1
|
Mayo KH. Heterologous Interactions with Galectins and Chemokines and Their Functional Consequences. Int J Mol Sci 2023; 24:14083. [PMID: 37762385 PMCID: PMC10531749 DOI: 10.3390/ijms241814083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Extra- and intra-cellular activity occurs under the direction of numerous inter-molecular interactions, and in any tissue or cell, molecules are densely packed, thus promoting those molecular interactions. Galectins and chemokines, the focus of this review, are small, protein effector molecules that mediate various cellular functions-in particular, cell adhesion and migration-as well as cell signaling/activation. In the past, researchers have reported that combinations of these (and other) effector molecules act separately, yet sometimes in concert, but nevertheless physically apart and via their individual cell receptors. This view that each effector molecule functions independently of the other limits our thinking about functional versatility and cooperation, and, in turn, ignores the prospect of physiologically important inter-molecular interactions, especially when both molecules are present or co-expressed in the same cellular environment. This review is focused on such protein-protein interactions with chemokines and galectins, the homo- and hetero-oligomeric structures that they can form, and the functional consequences of those paired interactions.
Collapse
Affiliation(s)
- Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Toiber-Estrella AL, Quintero-Martínez A, Rodríguez-Romero A, Riveros-Rosas H, Hernández-Santoyo A. Structural and evolutionary insights into the multidomain galectin from the red abalone Haliotis rufescens with specificity for sulfated glycans. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1264-1274. [PMID: 36400370 DOI: 10.1016/j.fsi.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Galectins are an evolutionarily ancient family of lectins characterized by their affinity for β-galactosides and a conserved binding site in the carbohydrate recognition domain (CRD). These lectins are involved in multiple physiological functions, including the recognition of glycans on the surface of viruses and bacteria. This feature supports their role in innate immune responses in marine mollusks. Here, we identified and characterized a galectin, from the mollusk Haliotis rufescens (named HrGal), with four CRDs that belong to the tandem-repeat type. HrGal was purified by affinity chromatography in a galactose-agarose resin and exhibited a molecular mass of 64.11 kDa determined by MALDI-TOF mass spectrometry. The identity of HrGal was verified by sequencing, confirming that it is a 555 amino acid protein with a mass of 63.86 kDa. This protein corresponds to a galectin reported in GenBank with accession number AHX26603. HrGal is stable in the presence of urea, reducing agents, and ions such as Cu2+ and Zn2+. The recombinant galectin (rHrGal) was purified from inclusion bodies in the presence of these ions. A theoretical model obtained with the AlphaFold server exhibits four non-identical CRDs, with a β sandwich folding and the representative motifs for binding β-galactosides. This allows us to classify HrGal within the tandem repeat galectin family. On the basis of a phylogenetic analysis, we found that the mollusk sequences form a monophyletic group of tetradomain galectins unrelated to vertebrate galectins. HrGal showed specificity for galactosides and glucosides but only the sulfated sugars heparin and ι-carrageenan inhibited its hemagglutinating activity with a minimum inhibitory concentration of 4 mM and 6.25 X 10-5% respectively. The position of the sulfate groups seemed crucial for binding, both by carrageenans and heparin.
Collapse
Affiliation(s)
| | - Adrián Quintero-Martínez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Coyoacán, 04510, Mexico
| | - Adela Rodríguez-Romero
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Coyoacán, 04510, Mexico
| | - Héctor Riveros-Rosas
- Depto. Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Coyoacán, 04510, Mexico
| | | |
Collapse
|
3
|
Gabius H, Cudic M, Diercks T, Kaltner H, Kopitz J, Mayo KH, Murphy PV, Oscarson S, Roy R, Schedlbauer A, Toegel S, Romero A. What is the Sugar Code? Chembiochem 2022; 23:e202100327. [PMID: 34496130 PMCID: PMC8901795 DOI: 10.1002/cbic.202100327] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Indexed: 12/18/2022]
Abstract
A code is defined by the nature of the symbols, which are used to generate information-storing combinations (e. g. oligo- and polymers). Like nucleic acids and proteins, oligo- and polysaccharides are ubiquitous, and they are a biochemical platform for establishing molecular messages. Of note, the letters of the sugar code system (third alphabet of life) excel in coding capacity by making an unsurpassed versatility for isomer (code word) formation possible by variability in anomery and linkage position of the glycosidic bond, ring size and branching. The enzymatic machinery for glycan biosynthesis (writers) realizes this enormous potential for building a large vocabulary. It includes possibilities for dynamic editing/erasing as known from nucleic acids and proteins. Matching the glycome diversity, a large panel of sugar receptors (lectins) has developed based on more than a dozen folds. Lectins 'read' the glycan-encoded information. Hydrogen/coordination bonding and ionic pairing together with stacking and C-H/π-interactions as well as modes of spatial glycan presentation underlie the selectivity and specificity of glycan-lectin recognition. Modular design of lectins together with glycan display and the nature of the cognate glycoconjugate account for the large number of post-binding events. They give an entry to the glycan vocabulary its functional, often context-dependent meaning(s), hereby building the dictionary of the sugar code.
