1
|
Olszewska AM, Zmijewski MA. Genomic and non-genomic action of vitamin D on ion channels - Targeting mitochondria. Mitochondrion 2024; 77:101891. [PMID: 38692383 DOI: 10.1016/j.mito.2024.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Recent studies revealed that mitochondria are not only a place of vitamin D3 metabolism but also direct or indirect targets of its activities. This review summarizes current knowledge on the regulation of ion channels from plasma and mitochondrial membranes by the active form of vitamin D3 (1,25(OH)2D3). 1,25(OH)2D3, is a naturally occurring hormone with pleiotropic activities; implicated in the modulation of cell differentiation, and proliferation and in the prevention of various diseases, including cancer. Many experimental data indicate that 1,25(OH)2D3 deficiency induces ionic remodeling and 1,25(OH)2D3 regulates the activity of multiple ion channels. There are two main theories on how 1,25(OH)2D3 can modify the function of ion channels. First, describes the involvement of genomic pathways of response to 1,25(OH)2D3 in the regulation of the expression of the genes encoding channels, their auxiliary subunits, or additional regulators. Interestingly, intracellular ion channels, like mitochondrial, are encoded by the same genes as plasma membrane channels. Therefore, the comprehensive genomic regulation of the channels from these two different cellular compartments we analyzed using a bioinformatic approach. The second theory explores non-genomic pathways of vitamin D3 activities. It was shown, that 1,25(OH)2D3 indirectly regulates enzymes that impact ion channels, change membrane physical properties, or directly bind to channel proteins. In this article, the involvement of genomic and non-genomic pathways regulated by 1,25(OH)2D3 in the modulation of the levels and activity of plasma membrane and mitochondrial ion channels was investigated by an extensive review of the literature and analysis of the transcriptomic data using bioinformatics.
Collapse
Affiliation(s)
- A M Olszewska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland
| | - M A Zmijewski
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland.
| |
Collapse
|
2
|
Yang W, He Y, Tian Y, Xiong H, Zhang C, Sun Y. Characterization and Mechanism of a Novel Rice Protein Peptide (AHVGMSGEEPE) Calcium Chelate in Enhancing Calcium Absorption in Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8569-8580. [PMID: 38563891 DOI: 10.1021/acs.jafc.3c09916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Rice protein peptides (RPP) are a potentially valuable source of high-quality calcium chelating properties. However, there is a lack of information regarding the calcium-absorption-promoting effect of RPP and its underlying mechanism. The present study adopted molecular docking methodologies to analyze the 10 most potent peptide segments from RPP. Results revealed that the peptide AHVGMSGEEPE (AHV) displayed optimal calcium binding properties (calcium-chelating capacity 55.69 ± 0.66 mg/g). Quantum chemistry analysis revealed that the AHV peptide effectively binds and forms stable complexes with calcium via the carbonyl oxygen atoms in valine at position 3 and the carbonyl of the C-terminal carboxyl group of glutamate at position 11. The spectral analysis results indicated that AHV may bind to calcium through carboxyl oxygen atoms, resulting in a transition from a smooth surface block-like structure to a dense granular structure. Furthermore, this study demonstrated that the 4 mmol/L AHV-Ca chelate (61.75 ± 13.23 μg/well) significantly increases calcium absorption compared to 1 mM CaCl2 (28.57 ± 8.59 μg/well) in the Caco-2 cell monolayer. In terms of mechanisms, the novel peptide-calcium chelate AHV-Ca derived from RPP exerts a cell-level effect by upregulating the expression of TRPV6 calcium-ion-channel-related genes and proteins (TRPV6 and Calbindin-D9k). This study provides a theoretical basis for developing functional foods with the AHV peptide as ingredients to improve calcium absorption.
Collapse
Affiliation(s)
- Wenting Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Yangzheng He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Yue Tian
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Chunbo Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
3
|
Wang Y, Deng X, Zhang R, Lyu H, Xiao S, Guo D, Ali DW, Michalak M, Zhou C, Chen XZ, Tang J. The TRPV6 Calcium Channel and Its Relationship with Cancer. BIOLOGY 2024; 13:168. [PMID: 38534438 DOI: 0.3390/biology13030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 10/14/2024]
Abstract
Transient receptor potential vanilloid-6 (TRPV6) is a cation channel belonging to the TRP superfamily, specifically the vanilloid subfamily, and is the sixth member of this subfamily. Its presence in the body is primarily limited to the skin, ovaries, kidney, testes, and digestive tract epithelium. The body maintains calcium homeostasis using the TRPV6 channel, which has a greater calcium selectivity than the other TRP channels. Several pieces of evidence suggest that it is upregulated in the advanced stages of thyroid, ovarian, breast, colon, and prostate cancers. The function of TRPV6 in regulating calcium signaling in cancer will be covered in this review, along with its potential applications as a cancer treatment target.
