samples. Based on the serial dilution of the original patient samples, we expect that the method can detect Plasmodium vivax malaria in blood samples with parasite densities as low as \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sim$$\end{document}∼5–10 parasites per microliter, a limit around the pyrogenic threshold of the infection. In addition, by investigating the correlation between the magnitude of the magneto-optical signal, the parasite density and the erythrocytic stage distribution, we estimate the relative hemozoin production rates of the ring and the trophozoite stages of in vivo Plasmodium vivax infections.
Collapse
Affiliation(s)
- Ágnes Orbán
- Department of Physics, Budapest University of Technology and Economics, Budapest, Hungary.
| | - Rhea J Longley
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Mahidol Vivax Research Unit, Mahidol University, Bangkok, Thailand.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | | | | | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Mahidol University, Bangkok, Thailand
| | - Ádám Butykai
- Department of Physics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ivo Mueller
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Unité Malaria: Parasites et Hôtes, Département Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| | | | - Stephan Karl
- Vector-borne Diseases Unit, PNG Institute of Medical Research, Madang, Madang Province 511, Papua New Guinea.,Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD, Australia
| | - István Kézsmárki
- Department of Physics, Budapest University of Technology and Economics, Budapest, Hungary.,Experimental Physics 5, Center for Electronic Correlations and Magnetism, University of Augsburg, Augsburg, Germany
| |
Collapse
|
9
|
Magneto-optical diagnosis of symptomatic malaria in Papua New Guinea. Nat Commun 2021; 12:969. [PMID: 33579923 PMCID: PMC7881035 DOI: 10.1038/s41467-021-21110-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/07/2021] [Indexed: 11/20/2022] Open
Abstract
Improved methods for malaria diagnosis are urgently needed. Here, we evaluate a novel method named rotating-crystal magneto-optical detection (RMOD) in 956 suspected malaria patients in Papua New Guinea. RMOD tests can be conducted within minutes and at low cost. We systematically evaluate the capability of RMOD to detect infections by directly comparing it with expert light microscopy, rapid diagnostic tests and polymerase chain reaction on capillary blood samples. We show that compared to light microscopy, RMOD exhibits 82% sensitivity and 84% specificity to detect any malaria infection and 87% sensitivity and 88% specificity to detect Plasmodium vivax. This indicates that RMOD could be useful in P. vivax dominated elimination settings. Parasite density correlates well with the quantitative magneto-optical signal. Importantly, residual hemozoin present in malaria-negative patients is also detectable by RMOD, indicating its ability to detect previous infections. This could be exploited to reveal transmission hotspots in low-transmission settings. Here Arndt et al. establish rotating-crystal magneto-optical detection (RMOD) as a near-point-of-care diagnostic tool for malaria detection and report a sensitivity and specificity of 82% and 84%, respectively, as validated by analyzing a clinical population in a high transmission setting in Papua New Guinea.
Collapse
|