Collapse
Affiliation(s)
- Hans‐Joachim Gabius
- Institute of Physiological ChemistryFaculty of Veterinary MedicineLudwig-Maximilians-University MunichVeterinärstr. 1380539MunichGermany
| | - Maré Cudic
- Department of Chemistry and BiochemistryCharles E. Schmidt College of ScienceFlorida Atlantic University777 Glades RoadBoca RatonFlorida33431USA
| | - Tammo Diercks
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Bizkaia Technology Park, Building 801 A48160DerioBizkaiaSpain
| | - Herbert Kaltner
- Institute of Physiological ChemistryFaculty of Veterinary MedicineLudwig-Maximilians-University MunichVeterinärstr. 1380539MunichGermany
| | - Jürgen Kopitz
- Institute of PathologyDepartment of Applied Tumor BiologyFaculty of MedicineRuprecht-Karls-University HeidelbergIm Neuenheimer Feld 22469120HeidelbergGermany
| | - Kevin H. Mayo
- Department of BiochemistryMolecular Biology & BiophysicsUniversity of MinnesotaMinneapolisMN 55455USA
| | - Paul V. Murphy
- CÚRAM – SFI Research Centre for Medical Devices and theSchool of ChemistryNational University of Ireland GalwayUniversity RoadGalwayH91 TK33Ireland
| | - Stefan Oscarson
- Centre for Synthesis and Chemical BiologyUniversity College DublinBelfieldDublin 4Ireland
| | - René Roy
- Département de Chimie et BiochimieUniversité du Québec à MontréalCase Postale 888Succ. Centre-Ville MontréalQuébecH3C 3P8Canada
| | - Andreas Schedlbauer
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Bizkaia Technology Park, Building 801 A48160DerioBizkaiaSpain
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
| | - Antonio Romero
- Department of Structural and Chemical BiologyCIB Margarita Salas, CSICRamiro de Maeztu 928040MadridSpain
| |
Collapse
|
4
|
Raics M, Balogh ÁK, Kishor C, Timári I, Medrano FJ, Romero A, Go RM, Blanchard H, Szilágyi L, E. Kövér K, Fehér K. Investigation of the Molecular Details of the Interactions of Selenoglycosides and Human Galectin-3. Int J Mol Sci 2022; 23:2494. [PMID: 35269646 PMCID: PMC8910297 DOI: 10.3390/ijms23052494] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/19/2022] Open
Abstract
Human galectin-3 (hGal-3) is involved in a variety of biological processes and is implicated in wide range of diseases. As a result, targeting hGal-3 for clinical applications has become an intense area of research. As a step towards the development of novel hGal-3 inhibitors, we describe a study of the binding of two Se-containing hGal-3 inhibitors, specifically that of di(β-D-galactopyranosyl)selenide (SeDG), in which two galactose rings are linked by one Se atom and a di(β-D-galactopyranosyl)diselenide (DSeDG) analogue with a diseleno bond between the two sugar units. The binding affinities of these derivatives to hGal-3 were determined by 15N-1H HSQC NMR spectroscopy and fluorescence anisotropy titrations in solution, indicating a slight decrease in the strength of interaction for SeDG compared to thiodigalactoside (TDG), a well-known inhibitor of hGal-3, while DSeDG displayed a much weaker interaction strength. NMR and FA measurements showed that both seleno derivatives bind to the canonical S face site of hGal-3 and stack against the conserved W181 residue also confirmed by X-ray crystallography, revealing canonical properties of the interaction. The interaction with DSeDG revealed two distinct binding modes in the crystal structure which are in fast exchange on the NMR time scale in solution, explaining a weaker interaction with hGal-3 than SeDG. Using molecular dynamics simulations, we have found that energetic contributions to the binding enthalpies mainly differ in the electrostatic interactions and in polar solvation terms and are responsible for weaker binding of DSeDG compared to SeDG. Selenium-containing carbohydrate inhibitors of hGal-3 showing canonical binding modes offer the potential of becoming novel hydrolytically stable scaffolds for a new class of hGal-3 inhibitors.