Collapse
Affiliation(s)
- Yifang Wang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xiaoling Deng
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
4
|
Wang Y, Deng X, Zhang R, Lyu H, Xiao S, Guo D, Ali DW, Michalak M, Zhou C, Chen XZ, Tang J. The TRPV6 Calcium Channel and Its Relationship with Cancer. BIOLOGY 2024; 13:168. [PMID: 38534438 DOI: 10.3390/biology13030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
Transient receptor potential vanilloid-6 (TRPV6) is a cation channel belonging to the TRP superfamily, specifically the vanilloid subfamily, and is the sixth member of this subfamily. Its presence in the body is primarily limited to the skin, ovaries, kidney, testes, and digestive tract epithelium. The body maintains calcium homeostasis using the TRPV6 channel, which has a greater calcium selectivity than the other TRP channels. Several pieces of evidence suggest that it is upregulated in the advanced stages of thyroid, ovarian, breast, colon, and prostate cancers. The function of TRPV6 in regulating calcium signaling in cancer will be covered in this review, along with its potential applications as a cancer treatment target.
Collapse
Affiliation(s)
- Yifang Wang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xiaoling Deng
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
5
|
Mesquita G, Haustrate A, Mihalache A, Soret B, Cordier C, Desruelles E, Duval E, Pethö Z, Prevarskaya N, Schwab A, Lehen’kyi V. TRPV6 Channel Is Involved in Pancreatic Ductal Adenocarcinoma Aggressiveness and Resistance to Chemotherapeutics. Cancers (Basel) 2023; 15:5769. [PMID: 38136316 PMCID: PMC10741494 DOI: 10.3390/cancers15245769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) stands as a highly aggressive and lethal cancer, characterized by a grim prognosis and scarce treatment alternatives. Within this context, TRPV6, a calcium-permeable channel, emerges as a noteworthy candidate due to its overexpression in various cancers, capable of influencing the cell behavior in different cancer entities. Nonetheless, the exact expression pattern and functional significance of TRPV6 in the context of PDAC remains enigmatic. This study scrutinizes the expression of TRPV6 in tissue specimens obtained from 46 PDAC patients across distinct stages and grades. We manipulated TRPV6 expression (knockdown, overexpression) in the human PDAC cell lines Panc-1 and Capan-1. Subsequently, we analyzed its impact on multiple facets, encompassing Ca2+ influx, proliferation, apoptosis, migration, chemoresistance, and tumor growth, both in vitro and in vivo. Notably, the data indicate a direct correlation between TRPV6 expression levels, tumor stage, and grade, establishing a link between TRPV6 and PDAC proliferation in tissue samples. Decreasing TRPV6 expression via knockdown hampered Ca2+ influx, resulting in diminished proliferation and viability in both cell lines, and cell cycle progression in Panc-1. The knockdown simultaneously led to an increase in apoptotic rates and increased the susceptibility of cells to 5-FU and gemcitabine treatments. Moreover, it accelerated migration and promoted collective movement among Panc-1 cells. Conversely, TRPV6 overexpression yielded opposing outcomes in terms of proliferation in Panc-1 and Capan-1, and the migration of Panc-1 cells. Intriguingly, both TRPV6 knockdown and overexpression diminished the process of tumor formation in vivo. This intricate interplay suggests that PDAC aggressiveness relies on a fine-tuned TRPV6 expression, raising its profile as a putative therapeutic target.
Collapse
Affiliation(s)
- Gonçalo Mesquita
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France (E.D.); (N.P.)
- Institute of Physiology II, University of Muenster, Robert-Koch-Str. 27b, 48149 Muenster, Germany;
| | - Aurélien Haustrate
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France (E.D.); (N.P.)
| | - Adriana Mihalache
- Service d’Anatomie et de Cytologie Pathologiques, Groupement des Hôpitaux de l’Institut Catholique de Lille (GHICL), 59000 Lille, France; (A.M.); (E.D.)
| | - Benjamin Soret
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France (E.D.); (N.P.)
