1
|
Sun H, Xie C, Kaw HY, Cai T, Liu L, Liu H, Shang HB, Li D. Gravity-assisted gradient size exclusion separation of microparticles by gap-modifiable silicon nanowire arrays. Talanta 2024; 280:126728. [PMID: 39191107 DOI: 10.1016/j.talanta.2024.126728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
The separation and detection of microparticles within complex samples pose substantial challenges due to the intricate variations in size and concentration. A strategy employing gravity-assisted gradient size exclusion principle based on controllable gap sizes on the surface of silicon nanowire arrays (SiNWAs) has been established to achieve the separation of microparticles with diverse sizes. The formation of gradient gap sizes was accomplished by meticulously investigating the impact of oxidation-reduction reactions through metal-assisted chemical etching. Particles of different sizes were initially aggregated at the accumulation base, followed by a sequential size exclusion process within the finely regulated 0.9-12.5 μm gradient-gap-sized separation region facilitated with gravity-assisted, leading to a comprehensive separation of microparticles based on their respective size differences, progressing from small to large. The effective separation of four model-sized microparticles demonstrated a separation degree of ≥2.7, purity of ≥96.1 %, RSDs of ≤4.6 %, and a separation capacity of up to 107 particles. The separation efficacy of this gradient-sized chip was verified by evaluating the more complex atmospheric particulates with varying sizes, which exhibited separation degree ranging between 2 and 10. This method offers a precise separation range, easily adjustable separation sizes, and simple operation, rendering it a versatile tool for separating complex samples.
Collapse
Affiliation(s)
- Huaze Sun
- Department of Chemistry, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Chenchen Xie
- Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Han Yeong Kaw
- NUIST Reading Academy, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Tianpei Cai
- Department of Chemistry, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Lu Liu
- Pathology and Pathophysiology, Medical College, Yanbian University, Park Road 977, Yanji City, 133002, Jilin Province, China
| | - Huwei Liu
- College of Life Sciences, Wuchang University of Technology, Wuhan, China
| | - Hai-Bo Shang
- Department of Chemistry, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Donghao Li
- Department of Chemistry, Yanbian University, Yanji, 133002, Jilin Province, China; Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
2
|
Shrestha P, Rotatori S, Madden-Hennessey K, Mohammed C, Yang CH, Urbani J, Pettinelli J, Liu X, Zhao Q. Selective expansion of target cells using the Enrich TROVO platform. Biotechniques 2023; 75:56-64. [PMID: 37551835 PMCID: PMC10476488 DOI: 10.2144/btn-2023-0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
Enriching target cell clones from diverse cell populations is vital for many life science applications. We have developed a novel method to rapidly and efficiently purify specific clonal cell populations from a larger, heterogeneous group using the Enrich TroVo system (Enrich Biosystems Inc., CT, USA). This system takes advantage of microfabrication and optical technologies by utilizing small hydrogel wells to separate desired cell populations and an innovative patching technique to selectively eliminate undesired cells. This method allows the isolation and growth of desired cells with minimal impact on their viability and proliferation. We successfully isolated and expanded clonal cell populations of desired cells using two model cells. Compared with fluorescence-activated cell sorting, Enrich TroVo system offers a promising alternative for isolating of sensitive, adherent cells, that is, patient-derived cells.