Collapse
Affiliation(s)
- Mária Raics
- Molecular Recognition and Interaction Research Group, Hungarian Academy of Sciences, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.R.); (Á.K.B.)
| | - Álex Kálmán Balogh
- Molecular Recognition and Interaction Research Group, Hungarian Academy of Sciences, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.R.); (Á.K.B.)
| | - Chandan Kishor
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia;
| | - István Timári
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (I.T.); (L.S.)
| | - Francisco J. Medrano
- Structural and Chemical Biology, Centro de Investigaciones Biolόgicas, Margarita Salas, CSIC Ramiro de Maeztu 9, 28040 Madrid, Spain; (F.J.M.); (A.R.)
| | - Antonio Romero
- Structural and Chemical Biology, Centro de Investigaciones Biolόgicas, Margarita Salas, CSIC Ramiro de Maeztu 9, 28040 Madrid, Spain; (F.J.M.); (A.R.)
| | - Rob Marc Go
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Helen Blanchard
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia;
| | - László Szilágyi
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (I.T.); (L.S.)
| | - Katalin E. Kövér
- Molecular Recognition and Interaction Research Group, Hungarian Academy of Sciences, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.R.); (Á.K.B.)
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Krisztina Fehér
- Molecular Recognition and Interaction Research Group, Hungarian Academy of Sciences, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.R.); (Á.K.B.)
| |
Collapse
|
5
|
Structural Characterization of Rat Galectin-5, an N-Tailed Monomeric Proto-Type-like Galectin. Biomolecules 2021; 11:biom11121854. [PMID: 34944498 PMCID: PMC8699261 DOI: 10.3390/biom11121854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
Galectins are multi-purpose effectors acting via interactions with distinct counterreceptors based on protein-glycan/protein recognition. These processes are emerging to involve several regions on the protein so that the availability of a detailed structural characterization of a full-length galectin is essential. We report here the first crystallographic information on the N-terminal extension of the carbohydrate recognition domain of rat galectin-5, which is precisely described as an N-tailed proto-type-like galectin. In the ligand-free protein, the three amino-acid stretch from Ser2 to Ser5 is revealed to form an extra β-strand (F0), and the residues from Thr6 to Asn12 are part of a loop protruding from strands S1 and F0. In the ligand-bound structure, amino acids Ser2–Tyr10 switch position and are aligned to the edge of the β-sandwich. Interestingly, the signal profile in our glycan array screening shows the sugar-binding site to preferentially accommodate the histo-blood-group B (type 2) tetrasaccharide and N-acetyllactosamine-based di- and oligomers. The crystal structures revealed the characteristically preformed structural organization around the central Trp77 of the CRD with involvement of the sequence signature’s amino acids in binding. Ligand binding was also characterized calorimetrically. The presented data shows that the N-terminal extension can adopt an ordered structure and shapes the hypothesis that a ligand-induced shift in the equilibrium between flexible and ordered conformers potentially acts as a molecular switch, enabling new contacts in this region.
Collapse
|
6
|
Galectin network in osteoarthritis: galectin-4 programs a pathogenic signature of gene and effector expression in human chondrocytes in vitro. Histochem Cell Biol 2021; 157:139-151. [PMID: 34846578 PMCID: PMC8847242 DOI: 10.1007/s00418-021-02053-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 02/06/2023]
Abstract
Galectin-4 (Gal-4) is a member of the galectin family, which have been identified as galactose-binding proteins. Gal-4 possesses two tandem repeat carbohydrate recognition domains and acts as a cross-linking bridge in sulfatide-dependent glycoprotein routing. We herein document its upregulation in osteoarthritis (OA) in correlation with the extent of cartilage degradation in vivo. Primary human OA chondrocytes in vitro respond to carbohydrate-inhibitable Gal-4 binding with the upregulation of pro-degradative/-inflammatory proteins such as interleukin-1β (IL-1β) and matrix metalloproteinase-13 (MMP-13), as documented by RT-qPCR-based mRNA profiling and transcriptome data processing. Activation of p65 by phosphorylation of Ser536 within the NF-κB pathway and the effect of three p65 inhibitors on Gal-4 activity support downstream involvement of such signaling. In 3D (pellet) cultures, Gal-4 presence causes morphological and biochemical signs of degradation. Taken together, our findings strongly support the concept of galectins acting as a network in OA pathogenesis and suggest that blocking their activity in disease progression may become clinically relevant in the future.
