1
|
Gohar IMA, Alyamani A, Shafi ME, Mohamed EAE, Ghareeb RY, Desoky EM, Hasan ME, Zaitoun AF, Abdelsalam NR, El-Tarabily KA, Elnahal ASM. A quantitative and qualitative assessment of sugar beet genotype resistance to root-knot nematode, Meloidogyne incognita. FRONTIERS IN PLANT SCIENCE 2023; 13:966377. [PMID: 36714787 PMCID: PMC9881751 DOI: 10.3389/fpls.2022.966377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/28/2022] [Indexed: 06/18/2023]
Abstract
Sugar beet productivity is highly constrained by the root-knot nematode (RKN) Meloidogyne incognita. Eight sugar beet genotypes were screened under greenhouse conditions for their susceptibility to M. incognita according to an adapted quantitative scheme for assignment Canto-Saenz's host suitability (resistance) designations (AQSCS). Besides, the degree of susceptibility or tolerance of the examined genotypes was recorded by the modified host-parasite index (MHPI) scale based on yield performance. In addition, single nucleotide polymorphism (SNP) was also determined. Sugar beet genotypes have been classified into four categories for their susceptibility or tolerance according to the AQSCS scale. The first category, the moderately resistant (MR) group implies only one variety named SVH 2015, which did not support nematode reproduction (RF≤1), and had less root damage (GI≈2). Second, the tolerant group (T) involving Lilly and Halawa KWS supported fairly high nematode reproduction (RF>1) with relatively plant damage (GI≤2). Whereas the susceptible (S) category involved four varieties, FARIDA, Lammia KWS, Polat, and Capella, which supported nematode reproduction factor (RF>1) with high plant damage (GI>2). The fourth category refers to the highly susceptible (HYS) varieties such as Natura KWS that showed (RF≤1) and very high plant damage (GI>2). However, the MHPI scale showed that Lammia KWS variety was shifted from the (S) category to the (T) category. Results revealed significant differences among genotypes regarding disease severity, yield production, and quality traits. The SVH 2015 variety exhibited the lowest disease index values concerning population density with 800/250 cm3 soils, RF=2, root damage/gall index (GI=1.8), gall size (GS=2.3), gall area (GA=3.7), damage index (DI=3.4), susceptibility rate (SR=2.4), and MHP index (MHPI=2.5). However, Lammia KWS showed the highest disease index values regarding population density with 8890/250 cm3 soils, RF= 22.2, GI= 4.8, and SR= 14.1. Meanwhile, Natura KWS the highest GS, GA and MHPI with 7.1, 8 and 20.9, respectively. The lowest DI was achieved by Capella (DI= 6) followed by Lammia KWS (DI= 5.9). For yield production, and quality traits, SVH 2015 exhibited the lowest reductions of sugar yields/beet's root with 11.1%. While Natura KWS had the highest reduction with 79.3%, as well as it showed the highest reduction in quality traits; including sucrose, T.S.S, and purity with 65, 27.3, and 51.9%, respectively. The amino acid alignment and prediction of the DNA sequences revealed the presence of five SNPs among all sugar beet verities.