- Institute of Physiology II, University of Muenster, Robert-Koch-Str. 27b, 48149 Muenster, Germany;
| | - Clément Cordier
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France (E.D.); (N.P.)
| | - Emilie Desruelles
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France (E.D.); (N.P.)
| | - Erika Duval
- Service d’Anatomie et de Cytologie Pathologiques, Groupement des Hôpitaux de l’Institut Catholique de Lille (GHICL), 59000 Lille, France; (A.M.); (E.D.)
| | - Zoltan Pethö
- Institute of Physiology II, University of Muenster, Robert-Koch-Str. 27b, 48149 Muenster, Germany;
| | - Natalia Prevarskaya
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France (E.D.); (N.P.)
| | - Albrecht Schwab
- Institute of Physiology II, University of Muenster, Robert-Koch-Str. 27b, 48149 Muenster, Germany;
| | - V’yacheslav Lehen’kyi
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France (E.D.); (N.P.)
| |
Collapse
|
6
|
Yu TY, Zhang G, Chai XX, Ren L, Yin DC, Zhang CY. Recent progress on the effect of extracellular matrix on occurrence and progression of breast cancer. Life Sci 2023; 332:122084. [PMID: 37716504 DOI: 10.1016/j.lfs.2023.122084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Breast cancer (BC) metastasis is an enormous challenge targeting BC therapy. The extracellular matrix (ECM), the principal component of the BC metastasis niche, is the pivotal driver of breast tumor development, whose biochemical and biophysical characteristics have attracted widespread attention. Here, we review the biological effects of ECM constituents and the influence of ECM stiffness on BC metastasis and drug resistance. We provide an overview of the relative signal transduction mechanisms, existing metastasis models, and targeted drug strategies centered around ECM stiffness. It will shed light on exploring more underlying targets and developing specific drugs aimed at ECM utilizing biomimetic platforms, which are promising for breast cancer treatment.
Collapse
Affiliation(s)
- Tong-Yao Yu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China
| | - Ge Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China
| | - Xiao-Xia Chai
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China
| | - Li Ren
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China; Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, Zhejiang, PR China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China.
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China.
| |
Collapse
|
7
|
Guo Y, Luo C, Sun Y, Guo W, Zhang R, Zhang X, Ke X, Wei L. Inhibition of mitochondrial fusion via SIRT1/PDK2/PARL axis breaks mitochondrial metabolic plasticity and sensitizes cancer cells to glucose restriction therapy. Biomed Pharmacother 2023; 166:115342. [PMID: 37633053 DOI: 10.1016/j.biopha.2023.115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/06/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023] Open
Abstract
Mitochondria dynamically change their morphology via fusion and fission, a process called mitochondrial dynamics. Dysregulated mitochondrial dynamics respond rapidly to metabolic cues, and are linked to the initiation and progression of diverse human cancers. Metabolic adaptations significantly contribute to tumor development and escape from tissue homeostatic defenses. In this work, we identified oroxylin A (OA), a dual GLUT1/mitochondrial fusion inhibitor, which restricted glucose catabolism of hepatocellular carcinoma cells and simultaneously inhibited mitochondrial fusion by disturbing SIRT1/PDK2/PARL axis. Based the dual action of OA in metabolic regulation and mitochondrial dynamics, further results revealed that mitochondrial functional status and spare respiratory capacity (SRC) of cancer cells had a close correlation with mitochondrial metabolic plasticity, and played important roles in the susceptibility to cancer therapy aiming at glucose restriction. Cancer cells with healthy mitochondria and high SRC exhibit greater metabolic flexibility and higher resistance to GLUT1 inhibitors. This phenomenon is attributed to the fact that high SRC cells fuse mitochondria in response to glucose restriction, enhancing tolerance to energy deficiency, but undergo less mitochondrial oxidative stress compared to low SRC cells. Thus, inhibiting mitochondrial fusion breaks mitochondrial metabolic plasticity and increases cancer cell susceptibility to glucose restriction therapy. Collectively, these finding indicate that combining a GLUT1 inhibitor with a mitochondrial fusion inhibitor can work synergistically in cancer therapy and, more broadly, suggest that the incorporations of mitochondrial dynamics and metabolic regulation may become the targetable vulnerabilities bypassing the genotypic heterogeneity of multiple malignancies.