Collapse
|
7
|
The marriage of chemokines and galectins as functional heterodimers. Cell Mol Life Sci 2021; 78:8073-8095. [PMID: 34767039 PMCID: PMC8629806 DOI: 10.1007/s00018-021-04010-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/05/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022]
Abstract
Trafficking of leukocytes and their local activity profile are of pivotal importance for many (patho)physiological processes. Fittingly, microenvironments are complex by nature, with multiple mediators originating from diverse cell types and playing roles in an intimately regulated manner. To dissect aspects of this complexity, effectors are initially identified and structurally characterized, thus prompting familial classification and establishing foci of research activity. In this regard, chemokines present themselves as role models to illustrate the diversification and fine-tuning of inflammatory processes. This in turn discloses the interplay among chemokines, their cell receptors and cognate glycosaminoglycans, as well as their capacity to engage in new molecular interactions that form hetero-oligomers between themselves and other classes of effector molecules. The growing realization of versatility of adhesion/growth-regulatory galectins that bind to glycans and proteins and their presence at sites of inflammation led to testing the hypothesis that chemokines and galectins can interact with each other by protein-protein interactions. In this review, we present some background on chemokines and galectins, as well as experimental validation of this chemokine-galectin heterodimer concept exemplified with CXCL12 and galectin-3 as proof-of-principle, as well as sketch out some emerging perspectives in this arena.
Collapse
|
8
|
Chhabra M, Doherty GG, See NW, Gandhi NS, Ferro V. From Cancer to COVID-19: A Perspective on Targeting Heparan Sulfate-Protein Interactions. CHEM REC 2021; 21:3087-3101. [PMID: 34145723 PMCID: PMC8441866 DOI: 10.1002/tcr.202100125] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/01/2021] [Indexed: 12/16/2022]
Abstract
Heparan sulfate (HS) is a complex, polyanionic polysaccharide ubiquitously expressed on cell surfaces and in the extracellular matrix. HS interacts with numerous proteins to mediate a vast array of biological and pathological processes. Inhibition of HS-protein interactions is thus an attractive approach for new therapeutic development for cancer and infectious diseases, including COVID-19; however, synthesis of well-defined native HS oligosaccharides remains challenging. This has aroused significant interest in the development of HS mimetics which are more synthetically tractable and have fewer side effects, such as undesired anticoagulant activity. This account provides a perspective on the design and synthesis of different classes of HS mimetics with useful properties, and the development of various assays and molecular modelling tools to progress our understanding of their interactions with HS-binding proteins.
Collapse
Affiliation(s)
- Mohit Chhabra
- School of Chemistry and Molecular BiosciencesThe University of Queensland4072BrisbaneQLDAustralia
| | - Gareth G. Doherty
- School of Chemistry and Molecular BiosciencesThe University of Queensland4072BrisbaneQLDAustralia
| | - Nicholas W. See
- School of Chemistry and Molecular BiosciencesThe University of Queensland4072BrisbaneQLDAustralia
| | - Neha S. Gandhi
- School of Chemistry and PhysicsQueensland University of Technology4000BrisbaneQLDAustralia
| | - Vito Ferro
- School of Chemistry and Molecular BiosciencesThe University of Queensland4072BrisbaneQLDAustralia
| |
Collapse
|
9
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
10
|
Glycans in autophagy, endocytosis and lysosomal functions. Glycoconj J 2021; 38:625-647. [PMID: 34390447 PMCID: PMC8497297 DOI: 10.1007/s10719-021-10007-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Glycans have been shown to function as versatile molecular signals in cells. This prompted us to look at their roles in endocytosis, endolysosomal system and autophagy. We start by introducing the cell biological aspects of these pathways, the concept of the sugar code, and provide an overview on the role of glycans in the targeting of lysosomal proteins and in lysosomal functions. Moreover, we review evidence on the regulation of endocytosis and autophagy by glycans. Finally, we discuss the emerging concept that cytosolic exposure of luminal glycans, and their detection by endogenous lectins, provides a mechanism for the surveillance of the integrity of the endolysosomal compartments, and serves their eventual repair or disposal.