Collapse
Affiliation(s)
- Ibrahim M. A. Gohar
- Sugar Crops Research Institute, Department of Sugar Crops Disease and Pests Research, Agricultural Research Center, Giza, Egypt
| | - Amal Alyamani
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif, Saudi Arabia
| | - Manal E. Shafi
- Department of Biological Sciences, Zoology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elshaimaa A. E. Mohamed
- Sugar Crops Research Institute, Department of Genetic and Breeding, Agricultural Research Center, Giza, Egypt
| | - Rehab Y. Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, Egypt
| | - Elsayed M. Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamed E. Hasan
- Bioinformatic Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Amera F. Zaitoun
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Ahmed S. M. Elnahal
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Chen DW, Li HJ, Liu Y, Ma LN, Pu JH, Lu J, Tang XJ, Gao YS. Protective effects of fowl-origin cadmium-tolerant lactobacillus against sub-chronic cadmium-induced toxicity in chickens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76036-76049. [PMID: 35665891 DOI: 10.1007/s11356-022-19113-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/03/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) directly endangers poultry health and indirectly causes harm to human health by food chain. Numerous studies have focused on removing Cd using lactic acid bacteria (LAB). However, there is still a lack of in vivo studies to validate whether Cd can be absorbed successfully by LAB to alleviate Cd toxicity. Here, we aimed to isolated and screened poultry-derived Cd-tolerant LAB with the strongest adsorption capacity in vitro and investigate the protective effect of which on sub-chronic Cd toxicity in chickens. First, nine Cd-tolerant LAB strains were selected preliminarily by isolating, screening, and identifying from poultry farms. Next, four strains with the strongest adsorption capacity were used to explore the influence of different physical and chemical factors on the ability of LAB to adsorb Cd as well as its probiotic properties in terms of acid tolerance, bile salt tolerance, drug resistance, and antibacterial effects. Resultantly, the CLF9-1 strain with the best comprehensive ability was selected for further animal protection test. The Cd-tolerant LAB treatment promoted the growth performance of chickens and reduced the Cd-elevated liver and kidney coefficients. Moreover, Cd-induced liver, kidney, and duodenum injuries were alleviated significantly by high-dose LAB treatment. Furthermore, LAB treatment also increased the elimination of Cd in feces and markedly reduced the Cd buildup in the liver and kidney. In summary, these findings determine that screened Cd-tolerant LAB strain exerts a protective effect on chickens against sub-chronic cadmium poisoning, thus providing an essential guideline for the public health and safety of livestock and poultry.
Collapse
Affiliation(s)
- Da-Wei Chen
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - Hui-Jia Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - YinYin Liu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - Li-Na Ma
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - Jun-Hua Pu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - JunXian Lu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - Xiu-Jun Tang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - Yu-Shi Gao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China.
| |
Collapse
|
3
|
Ji J, Yu J, Ye Y, Sheng L, Fang J, Yang Y, Sun X. Biodegradation methods and product analysis of zearalenone and its future development trend: A review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
4
|
Abdel-Aty MS, Youssef-Soad A, Yehia WMB, EL-Nawsany RTE, Kotb HMK, Ahmed GA, Hasan ME, Salama EAA, Lamlom SF, Saleh FH, Shah AN, Abdelsalam NR. Genetic analysis of yield traits in Egyptian cotton crosses (Gossypium barbdense L.) under normal conditions. BMC PLANT BIOLOGY 2022; 22:462. [PMID: 36167520 PMCID: PMC9513887 DOI: 10.1186/s12870-022-03839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
To generate high-yielding cultivars with favorable fiber quality traits, cotton breeders can use information about combining ability and gene activity within a population to locate elite parents and potential F1 crosses. To this end, in the current study, twelve cotton parents (eight genotypes as female parents and four testers) and their F1 crosses obtained utilizing the linex tester mating design were evaluated for their general and specialized combining abilities (GCA and SCA, respectively) of yield traits. The findings showed that for all the investigated variables, variances owing to genotypes, parents, crosses, and parent vs cross showed extremely significant (P ≤ 0.01) differences. Additionally, throughout the course of two growing seasons, the mean squares for genotypes (parents and crosses) showed strong significance for all the variables under study. The greatest and most desired means for all the examined qualities were in the parent G.94, Pima S6, and tester G.86. The best crossings for the qualities examined were G.86 (G.89 × G.86), G.93 × Suvin, and G.86 × Suvin. The parents' Suvin, G89x G86 and TNB were shown to have the most desired general combining ability effects for seed cotton yield/plant, lint yield/plant, boll weight, number of bolls/plants, and lint index, while Suvin, G.96 and pima S6 were preferred for favored lint percentage. For seed cotton yield, lint percentage, boll weight, and number of bolls per plant per year, the cross-G.86 x (G.89 × G.86) displayed highly significant specific combining ability impacts. The crosses G.86 × Suvin, Kar x TNB, G.93 × Suvin, and G.93 × TNB for all the studied traits for each year and their combined were found to have highly significant positive heterotic effects relative to better parent, and they could be used in future cotton breeding programs for improving the studied traits.
