1
|
Duan N, Hua Y, Yan X, He Y, Zeng T, Gong J, Fu Z, Li W, Yin Y. An Imbalance in Histone Modifiers Induces tRNA-Cys-GCA Overexpression and tRF-27 Accumulation by Attenuating Promoter H3K27me3 in Primary Trastuzumab-Resistant Breast Cancer. Cancers (Basel) 2024; 16:1118. [PMID: 38539453 PMCID: PMC10968641 DOI: 10.3390/cancers16061118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 11/11/2024] Open
Abstract
tRNA-derived fragments (tRFs) play crucial roles in cancer progression. Among them, tRF-27 has been identified as a key factor in promoting naïve trastuzumab resistance in HER2-positive breast cancer. However, the origin of tRF-27 remains uncertain. In this study, we propose that the upregulated expression of specific cysteine tRNAs may lead to the increased accumulation of tRF-27 in trastuzumab-resistant JIMT1 cells. Mechanistically, the reduced inhibitory H3K27me3 modification at the promoter regions of tRF-27-related tRNA genes in JIMT1 cells, potentially resulting from decreased EZH2 and increased KDM6A activity, may be a critical factor stimulating the transcriptional activity of these tRNA genes. Our research offers fresh insights into the mechanisms underlying elevated tRF-27 levels in trastuzumab-resistant breast cancer cells and suggests potential strategies to mitigate trastuzumab resistance in clinical treatments.
Collapse
Affiliation(s)
- Ningjun Duan
- Department of Oncology, First Affiliation Hospital of Nanjing Medical University, Nanjing 210029, China; (Y.H.); (X.Y.); (Y.H.); (T.Z.); (J.G.); (Z.F.); (W.L.)
| | | | | | | | | | | | | | | | - Yongmei Yin
- Department of Oncology, First Affiliation Hospital of Nanjing Medical University, Nanjing 210029, China; (Y.H.); (X.Y.); (Y.H.); (T.Z.); (J.G.); (Z.F.); (W.L.)
| |
Collapse
|
2
|
Mancera-Ortiz IY, Chen J, Slade TA, Yao X, Zhang S, Day CS, Bierbach U. Development of Prodrug-Payloads for Targeted Therapeutic Applications of Platinum-Acridine Anticancer Agents. Bioconjug Chem 2023; 34:1873-1881. [PMID: 37813818 DOI: 10.1021/acs.bioconjchem.3c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
A synthetic platform has been developed that provides access to platinum(IV) prodrugs of highly cytotoxic platinum-acridine anticancer agents and allows them to be incorporated into conjugation-ready prodrug-payloads (PPLs). The PPLs can be conveniently assembled in highly efficient microscale reactions utilizing strain-promoted azide-alkyne cycloaddition chemistry. Model reactions were performed to study the stability of the PPLs in buffers and media and to assess their compatibility with cysteine-maleimide Michael addition chemistry. Amide coupling was a successful strategy to generate a conjugate containing integrin-targeted cyclo[RGDfK] peptide. Reactions with ascorbate were performed to mimic the reductive activation of the PPLs and the latter conjugate, and a cyanine (Cy5) fluorophore-labeled PPL was used to probe the reduction of platinum(IV) in cancer cells by confocal microscopy. The PPL concept introduced here should be evaluated for treating solid tumors with PAs using cancer-targeting vehicles, such as antibody-drug conjugates.
Collapse
Affiliation(s)
- Ikeer Y Mancera-Ortiz
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Jiangxue Chen
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Tyler A Slade
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Xiyuan Yao
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Shenjie Zhang
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Cynthia S Day
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Ulrich Bierbach
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| |
Collapse
|
3
|
Batara DC, Park SW, Kim HJ, Choi SY, Ohn T, Choi MC, Park SI, Kim SH. Targeting the multidrug and toxin extrusion 1 gene (SLC47A1) sensitizes glioma stem cells to temozolomide. Am J Cancer Res 2023; 13:4021-4038. [PMID: 37818053 PMCID: PMC10560943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/08/2023] [Indexed: 10/12/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor, with an extremely poor prognosis due to resistance to standard-of-care treatments. Strong evidence suggests that the small population of glioma stem cells (GSCs) contributes to the aggressiveness of GBM. One of the mechanisms that promote GSC progression is the dysregulation of membrane transporters, which mediate the influx and efflux of substances to maintain cellular homeostasis. Here, we investigated the role of multidrug and toxin extrusion transporter gene SLC47A1 in GSCs. Results show that SLC47A1 is highly expressed in GSCs compared to non-stem cell glioma cells, and non-tumor cells. Additionally, in-silico analysis of public datasets showed that high SLC47A1 expression is linked to malignancy and a poor prognosis in glioma patients. Further, SLC47A1 expression is correlated with important biological processes and signaling pathways that support tumor growth. Meanwhile, silencing SLC47A1 by short-hairpin RNA (shRNA) influenced cell viability and self-renewal activity in GSCs. Interestingly, SLC47A1 shRNA knockdown or pharmacological inhibition potentiates the effect of temozolomide (TMZ) in GSC cells. The findings suggest that SLC47A1 could serve as a useful therapeutic target for gliomas.