Collapse
|
11
|
Núñez-Franco R, Peccati F, Jiménez-Osés G. A Computational Perspective on Molecular Recognition by Galectins. Curr Med Chem 2021; 29:1219-1231. [PMID: 34348610 DOI: 10.2174/0929867328666210804093058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
This article presents an overview of recent computational studies dedicated to the analysis of binding between galectins and small-molecule ligands. We first present a summary of the most popular simulation techniques adopted for calculating binding poses and binding energies, and then discuss relevant examples reported in the literature for the three main classes of galectins (dimeric, tandem and chimera). We show that simulation of galectin-ligand interactions is a mature field which has proven invaluable for completing and unraveling experimental observations. Future perspectives to further improve the accuracy and cost-effectiveness of existing computational approaches will involve the development of new schemes to account for solvation and entropy effects, which represent the main current limitations to the accuracy of computational results.
Collapse
Affiliation(s)
- Reyes Núñez-Franco
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio. Spain
| | - Francesca Peccati
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio. Spain
| | - Gonzalo Jiménez-Osés
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio. Spain
| |
Collapse
|
12
|
Habermann FA, Kaltner H, Higuero AM, García Caballero G, Ludwig AK, C. Manning J, Abad-Rodríguez J, Gabius HJ. What Cyto- and Histochemistry Can Do to Crack the Sugar Code. Acta Histochem Cytochem 2021; 54:31-48. [PMID: 34012175 PMCID: PMC8116616 DOI: 10.1267/ahc.21-00017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
As letters form the vocabulary of a language, biochemical 'symbols' (the building blocks of oligo- and polymers) make writing molecular messages possible. Compared to nucleotides and amino acids, sugars have chemical properties that facilitate to reach an unsurpassed level of oligomer diversity. These glycans are a part of the ubiquitous cellular glycoconjugates. Cyto- and histochemically, the glycans' structural complexity is mapped by glycophenotyping of cells and tissues using receptors ('readers', thus called lectins), hereby revealing its dynamic spatiotemporal regulation: these data support the concept of a sugar code. When proceeding from work with plant (haem)agglutinins as such tools to the discovery of endogenous (tissue) lectins, it became clear that a broad panel of biological meanings can indeed be derived from the sugar-based vocabulary (the natural glycome incl. post-synthetic modifications) by glycan-lectin recognition in situ. As consequence, the immunocyto- and histochemical analysis of lectin expression is building a solid basis for the steps toward tracking down functional correlations, for example in processes leading to cell adhesion, apoptosis, autophagy or growth regulation as well as targeted delivery of glycoproteins. Introduction of labeled tissue lectins to glycan profiling assists this endeavor by detecting counterreceptor(s) in situ. Combining these tools and their applications strategically will help to take the trip toward the following long-range aim: to compile a dictionary for the glycan vocabulary that translates each message (oligosaccharide) into its bioresponse(s), that is to crack the sugar code.
Collapse
Affiliation(s)
- Felix A. Habermann
- Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Alonso M. Higuero
- Membrane and Axonal Repair Laboratory, National Hospital for Paraplegics (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Gabriel García Caballero
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Anna-Kristin Ludwig
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Joachim C. Manning
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - José Abad-Rodríguez
- Membrane and Axonal Repair Laboratory, National Hospital for Paraplegics (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| |
Collapse
|
13
|
Bu C, Jin L. NMR Characterization of the Interactions Between Glycosaminoglycans and Proteins. Front Mol Biosci 2021; 8:646808. [PMID: 33796549 PMCID: PMC8007983 DOI: 10.3389/fmolb.2021.646808] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Glycosaminoglycans (GAGs) constitute a considerable fraction of the glycoconjugates found on cellular membranes and in the extracellular matrix of virtually all mammalian tissues. The essential role of GAG-protein interactions in the regulation of physiological processes has been recognized for decades. However, the underlying molecular basis of these interactions has only emerged since 1990s. The binding specificity of GAGs is encoded in their primary structures, but ultimately depends on how their functional groups are presented to a protein in the three-dimensional space. This review focuses on the application of NMR spectroscopy on the characterization of the GAG-protein interactions. Examples of interpretation of the complex mechanism and characterization of structural motifs involved in the GAG-protein interactions are given. Selected families of GAG-binding proteins investigated using NMR are also described.