Collapse
Affiliation(s)
- M. S. Abdel-Aty
- Agronomy Department, Faculty of Agriculture, Kafr El-Sheikh University, Kafr el-Sheikh, 33516 Egypt
| | - A Youssef-Soad
- Agronomy Department, Faculty of Agriculture, Kafr El-Sheikh University, Kafr el-Sheikh, 33516 Egypt
| | - W. M. B. Yehia
- Cotton Breeding Department, Cotton Research Institute, Agriculture Research Center, Giza, Egypt
| | - R. T. E. EL-Nawsany
- Cotton Breeding Department, Cotton Research Institute, Agriculture Research Center, Giza, Egypt
| | - H. M. K. Kotb
- Cotton Breeding Department, Cotton Research Institute, Agriculture Research Center, Giza, Egypt
| | - Gamal A. Ahmed
- Plant Pathology Department, Faculty of Agriculture, Moshtohor, Benha University, Banha, Egypt
| | - Mohamed E. Hasan
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Ehab A. A. Salama
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531 Egypt
| | - Sobhi F. Lamlom
- Plant Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531 Egypt
| | - Fouad H. Saleh
- Plant Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531 Egypt
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200 Punjab Pakistan
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531 Egypt
| |
Collapse
|
5
|
Balaganesh P, Vasudevan M, Natarajan N. Evaluating sewage sludge contribution during co-composting using cause-evidence-impact analysis based on morphological characterization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51161-51182. [PMID: 35246793 DOI: 10.1007/s11356-022-19246-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The pertinent challenges associated with effective treatment of fecal sludge in medium scales necessitate alternative means for land application. The methods of compost preparation from sewage sludge and their modes of application to the agricultural fields have profound impacts on the soil ecology and environment. Besides the chemical conditioning effects on soil organic matter, they also impart physical attributes to the soil texture and structure. Though it is expected that compost addition improves water holding capacity and nutrient sequestration, there is lack of clarity in correlating the field outcomes with conditions of excess nutrient storage/leaching despite the agronomic benefits. In this study, we present a systematic cause-evidence-impact relationship on the feedstock composition, processing, and applications of co-composted sewage sludge. Various analytical tools were compared to elucidate the unique characteristics of co-composted sewage sludge to get a realistic understanding of the complex soil-compost interactions. Results from the spectroscopic characterization reveal the implications of selection of bulking agents and sludge pre-treatment in determining the final quality of the compost. Based on the results, we postulate a unique attribution of parent material influence to the formation of well-defined porous structures which influences the nutrient leaching/sequestrating behavior of the soil. Thus, the compounded impacts of composted organic matter on the soil and crop can be proactively determined in terms of elemental composition, functional groups, and stability indices. The present approach provides good scope for customizing the preparations and applications of aerobic microbial composts in order to derive the preferred field outputs.
Collapse
Affiliation(s)
- Pandiyan Balaganesh
- Smart and Healthy Infrastructure Laboratory, Department of Civil Engineering, Bannari Amman Institute of Technology, Tamil Nadu, Sathyamangalam, 638401, India
| | - Mangottiri Vasudevan
- Smart and Healthy Infrastructure Laboratory, Department of Civil Engineering, Bannari Amman Institute of Technology, Tamil Nadu, Sathyamangalam, 638401, India.