Collapse
Affiliation(s)
- Yongjian Guo
- School of Biopharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, People's Republic of China
| | - Chengju Luo
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Yuening Sun
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Wenjing Guo
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Ruitian Zhang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Xin Zhang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Xue Ke
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, People's Republic of China.
| | - Libin Wei
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
8
|
Liu J, Guo Y, Zhang R, Xu Y, Luo C, Wang R, Xu S, Wei L. Inhibition of TRPV4 remodels single cell polarity and suppresses the metastasis of hepatocellular carcinoma. Cell Death Dis 2023; 14:379. [PMID: 37369706 DOI: 10.1038/s41419-023-05903-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor, frequently causing both intrahepatic and extrahepatic metastases. The overall prognosis of patients with metastatic HCC is poor. Recently, single-cell (sc) polarity is proved to be an innate feature of some tumor cells in liquid phase, and directly involved in the cell adhesion to blood vessel and tumor metastasis. Here, we characterize the maintained sc polarity of HCC cells in a suspension culture, and investigate its roles and regulatory mechanisms during metastasis. We demonstrate that transient receptor potential vanilloid 4 (TRPV4) is a promoting regulator of sc polarity via activating Ca2+-dependent AMPK/MLC/ERM pathway. This attenuates the adhesion of metastatic HCC cells to vascular endothelial cells. The reduction of cancer metastases can result from TRPV4 inhibition, which not only impacts the migration and invasion of tumor cells, but also prevents the adhesion to vascular endothelial cells. Additionally, we discover a brand-new TRPV4 inhibitor called GL-V9 that modifies the degree of sc polarization and significantly decreases the metastatic capacity of HCC cells. Taken together, our data shows that TRPV4 and calcium signal are significant sc polarity regulators in metastatic HCC, and that the pharmacological intervention that results in HCC cells becoming depolarized suggests a promising treatment for cancer metastasis.
Collapse
Affiliation(s)
- Jian Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, The People's Republic of China
| | - Yongjian Guo
- School of Biopharmacy, China Pharmaceutical University, #639 Longmian Dadao, Nanjing, The People's Republic of China
| | - Ruitian Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, The People's Republic of China
| | - Ye Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, The People's Republic of China
| | - Chengju Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, The People's Republic of China
| | - Rui Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, The People's Republic of China
| | - Shu Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, The People's Republic of China.
| | - Libin Wei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, The People's Republic of China.
| |
Collapse
|
9
|
Janke EK, Chalmers SB, Roberts-Thomson SJ, Monteith GR. Intersection between calcium signalling and epithelial-mesenchymal plasticity in the context of cancer. Cell Calcium 2023; 112:102741. [PMID: 37060674 DOI: 10.1016/j.ceca.2023.102741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a form of cellular phenotypic plasticity and is considered a crucial step in the progression of many cancers. The calcium ion (Ca2+) acts as a ubiquitous second messenger and is implicated in many cellular processes, including cell death, migration, invasion and more recently EMT. Throughout this review, the complex interplay between Ca2+ signalling and EMT will be explored. An overview of the Ca2+ pathways that are remodelled as a consequence of EMT is provided and the role of Ca2+ signalling in regulating EMT and its significance is considered. Ca2+ signalling pathways may represent a therapeutic opportunity to regulate EMT. However, as will be described in this review, the complexity of these signalling pathways represents significant challenges that must be considered if Ca2+ signalling is to be manipulated with the aim of therapeutic intervention in cancer.
Collapse
Affiliation(s)
- Ellen K Janke
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Brisbane, Queensland, 4102, Australia
| | - Silke B Chalmers
- Department of Biomedicine, Aarhus University, Nordre Ringgade 1, Aarhus C, 8000, Denmark
| | - Sarah J Roberts-Thomson
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Brisbane, Queensland, 4102, Australia
| | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Brisbane, Queensland, 4102, Australia.
| |
Collapse
|
10
|
Bai S, Wei Y, Liu R, Chen Y, Ma W, Wang M, Chen L, Luo Y, Du J. The role of transient receptor potential channels in metastasis. Biomed Pharmacother 2023; 158:114074. [PMID: 36493698 DOI: 10.1016/j.biopha.2022.114074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the hallmark of failed tumor treatment and is typically associated with death due to cancer. Transient receptor potential (TRP) channels affect changes in intracellular calcium concentrations and participate at every stage of metastasis. Further, they increase the migratory ability of tumor cells, promote angiogenesis, regulate immune function, and promote the growth of tumor cells through changes in gene expression and function. In this review, we explore the potential mechanisms of action of TRP channels, summarize their role in tumor metastasis, compile inhibitors of TRP channels relevant in tumors, and discuss current challenges in research on TRP channels involved in tumor metastasis.