Collapse
Affiliation(s)
- Don Carlo Batara
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National UniversityGwangju 61186, South Korea
| | - Sang Wook Park
- Deprtment of Landscape Architecture, Chonnam National UniversityGwangju 61186, South Korea
| | - Hyun-Jin Kim
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National UniversityGwangju 61186, South Korea
| | - Su-Young Choi
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National UniversityGwangju 61186, South Korea
- Central R&D Center, B&Tech Co., Ltd.Naju 58205, South Korea
| | - Takbum Ohn
- Department of Cellular & Molecular Medicine, College of Medicine, Chosun UniversityGwangju 61452, South Korea
| | - Moon-Chang Choi
- Department of Biomedical Science, Chosun UniversityGwangju 61452, South Korea
| | - Sang-Ik Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National UniversityGwangju 61186, South Korea
| | - Sung-Hak Kim
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National UniversityGwangju 61186, South Korea
| |
Collapse
|
4
|
Zhang S, Wu H, Day CS, Bierbach U. Platinum-Acridine Agents with High Activity in Cancers Expressing the Solute Carrier MATE1 ( SLC47A1). ACS Med Chem Lett 2023; 14:1122-1128. [PMID: 37583829 PMCID: PMC10424322 DOI: 10.1021/acsmedchemlett.3c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023] Open
Abstract
Platinum-acridine anticancer agents (PAs) containing acyclic (1 and 3) and heterocyclic (R)-3-aminopiperidine (2) and 2-iminopyrrolidine (4) based linker moieties were studied. Similar to 1, rigidified 2 shows a strong positive correlation between potency and SLC47A1 (multidrug and toxin extrusion protein 1, MATE1) gene expression levels across the NCI-60 panel of cancer cell lines. All derivatives show nanomolar activity in HepG2 (liver), NCI-H460 (lung), and MDA-MB-436 (breast), which express high levels of SLC47A1 (Cancer Cell Line Encyclopedia, CCLE). The PAs are up to 350-fold more potent than cisplatin. In a MATE1 inhibition assay, a significant reduction in activity is observed in the three cancer cell lines (4000-fold lower for HepG2). Molecular docking experiments provide insight into the compatibility of the structurally diverse set of PAs with MATE1-mediated transport. MATE1 is a predictive marker and actionable target that sensitizes cancer cells regardless of the tissue of origin to PAs.
Collapse
Affiliation(s)
- Shenjie Zhang
- Department
of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Haoqing Wu
- Department
of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Cynthia S. Day
- Department
of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Ulrich Bierbach
- Department
of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| |
Collapse
|
5
|
Huang W, Yang F, Zhang Y, Fang Q, Lai Y, Lan Y. A Newly Established Cuproptosis-Related Gene Signature for Predicting Prognosis and Immune Infiltration in Uveal Melanoma. Int J Mol Sci 2023; 24:11358. [PMID: 37511120 PMCID: PMC10379443 DOI: 10.3390/ijms241411358] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Uveal melanoma (UVM) is the most common primary ocular malignancy in adults and involves several types of regulated cell death. Cuproptosis is a novel method of regulating cell death by binding lipoylated TCA cycle proteins. There is still no research on the relationship between cuproptosis-related genes (CRGs) and UVM. Here, we aimed to develop a prognostic CRG signature for UVM. After a prognostic CRG signature was constructed, we determined the relationship between the signature and immune infiltration, bioinformatics analysis and experimental validation. Finally, a prognostic cuproptosis-related three-gene (CRTG) signature was constructed, which comprised ORAI2, ACADSB and SLC47A1. The risk score of the CRTG signature was negatively correlated with the overall survival (OS) and progression-free survival (PFS) of patients, which revealed strong predictive ability and its independent prognostic value. In addition, we found that the risk score was negative for chromosomes 3 and 6p, and positive for 8q, and high-risk UVM patients showed an increase in protumor immune infiltrates and a high expression of immune checkpoints. Finally, experimental validation verified that the migratory ability of MUM-2B cells was suppressed by the knockdown of the identified genes in vitro. We constructed a CRTG signature that is helpful in predicting prognosis and guiding treatment for patients with UVM.