| | - Narayanan Natarajan
- Department of Civil Engineering, Dr. Mahalingam College of Engineering and Technology, Tamil Nadu, Pollachi, 642003, India
| |
Collapse
|
6
|
Sabra MA, Alaidaroos BA, Jastaniah SD, Heflish AI, Ghareeb RY, Mackled MI, El-Saadony MT, Abdelsalam NR, Conte-Junior CA. Comparative Effect of Commercially Available Nanoparticles on Soil Bacterial Community and “Botrytis fabae” Caused Brown Spot: In vitro and in vivo Experiment. Front Microbiol 2022. [DOI: 10.3389/fmicb.2022.934031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study revealed the possible effects of various levels of silver nanoparticle (AgNP) application on plant diseases and soil microbial diversity. It investigated the comparison between the application of AgNPs and two commercial nanoproducts (Zn and FeNPs) on the rhizobacterial population and Botrytis fabae. Two experiments were conducted. The first studied the influence of 13 AgNP concentration on soil bacterial diversity besides two other commercial nanoparticles, ZnNPs (2,000 ppm) and FeNPs (2,500 ppm), used for comparison and application on onion seedlings. The second experiment was designed to determine the antifungal activity of previous AgNP concentrations (150, 200, 250, 300, 400, and 500 ppm) against B. fabae, tested using commercial fungicide as control. The results obtained from both experiments revealed the positive impact of AgNPs on the microbial community, representing a decrease in both the soil microbial biomass and the growth of brown spot disease, affecting microbial community composition, including bacteria, fungi, and biological varieties. In contrast, the two commercial products displayed lower effects compared to AgNPs. This result clearly showed that the AgNPs strongly inhibited the plant pathogen B. fabae growth and development, decreasing the number of bacteria (cfu/ml) and reducing the rhizosphere. Using AgNPs as an antimicrobial agent in the agricultural domain is recommended.
Collapse
|
7
|
Qiu C, Xie S, Liu N, Meng K, Wang C, Wang D, Wang S. Removal behavior and chemical speciation distributions of heavy metals in sewage sludge during bioleaching and combined bioleaching/Fenton-like processes. Sci Rep 2021; 11:14879. [PMID: 34290308 PMCID: PMC8295269 DOI: 10.1038/s41598-021-94216-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022] Open
Abstract
The removal and chemical speciation changes of heavy metals in the sewage sludge during the single bioleaching and combined bioleaching/Fenton-like processes were compared in this study. The improvement in the dewaterability of the treated sludge was also investigated. The single bioleaching led to a removal of Zn, Cu, Cd, Cr, Mn, Ni, As and Pb of 67.28%, 50.78%, 64.86%, 6.32%, 56.15%, 49.83%, 20.78% and 10.52% in 10 days, respectively. The chemical speciation analysis showed that the solubilization of heavy metals in mobile forms (exchangeable/acid soluble and reducible forms) and oxidizable form was the main reason for their removal. Subsequent Fenton-like treatment was carried out at different bioleaching stages when the bioleached sludge dropped to certain pH values (4.5, 4.0 and 3.0), by adding H2O2 at different dosages. The highest removal ratio of Zn, Cu, Cd, Cr, Mn and Ni could reach 75.53%, 52.17%, 71.91%, 11.63%, 66.29% and 65.19% after combined bioleaching/Fenton-like process, respectively, with appropriate pH and H2O2 dosages in less than 6 days. The solubilization efficiencies of these heavy metals in mobile forms were further improved by Fenton-like treatment. The removal efficiencies of As and Pb decreased due to their transformation into insoluble forms (mostly residual fraction) after Fenton treatment. The capillary suction times (CST) of the raw sludge (98.7 s) decreased by 79.43% after bioleaching and 87.44% after combined process, respectively.