Collapse
Affiliation(s)
- Suwen Bai
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yuan Wei
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Rong Liu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yuhua Chen
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Wanling Ma
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Minghua Wang
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Li Chen
- Department of obstetrics and gynecology, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Rd, Guangming Dist., Shenzhen, Guangdong 518107, China
| | - Yumei Luo
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| | - Juan Du
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| |
Collapse
|
11
|
Walker V, Vuister GW. Biochemistry and pathophysiology of the Transient Potential Receptor Vanilloid 6 (TRPV6) calcium channel. Adv Clin Chem 2023; 113:43-100. [PMID: 36858649 DOI: 10.1016/bs.acc.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
TRPV6 is a Transient Receptor Potential Vanilloid (TRPV) cation channel with high selectivity for Ca2+ ions. First identified in 1999 in a search for the gene which mediates intestinal Ca2+ absorption, its far more extensive repertoire as a guardian of intracellular Ca2+ has since become apparent. Studies on TRPV6-deficient mice demonstrated additional important roles in placental Ca2+ transport, fetal bone development and male fertility. The first reports of inherited deficiency in newborn babies appeared in 2018, revealing its physiological importance in humans. There is currently strong evidence that TRPV6 also contributes to the pathogenesis of some common cancers. The recently reported association of TRPV6 deficiency with non-alcoholic chronic pancreatitis suggests a role in normal pancreatic function. Over time and with greater awareness of TRPV6, other disease-associations are likely to emerge. Powerful analytical tools have provided invaluable insights into the structure and operation of TRPV6. Its roles in Ca2+ signaling and carcinogenesis, and the use of channel inhibitors in cancer treatment are being intensively investigated. This review first briefly describes the biochemistry and physiology of the channel, and analytical methods used to investigate these. The focus subsequently shifts to the clinical disorders associated with abnormal expression and the underlying pathophysiology. The aims of this review are to increase awareness of this channel, and to draw together findings from a wide range of sources which may help to formulate new ideas for further studies.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton, United Kingdom.
| | - Geerten W Vuister
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
12
|
Hou Z, Ding Q, Li Y, Zhao Z, Yan F, Li Y, Wang X, Xu J, Chen W, Wu G, Ruan X, Zhao L. Intestinal epithelial β Klotho is a critical protective factor in alcohol-induced intestinal barrier dysfunction and liver injury. EBioMedicine 2022; 82:104181. [PMID: 35908416 PMCID: PMC9352463 DOI: 10.1016/j.ebiom.2022.104181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 10/26/2022] Open
|
13
|
Zhang H, Zhang X, Wang X, Sun H, Hou C, Yu Y, Wang S, Yin F, Yang Z. Comprehensive Analysis of TRP Channel–Related Genes in Patients With Triple-Negative Breast Cancer for Guiding Prognostic Prediction. Front Oncol 2022; 12:941283. [PMID: 35875096 PMCID: PMC9300844 DOI: 10.3389/fonc.2022.941283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a special subtype of breast cancer. Transient Receptor Potential (TRP) channel superfamily has emerged as a novel and interesting target in a variety of tumors. However, the association of TRP channel–related genes with TNBC is still unclear. Methods The The Cancer Genome Atlas (TCGA)-TNBC and GSE58812 datasets were downloaded from the public database. The differentially expressed TRP channel–related genes (DETGs) were screened by limma package, and mutations of the above genes were analyzed. Subsequently, new molecular subtypes in TNBC-based DETGs were explored by consensus clustering analysis. In addition, Lasso–Cox regression analysis was used to divide it into two robust risk subtypes: high-risk group and low-risk group. The accuracy and distinguishing ability of above models were verified by a variety of methods, including Kaplan–Meier survival analysis, ROC analysis, calibration curve, and PCA analysis. Meanwhile, CIBERSORT algorithm was used to excavate status of immune-infiltrating cells in TNBC tissues. Last, we explored the therapeutic effect of drugs and underlying mechanisms of risk subgroups by pRRophetic package and GSEA algorithm, respectively. Results A total of 19 DETGs were identified in 115 TNBC and 113 normal samples from TCGA database. In addition, missense mutation and SNP were the most common variant classification. According to Lasso–Cox regression analysis, the risky formula performed best when nine genes were used: TRPM5, TRPV2, HTR2B, HRH1, P2RY2, MAP2K6, NTRK1, ADCY6, and PRKACB. Subsequently, Kaplan–Meier survival analysis, ROC analysis, calibration curve, and Principal Components Analysis (PCA) analysis showed an excellent accuracy for predicting OS using risky formula in each cohort (P < 0.05). Specifically, high-risk group had a shorter OS compared with low-risk group. In addition, T-cell CD4 memory activated and macrophages M1 were enriched in normal tissues, whereas Tregs were increased in tumor tissues. Note that the low-risk group was better therapeutic effect to docetaxel, doxorubicin, cisplatin, paclitaxel, and gemcitabine than the high-risk group (P < 0.05). Last, in vitro assays, Quantitative Real-time PCR (qRT-PCR) indicated that TRPM5 was significantly highly expressed in MDA-MB-231 and MDA-MB-468 cells compared with that in MCF-10A cells (P < 0.01). Conclusion We identified a risky formula based on expression of TRP channel–related genes that can predict prognosis, therapeutic effect, and status of tumor microenvironment for patients with TNBC.