Collapse
Affiliation(s)
- Changkai Bu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Lan Jin
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| |
Collapse
|
14
|
van den Kerkhof DL, Nagy M, Wichapong K, Brouns SL, Heemskerk JWM, Hackeng TM, Dijkgraaf I. Inhibition of platelet adhesion, thrombus formation, and fibrin formation by a potent αIIbβ3 integrin inhibitor from ticks. Res Pract Thromb Haemost 2021; 5:231-242. [PMID: 33537548 PMCID: PMC7845065 DOI: 10.1002/rth2.12466] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Ticks puncture the skin of their hosts and secrete saliva, containing antiplatelet proteins, into the blood. Here, we studied disagregin, a potent platelet-inhibiting protein derived from the salivary glands of Ornithodoros moubata, an African soft tick. Whereas conventional αIIbβ3 antagonists contain an Arg-Gly-Asp (RGD) sequence for platelet integrin binding, disagregin contains an Arg-Glu-Asp (RED) sequence, hypothesizing a different mode of inhibitory action. OBJECTIVES We aimed to compare the inhibitory effects of disagregin and its RGD variant (RGD-disagregin) on platelet activation and to unravel the molecular basis of disagregin-αIIbβ3 integrin interactions. METHODS Disagregin and RGD-disagregin were synthesized by tert-butyloxycarbonyl -based solid-phase peptide synthesis. Effects of both disagregins on platelet aggregation were assessed by light transmission aggregometry in human platelet-rich plasma. Whole-blood thrombus formation was investigated by perfusing blood over collagen I with and without tissue factor at a high wall-shear rate (1000 s-1) in the presence of disagregin, RGD-disagregin, or eptifibatide. RESULTS Disagregin showed inhibition of collagen- and ADP-induced platelet aggregation with half maximal inhibitory concentration values of 64 and 99 nM, respectively. This resembled the complete antiaggregatory effect of eptifibatide. Multiparameter assessment of thrombus formation showed highly suppressed platelet adhesion and aggregate formation with both disagregins, in contrast to eptifibatide treatment, which incompletely blocked aggregation under flow. Fibrin formation under flow was delayed by both disagregin and RGD-disagregin (P < .01) and eptifibatide (P < .05). CONCLUSIONS Both αIIbβ3-blocking disagregins have a strong potential to suppress collagen-tissue factor-mediated platelet adhesion, thrombus formation, and fibrin formation. Both disagregins can be seen as potential new αIIbβ3 inhibitors.
Collapse
Affiliation(s)
- Danique L. van den Kerkhof
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Magdolna Nagy
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Kanin Wichapong
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Sanne L.N. Brouns
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Johan W. M. Heemskerk
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Tilman M. Hackeng
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Ingrid Dijkgraaf
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
15
|
Zheng Y, Su J, Miller MC, Geng J, Xu X, Zhang T, Mayzel M, Zhou Y, Mayo KH, Tai G. Topsy-turvy binding of negatively charged homogalacturonan oligosaccharides to galectin-3. Glycobiology 2020; 31:341-350. [PMID: 32909036 DOI: 10.1093/glycob/cwaa080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
Galectin-3 is crucial to many physiological and pathological processes. The generally accepted dogma is that galectins function extracellularly by binding specifically to β(1→4)-galactoside epitopes on cell surface glycoconjugates. Here, we used crystallography and NMR spectroscopy to demonstrate that negatively charged homogalacturonans (HG, linear polysaccharides of α(1→4)-linked-D-galacturonate (GalA)) bind to the galectin-3 carbohydrate recognition domain. The HG carboxylates at the C6 positions in GalA rings mandate that this saccharide bind galectin-3 in an unconventional, "topsy-turvy" orientation that is flipped by about 180o relative to that of the canonical β-galactoside lactose. In this binding mode, the reducing end GalA β-anomer of HGs takes the position of the nonreducing end galactose residue in lactose. This novel orientation maintains interactions with the conserved tryptophan and seven of the most crucial lactose-binding residues, albeit with different H-bonding interactions. Nevertheless, the HG molecular orientation and new interactions have essentially the same thermodynamic binding parameters as lactose. Overall, our study provides structural details for a new type of galectin-sugar interaction that broadens glycospace for ligand binding to Gal-3 and suggests how the lectin may recognize other negatively charged polysaccharides like glycoaminoglycans (e.g. heparan sulfate) on the cell surface. This discovery impacts on our understanding of galectin-mediated biological function.
Collapse
Affiliation(s)
- Yi Zheng
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory for Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Jiyong Su
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory for Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN 55455, USA
| | - Jie Geng
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory for Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Xuejiao Xu
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory for Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Tao Zhang
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory for Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Maksim Mayzel
- Bruker BioSpin AG, Applications Department, Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory for Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN 55455, USA
| | - Guihua Tai
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory for Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| |
Collapse
|