Collapse
Affiliation(s)
- Wei Huang
- Department of Ophthalmology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (W.H.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Fan Yang
- Department of Ophthalmology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (W.H.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yichi Zhang
- Department of Ophthalmology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (W.H.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qianqi Fang
- Department of Ophthalmology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (W.H.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yitao Lai
- Department of Ophthalmology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (W.H.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yuqing Lan
- Department of Ophthalmology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (W.H.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
6
|
Hong EP, Kim BJ, Youn DH, Lee JJ, Jeon HJ, Choi HJ, Cho YJ, Jeon JP. Updated Genome-Wide Association Study of Intracranial Aneurysms by Genotype Correction and Imputation in Koreans. World Neurosurg 2022; 166:e109-e117. [PMID: 35792225 DOI: 10.1016/j.wneu.2022.06.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Compared to European, Japanese, and Chinese populations, genetic studies on intracranial aneurysms (IAs) in Koreans are lacking. We conducted an updated genome-wide association study (GWAS) to more accurately identify candidate variations predicting IA by genotype correction and imputation than in the first Korean GWAS. METHODS We performed a high-throughput imputation of single-nucleotide polymorphisms (SNPs) and genotype missing values for 250 IA and 296 controls. Out of a total of 7,333,746 sites with an imputation R2 score of ≥0.5, 6,105,212 SNPs were analyzed. A high-throughput GWAS was performed after adjusting for clinical variables and 4 principal component analysis values. RESULTS A total of 39 SNPs reached a significant genome-wide threshold (P < 5 × 10-8). After pruning by pairwise linkage disequilibrium (r2 < 0.8), 11 SNPs were consistently associated with IA. Six tagging SNPs, including rs3120004, rs1851347, rs1522095, rs7779989, rs12935558, rs3826442, and rs2440154, showed strong linkage disequilibrium tower tagging haplotype structures. Among them, rs3120004 tagged a large and strong haplotype structure between LOC440704 and RGS18 genes in 1q31.2 (odds ratio, 2.34; 95% confidence interval, 1.74-3.14; P = 1.4 × 10-8). The rs2440154 (SLC47A1, 17p11.2) SNP increased the risk of IA most significantly (odds ratio, 2.90; 95% confidence interval, 2.07-4.08; P = 8.2 × 10-10). The region encompassing rs3826442 (MYH13, 17p13.1) showed a high recombination rate of approximately 70 cM/Mbp. CONCLUSIONS Our updated GWAS using high-throughput imputation approaches can be an informative milestone in understanding IA formation via susceptibility loci in this stage before large-scale genome-wide association meta-analysis.
Collapse
Affiliation(s)
- Eun Pyo Hong
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Bong Jun Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Jae Jun Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Hong Jun Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Hyuk Jai Choi
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Yong Jun Cho
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Republic of Korea.
| | | |
Collapse
|
7
|
Wu H, Bierbach U. Chemosensitivity-Gene Expression Correlations and Functional Enrichment Analysis Provide Insight into the Mechanism of Action of a Platinum-Acridine Anticancer Agent. ChemMedChem 2022; 17:e202200331. [PMID: 35902361 DOI: 10.1002/cmdc.202200331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/28/2022] [Indexed: 11/07/2022]
Abstract
NCI-60 growth inhibition and gene expression profiles were analyzed using Pearson correlation and functional enrichment computational tools to demonstrate critical mechanistic differences between a nucleolus-targeting platinum-acridine anticancer agent (PA) and other DNA-directed chemotherapies. The results support prior experimental data and are consistent with DNA being a major target of the hybrid agent based on the negative correlations observed between its potency and expression levels of genes implicated in DNA double-strand break (DSB) repair. Gene ontology terms related to RNA processing, including ribosome biogenesis, are also negatively enriched, suggesting a mechanism by which these processes render cancer cells more resistant to the highly cytotoxic agent. The opposite trend is observed for oxaliplatin and other DNA-targeted drugs. Significant functional interactions exist between genes/gene products involved in ribosome biogenesis and DSB repair, including the ribosomal protein (RPL5)-MDM2-p53 surveillance pathway, as a response to the nucleolar stress produced by PAs.