Collapse
Affiliation(s)
- Haojie Zhang
- The Second Medical College, Binzhou Medical University, Yantai, China
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Xiangsheng Zhang
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Xiaohong Wang
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
- *Correspondence: Xiaohong Wang, ; Zhenlin Yang,
| | - Hongguang Sun
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Changran Hou
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Yue Yu
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Song Wang
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Fangxu Yin
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Zhenlin Yang
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
- *Correspondence: Xiaohong Wang, ; Zhenlin Yang,
| |
Collapse
|
14
|
Audero MM, Prevarskaya N, Fiorio Pla A. Ca 2+ Signalling and Hypoxia/Acidic Tumour Microenvironment Interplay in Tumour Progression. Int J Mol Sci 2022; 23:7377. [PMID: 35806388 PMCID: PMC9266881 DOI: 10.3390/ijms23137377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/18/2023] Open
Abstract
Solid tumours are characterised by an altered microenvironment (TME) from the physicochemical point of view, displaying a highly hypoxic and acidic interstitial fluid. Hypoxia results from uncontrolled proliferation, aberrant vascularization and altered cancer cell metabolism. Tumour cellular apparatus adapts to hypoxia by altering its metabolism and behaviour, increasing its migratory and metastatic abilities by the acquisition of a mesenchymal phenotype and selection of aggressive tumour cell clones. Extracellular acidosis is considered a cancer hallmark, acting as a driver of cancer aggressiveness by promoting tumour metastasis and chemoresistance via the selection of more aggressive cell phenotypes, although the underlying mechanism is still not clear. In this context, Ca2+ channels represent good target candidates due to their ability to integrate signals from the TME. Ca2+ channels are pH and hypoxia sensors and alterations in Ca2+ homeostasis in cancer progression and vascularization have been extensively reported. In the present review, we present an up-to-date and critical view on Ca2+ permeable ion channels, with a major focus on TRPs, SOCs and PIEZO channels, which are modulated by tumour hypoxia and acidosis, as well as the consequent role of the altered Ca2+ signals on cancer progression hallmarks. We believe that a deeper comprehension of the Ca2+ signalling and acidic pH/hypoxia interplay will break new ground for the discovery of alternative and attractive therapeutic targets.
Collapse
Affiliation(s)
- Madelaine Magalì Audero
- U1003—PHYCEL—Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d’Ascq, 59000 Lille, France; (M.M.A.); (N.P.)
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Natalia Prevarskaya
- U1003—PHYCEL—Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d’Ascq, 59000 Lille, France; (M.M.A.); (N.P.)
| | - Alessandra Fiorio Pla
- U1003—PHYCEL—Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d’Ascq, 59000 Lille, France; (M.M.A.); (N.P.)
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| |
Collapse
|
15
|
Khattar V, Wang L, Peng JB. Calcium selective channel TRPV6: Structure, function, and implications in health and disease. Gene 2022; 817:146192. [PMID: 35031425 PMCID: PMC8950124 DOI: 10.1016/j.gene.2022.146192] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022]
Abstract
Calcium-selective channel TRPV6 (Transient Receptor Potential channel family, Vanilloid subfamily member 6) belongs to the TRP family of cation channels and plays critical roles in transcellular calcium (Ca2+) transport, reuptake of Ca2+ into cells, and maintaining a local low Ca2+ environment for certain biological processes. Recent crystal and cryo-electron microscopy-based structures of TRPV6 have revealed mechanistic insights on how the protein achieves Ca2+ selectivity, permeation, and inactivation by calmodulin. The TRPV6 protein is expressed in a range of epithelial tissues such as the intestine, kidney, placenta, epididymis, and exocrine glands such as the pancreas, prostate and salivary, sweat, and mammary glands. The TRPV6 gene is a direct transcriptional target of the active form of vitamin D and is efficiently regulated to meet the body's need for Ca2+ demand. In addition, TRPV6 is also regulated by the level of dietary Ca2+ and under physiological conditions such as pregnancy and lactation. Genetic models of loss of function in TRPV6 display hypercalciuria, decreased bone marrow density, deficient weight gain, reduced fertility, and in some cases alopecia. The models also reveal that the channel plays an indispensable role in maintaining maternal-fetal Ca2+ transport and low Ca2+ environment in the epididymal lumen that is critical for male fertility. Most recently, loss of function mutations in TRPV6 gene is linked to transient neonatal hyperparathyroidism and early onset chronic pancreatitis. TRPV6 is overexpressed in a wide range of human malignancies and its upregulation is strongly correlated to tumor aggressiveness, metastasis, and poor survival in selected cancers. This review summarizes the current state of knowledge on the expression, structure, biophysical properties, function, polymorphisms, and regulation of TRPV6. The aberrant expression, polymorphisms, and dysfunction of this protein linked to human diseases are also discussed.