Collapse
Affiliation(s)
- Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, People's Republic of China.,Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin Chengjian University, No. 26, Jinjing Road, Xiqing District, Tianjin, 300384, People's Republic of China
| | - Shangyu Xie
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, People's Republic of China
| | - Nannan Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, People's Republic of China. .,Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin Chengjian University, No. 26, Jinjing Road, Xiqing District, Tianjin, 300384, People's Republic of China.
| | - Kequan Meng
- CNOOC Ener Tech-Drilling & Production Co., Tianjin, 300452, People's Republic of China
| | - Chenchen Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, People's Republic of China.,Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin Chengjian University, No. 26, Jinjing Road, Xiqing District, Tianjin, 300384, People's Republic of China
| | - Dong Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, People's Republic of China.,Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin Chengjian University, No. 26, Jinjing Road, Xiqing District, Tianjin, 300384, People's Republic of China
| | - Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, People's Republic of China.,Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin Chengjian University, No. 26, Jinjing Road, Xiqing District, Tianjin, 300384, People's Republic of China
| |
Collapse
|
8
|
Mosa WFA, El-Shehawi AM, Mackled MI, Salem MZM, Ghareeb RY, Hafez EE, Behiry SI, Abdelsalam NR. Productivity performance of peach trees, insecticidal and antibacterial bioactivities of leaf extracts as affected by nanofertilizers foliar application. Sci Rep 2021; 11:10205. [PMID: 33986453 PMCID: PMC8119490 DOI: 10.1038/s41598-021-89885-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/04/2021] [Indexed: 02/03/2023] Open
Abstract
The current study was performed on eight years old peach (Prunus persica L. Batsch) trees cv. Florida prince to study the influence of spraying of commercial nano fertilizer on vegetative growth, pollen grain viability, yield, and fruit quality of the "Florida prince" peach cultivar. Furthermore, extracts from the nanofertilizer treated leaves were studied for their bioactivity as insecticidal or bactericidal activities against some stored grain insects and plant bacterial pathogens. Seventy uniform peach trees were sprayed three time as follow: before flowering; during full bloom, and one month later in addition using the water as a control. Commercial silver particales (Ag NPs) at 10, 12.5, and 15 mL/L and zinc particales (Zn NPs) at 2.5, 5 and 7.5 mL/L as recommended level in a randomized complete block design in ten replicates/trees. Spraying Ag NP at 15 mL/L increased shoot diameter, leaf area, total chlorophyll, flower percentage, fruit yield and fruit physical and chemical characteristics, followed by Ag NPs at 12.5 mL/L and Zn NPs at 7.5 mL/L. Moreover, Zn and Ag NPs caused a highly significant effect on pollen viability. Different type of pollen aberrations were detected by Zn NPs treatment. The commercial Ag NPs showed a high increase in pollen viability without any aberrations. The Ag NPs significantly increased the pollen size, and the spores also increased and separated in different localities, searching about the egg for pollination and fertilization. Peach leaves extract was examined for their insecticidal activity against rice weevil (Sitophilus oryzea L.) and the lesser grain borer (Rhyzopertha dominica, Fabricius) by fumigation method. The antibacterial activity of all treatments was also performed against molecularly identified bacteria. Ag NPs treated leaves extract at concentration 3000 µg/mL were moderate sufficient to inhibit all the bacterial isolates with inhibition zone (IZ) ranged 6-8.67 mm with high efficiency of acetone extracts from leaves treated with Ag NPs compared with Zn NPs. Also, S. oryzae was more susceptible to acetone extracts from leaves treated with both nanomaterials than R. dominica.
Collapse
Affiliation(s)
- Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt.
| | - Ahmed M El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Marwa I Mackled
- Department of Stored Product Pests, Plant Protection Institute, Agriculture Research Center (ARC), Sabahia, Alexandria, Egypt
| | - Mohamed Z M Salem
- Forestry and Wood Technology Department, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria, Egypt
| | - Rehab Y Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab, Alexandria, 21934, Egypt
| | - Elsayed E Hafez
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab, Alexandria, 21934, Egypt
| | - Said I Behiry
- Agricultural Botany Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Nader R Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt.
| |
Collapse
|