Collapse
Affiliation(s)
- Haoqing Wu
- Wake Forest University, Chemistry, UNITED STATES
| | - Ulrich Bierbach
- Wake Forest University, Chemistry, 1834 Wake Forest Rd, 27109, Winston-Salem, UNITED STATES
| |
Collapse
|
8
|
Synthesis, structural characterization and in vitro cytotoxic evaluation of mixed Cu(II)/Co(II) levofloxacin–bipyridyl complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Yao X, Bierbach U. DNA Adduct Detection after Post-Labeling Technique with PCR Amplification (DNA-ADAPT-qPCR) Identifies the Pre-Ribosomal RNA Gene as a Direct Target of Platinum-Acridine Anticancer Agents. Chemistry 2021; 27:14681-14689. [PMID: 34375484 DOI: 10.1002/chem.202102263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 11/08/2022]
Abstract
To study the DNA damage caused by a potent platinum-acridine anticancer agent (PA) in cancer cells, an assay based on biorthogonal post-labeling using a click chemistry-enabled, azide-modified derivative (APA) was developed. The method involves biotinylation, affinity capture, and bead-based enrichment of APA-modified genomic DNA. The key steps of the assay were validated and optimized in model duplexes, including full-length plasmids, restriction fragments, and a DNA ladder. Native DNA treated with APA and subsequently subjected to post-labeling with a biotin affinity tag was enzymatically digested and fragments were analyzed by in-line LC-MS and MS/MS. The monofunctional-intercalative adducts formed by APA in 5´-pyrimidine/guanine sequences in double-stranded DNA are quantitatively biotinylated by strain-promoted 1,3-dipolar cycloaddition chemistry. When applied to DNA extracted from A549 lung cancer cells, the assay in combination with qPCR amplification demonstrates that platinum-acridines form adducts in the gene sequences encoding pre-ribosomal RNA, a potential pharmacological target of these agents.
Collapse
Affiliation(s)
- Xiyuan Yao
- Wake Forest University, Chemistry, UNITED STATES
| | - Ulrich Bierbach
- Wake Forest University, Chemistry, 1834 Wake Forest Rd, 27109, Winston-Salem, UNITED STATES
| |
Collapse
|
10
|
Ding S, Hackett CL, Liu F, Hackett RG, Bierbach U. Evaluation of a Platinum-Acridine Anticancer Agent and Its Liposomal Formulation in an in vivo Model of Lung Adenocarcinoma. ChemMedChem 2021; 16:412-419. [PMID: 32975041 PMCID: PMC8057267 DOI: 10.1002/cmdc.202000637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Indexed: 12/23/2022]
Abstract
Liposomal formulations have been developed for a highly cytotoxic platinum-acridine agent, [PtCl(pn)(C18 H21 N4 )](NO3 )2 (PA, pn=propane-1,3-diamine), and fully characterized. Nanoliposomes consisting of hydrogenated soybean phosphatidylcholine (HSPC), 1,2-dihexadecanoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG), and polyethylene glycol-2000-distearoylphosphatidylethanolamine (DSPE-mPEG2k ) were able to stably encapsulate PA at payload-to-lipid ratios of 2-20 %. The fusogenic properties of the liposomes promote efficient cellular uptake of PA across the plasma membrane, which results in vesicular transport of payload to the nucleus in cultured lung cancer cells. Unencapsulated PA and one of the newly designed liposomal formulations show promising tumor growth inhibition in tumor xenografts derived from A549 lung adenocarcinoma cells of 76 % and 72 %, respectively. Cisplatin showed no significant efficacy at a 10-fold higher dose. These findings underscore the utility of platinum-acridine agents for treating aggressive, chemoresistant forms of cancer and validate nanoliposomes as a biocompatible, expandable platform for their intravenous delivery and other potential routes of administration.
Collapse
Affiliation(s)
- Song Ding
- Department of Chemistry, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC, 27109, USA
| | - Christopher L Hackett
- Department of Chemistry, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC, 27109, USA
| | - Fang Liu
- Department of Chemistry, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC, 27109, USA
| | - Ryan G Hackett
- Department of Chemistry, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC, 27109, USA
| | - Ulrich Bierbach
- Department of Chemistry, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC, 27109, USA
- Department of Chemistry - Wake Downtown, Wake Forest Innovation Quarter, Wake Forest University, 455 Vine Street, Winston-Salem, NC, 27101, USA
| |
Collapse
|