Collapse
Affiliation(s)
- Vinayak Khattar
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lingyun Wang
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ji-Bin Peng
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
16
|
Oghbaei F, Zarezadeh R, Jafari-Gharabaghlou D, Ranjbar M, Nouri M, Fattahi A, Imakawa K. Epithelial-mesenchymal transition process during embryo implantation. Cell Tissue Res 2022; 388:1-17. [PMID: 35024964 DOI: 10.1007/s00441-021-03574-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/29/2021] [Indexed: 03/01/2023]
Abstract
The epithelial to mesenchymal transition (EMT) in endometrial epithelial and trophectoderm cells is essential for the progression of embryo implantation and its impairment could cause implantation failure. Therefore, EMT should be tightly regulated in both embryonic and endometrial cells during implantation. Studies reported the involvement of numerous factors in EMT regulation, including hormones, growth factors, transcription factors, microRNAs, aquaporins (AQPs), and ion channels. These factors act through different signaling pathways to affect the expression of epithelial and mesenchymal markers as well as the cellular cytoskeleton. Although the mechanisms involved in cancer cell EMT have been well studied, little is known about EMT during embryo implantation. Therefore, we comprehensively reviewed different factors that regulate the EMT, a key event required for the conceptus implantation to the endometrium.Summary sentence: Abnormal epithelial-mesenchymal transition (EMT) process within endometrial epithelial cells (EECs) or trophoblast cells can cause implantation failure. This process is regulated by various factors. Thus, the objective of this review was to summarize the effective factors on the EMT process during implantation.
Collapse
Affiliation(s)
- Farnaz Oghbaei
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Reza Zarezadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Minoo Ranjbar
- Department of Midwifery, Bonab Branch, Islamic Azad University, Bonab, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Kazuhiko Imakawa
- Laboratory of Molecular Reproduction, Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
| |
Collapse
|
17
|
Fnu G, Weber GF. Alterations of Ion Homeostasis in Cancer Metastasis: Implications for Treatment. Front Oncol 2022; 11:765329. [PMID: 34988012 PMCID: PMC8721045 DOI: 10.3389/fonc.2021.765329] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
We have previously reported that metastases from all malignancies are characterized by a core program of gene expression that suppresses extracellular matrix interactions, induces vascularization/tissue remodeling, activates the oxidative metabolism, and alters ion homeostasis. Among these features, the least elucidated component is ion homeostasis. Here we review the literature with the goal to infer a better mechanistic understanding of the progression-associated ionic alterations and identify the most promising drugs for treatment. Cancer metastasis is accompanied by skewing in calcium, zinc, copper, potassium, sodium and chloride homeostasis. Membrane potential changes and water uptake through Aquaporins may also play roles. Drug candidates to reverse these alterations are at various stages of testing, with some having entered clinical trials. Challenges to their utilization comprise differences among tumor types and the involvement of multiple ions in each case. Further, adverse effects may become a concern, as channel blockers, chelators, or supplemented ions will affect healthy and transformed cells alike.