Collapse
Affiliation(s)
- Prem Shrestha
- Enrich Biosystems Inc., 21 Business Park Drive, Suite 4, Branford, CT 06405, USA
| | - Stephen Rotatori
- Enrich Biosystems Inc., 21 Business Park Drive, Suite 4, Branford, CT 06405, USA
| | | | - Christina Mohammed
- Enrich Biosystems Inc., 21 Business Park Drive, Suite 4, Branford, CT 06405, USA
| | - Chi-han Yang
- Enrich Biosystems Inc., 21 Business Park Drive, Suite 4, Branford, CT 06405, USA
| | - Jordan Urbani
- Enrich Biosystems Inc., 21 Business Park Drive, Suite 4, Branford, CT 06405, USA
| | - Joseph Pettinelli
- Enrich Biosystems Inc., 21 Business Park Drive, Suite 4, Branford, CT 06405, USA
| | - Xueqi Liu
- Enrich Biosystems Inc., 21 Business Park Drive, Suite 4, Branford, CT 06405, USA
| | - Qi Zhao
- Enrich Biosystems Inc., 21 Business Park Drive, Suite 4, Branford, CT 06405, USA
| |
Collapse
|
3
|
De Masi A, Scognamiglio PL, Battista E, Netti PA, Causa F. Hydrogel particles-on-chip (HyPoC): a fluorescence micro-sensor array for IgG immunoassay. LAB ON A CHIP 2023; 23:2458-2468. [PMID: 37092599 DOI: 10.1039/d2lc01080a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Novel microparticles have generated growing interest in diagnostics for potential sensitivity and specificity in biomolecule detection and for the possibility to be integrated in a micro-system array as a lab-on-chip. Indeed, bead-based technologies integrated in microfluidics could speed up incubation steps, reduce reagent consumption and improve accessibility of diagnostic devices to non-expert users. To limit non-specific interactions with interfering molecules and to exploit the whole particle volume for bioconjugation, hydrogel microparticles, particularly polyethylene glycol-based, have emerged as promising materials to develop high-performing biosensors since their network can be functionalized to concentrate the target and improve detection. However, the limitations in positioning, trapping and mainly fine manipulation of a precise number of particles in microfluidics have largely impaired point-of-care applications. Herein, we developed an on-chip sandwich immunoassay for the detection of human immunoglobulin G in biological fluids. The detection system is based on finely engineered cleavable PEG-based microparticles, functionalized with specific monoclonal antibodies. By changing the particle number, we demonstrated tuneable specificity and sensitivity (down to 3 pM) in serum and urine. Therefore, a controlled number of hydrogel particles have been integrated in a microfluidic device for on-chip detection (HyPoC) allowing for their precise positioning and fluid exchange for incubation, washing and target detection. HyPoC dramatically decreases incubation time from 180 minutes to one minute and reduces washing volumes from 3.5 ml to 90 μL, achieving a limit of detection of 0.07 nM (with a dynamic range of 0.07-1 nM). Thus, the developed approach represents a versatile, fast and easy point-of-care testing platform for immunoassays.
Collapse
Affiliation(s)
- Alessandra De Masi
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy.
- Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| | - Pasqualina Liana Scognamiglio
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy.
| | - Edmondo Battista
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy.
- Interdisciplinary Research Centre on Biomaterials (CRIB), University "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy.
- Interdisciplinary Research Centre on Biomaterials (CRIB), University "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
- Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| | - Filippo Causa
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy.
- Interdisciplinary Research Centre on Biomaterials (CRIB), University "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
- Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
4
|
Abstract
Embryoids and organoids hold great promise for human biology and medicine. Herein, we discuss conceptual and technological frameworks useful for developing high-fidelity embryoids and organoids that display tissue- and organ-level phenotypes and functions, which are critically needed for decoding developmental programs and improving translational applications. Through dissecting the layers of inputs controlling mammalian embryogenesis, we review recent progress in reconstructing multiscale structural orders in embryoids and organoids. Bioengineering tools useful for multiscale, multimodal structural engineering of tissue- and organ-level cellular organization and microenvironment are also discussed to present integrative, bioengineering-directed approaches to achieve next-generation, high-fidelity embryoids and organoids.
Collapse
Affiliation(s)
- Yue Shao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China; State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Latest Updates on the Advancement of Polymer-Based Biomicroelectromechanical Systems for Animal Cell Studies. ADVANCES IN POLYMER TECHNOLOGY 2021. [DOI: 10.1155/2021/8816564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Biological sciences have reached the fundamental unit of life: the cell. Ever-growing field of Biological Microelectromechanical Systems (BioMEMSs) is providing new frontiers in both fundamental cell research and various practical applications in cell-related studies. Among various functions of BioMEMS devices, some of the most fundamental processes that can be carried out in such platforms include cell sorting, cell separation, cell isolation or trapping, cell pairing, cell-cell communication, cell differentiation, cell identification, and cell culture. In this article, we review each mentioned application in great details highlighting the latest advancements in fabrication strategy, mechanism of operation, and application of these tools. Moreover, the review article covers the shortcomings of each specific application which can open windows of opportunity for improvement of these devices.
Collapse
|