Collapse
Affiliation(s)
- Gulimirerouzi Fnu
- College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, United States
| | - Georg F Weber
- College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, United States
| |
Collapse
|
18
|
Panda S, Chatterjee O, Roy L, Chatterjee S. Targeting Ca 2+ signaling: A new arsenal against cancer. Drug Discov Today 2021; 27:923-934. [PMID: 34793973 DOI: 10.1016/j.drudis.2021.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/24/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023]
Abstract
The drug resistance of cancer cells is a major concern in medical oncology, resulting in the failure of chemotherapy. Ca2+ plays a pivotal role in inducing multidrug resistance in cancer cells. Calcium signaling is a critical regulator of many cancer hallmarks, such as angiogenesis, invasiveness, and migration. In this review, we describe the involvement of Ca2+ signaling and associated proteins in cancer progression and in the development of multidrug resistance in cancer cells. We also highlight the possibilities and challenges of targeting the Ca2+ channels, transporters, and pumps involved in Ca2+ signaling in cancer cells through structure-based drug design. This work will open a new therapeutic window to be used against cancer in upcoming years.
Collapse
Affiliation(s)
- Suman Panda
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | - Oishika Chatterjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | - Laboni Roy
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata 700054, India.
| |
Collapse
|
19
|
Transient Receptor Potential Channels in the Epithelial-to-Mesenchymal Transition. Int J Mol Sci 2021; 22:ijms22158188. [PMID: 34360952 PMCID: PMC8348042 DOI: 10.3390/ijms22158188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a strictly regulated process that is indispensable for normal development, but it can result in fibrosis and cancer progression. It encompasses a complete alteration of the cellular transcriptomic profile, promoting the expression of genes involved in cellular migration, invasion and proliferation. Extracellular signaling factors driving the EMT process require secondary messengers to convey their effects to their targets. Due to its remarkable properties, calcium represents an ideal candidate to translate molecular messages from receptor to effector. Therefore, calcium-permeable ion channels that facilitate the influx of extracellular calcium into the cytosol can exert major influences on cellular phenotype. Transient receptor potential (TRP) channels represent a superfamily of non-selective cation channels that decode physical and chemical stimuli into cellular behavior. Their role as cellular sensors renders them interesting proteins to study in the context of phenotypic transitions, such as EMT. In this review, we elaborate on the current knowledge regarding TRP channel expression and activity in cellular phenotype and EMT.
Collapse
|
20
|
Kärki T, Tojkander S. TRPV Protein Family-From Mechanosensing to Cancer Invasion. Biomolecules 2021; 11:1019. [PMID: 34356643 PMCID: PMC8301805 DOI: 10.3390/biom11071019] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Biophysical cues from the cellular microenvironment are detected by mechanosensitive machineries that translate physical signals into biochemical signaling cascades. At the crossroads of extracellular space and cell interior are located several ion channel families, including TRP family proteins, that are triggered by mechanical stimuli and drive intracellular signaling pathways through spatio-temporally controlled Ca2+-influx. Mechanosensitive Ca2+-channels, therefore, act as critical components in the rapid transmission of physical signals into biologically compatible information to impact crucial processes during development, morphogenesis and regeneration. Given the mechanosensitive nature of many of the TRP family channels, they must also respond to the biophysical changes along the development of several pathophysiological conditions and have also been linked to cancer progression. In this review, we will focus on the TRPV, vanilloid family of TRP proteins, and their connection to cancer progression through their mechanosensitive nature.
Collapse
Affiliation(s)
- Tytti Kärki
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland;
| | - Sari Tojkander
- Department of Veterinary Biosciences, Section of Pathology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
21
|
Syndecan-1 (CD138), Carcinomas and EMT. Int J Mol Sci 2021; 22:ijms22084227. [PMID: 33921767 PMCID: PMC8072910 DOI: 10.3390/ijms22084227] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Cell surface proteoglycans are known to be important regulators of many aspects of cell behavior. The principal family of transmembrane proteoglycans is the syndecans, of which there are four in mammals. Syndecan-1 is mostly restricted to epithelia, and bears heparan sulfate chains that are capable of interacting with a large array of polypeptides, including extracellular matrix components and potent mediators of proliferation, adhesion and migration. For this reason, it has been studied extensively with respect to carcinomas and tumor progression. Frequently, but not always, syndecan-1 levels decrease as tumor grade, stage and invasiveness and dedifferentiation increase. This parallels experiments that show depletion of syndecan-1 can be accompanied by loss of cadherin-mediated adhesion. However, in some tumors, levels of syndecan-1 increase, but the characterization of its distribution is relevant. There can be loss of membrane staining, but acquisition of cytoplasmic and/or nuclear staining that is abnormal. Moreover, the appearance of syndecan-1 in the tumor stroma, either associated with its cellular component or the collagenous matrix, is nearly always a sign of poor prognosis. Given its relevance to myeloma progression, syndecan-1-directed antibody—toxin conjugates are being tested in clinical and preclinical trials, and may have future relevance to some carcinomas.
Collapse
|