1
|
Peng DQ, Lee HG, Choi YJ, Jin YC. Identification of Key Proteomic Markers for Enhanced Conjugated Linoleic Acid Biosynthesis in Lactating Goats via Linseed Oil Supplementation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4364-4375. [PMID: 39919035 DOI: 10.1021/acs.jafc.4c03487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
This study investigated the effects of linseed oil (LO) supplementation on conjugated linoleic acid (CLA) biosynthesis in lactating Saanen goats. Goats (DIM = 96 ± 14 days) were divided into control (n = 6) and LO treatment (n = 6) groups. LO supplementation was implemented in both short- and long-term experimental settings. Short-term LO supplementation significantly increased trans-11 vaccenic acid and cis-9,trans-11 CLA in milk fat without affecting lactation performance. Using two-dimensional gel electrophoresis, we identified six upregulated proteins in milk somatic cells, including translocon-associated protein (SSRD), succinyl-CoA ligase (SUCB2), ATP synthase subunit (ATPD), stress-70 protein (GRP75), NADH dehydrogenase (NDUFS2), and cytochrome complex QCR1. Long-term LO supplementation enhanced milk fat content and cis-9,trans-11 CLA levels, while significantly elevating the mRNA expression of stearoyl-CoA desaturase (SCD) and all previously identified proteins-including proteasome 20s subunit alpha 5 (PSMA5). These findings extend beyond the known SCD pathway, revealing novel protein markers and potential mechanisms associated with CLA biosynthesis in mammary tissue and milk somatic cells.
Collapse
Affiliation(s)
- Dong Qiao Peng
- Department of Animal Science, College of Animal Science, Jilin University, Changchun 130062, China
| | - Hong Gu Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun Jaie Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yong Cheng Jin
- Department of Animal Science, College of Animal Science, Jilin University, Changchun 130062, China
| |
Collapse
|
2
|
Thomassen G, Abrahamse E, Mischke M, Becker M, Bartke N, Knol J, Renes I. In vitro gastrointestinal lipid handling and bioaccessibility rate of infant formula with large phospholipid-coated lipid droplets are different from those of standard formula and closer to human milk. Food Hydrocoll 2024; 156:110336. [DOI: 10.1016/j.foodhyd.2024.110336] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Peng Y, Li Z, Zhang Z, Chen Y, Wang R, Xu N, Cao Y, Jiang C, Chen Z, Lin H. Bromocriptine protects perilesional spinal cord neurons from lipotoxicity after spinal cord injury. Neural Regen Res 2024; 19:1142-1149. [PMID: 37862220 PMCID: PMC10749608 DOI: 10.4103/1673-5374.385308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 10/22/2023] Open
Abstract
Recent studies have revealed that lipid droplets accumulate in neurons after brain injury and evoke lipotoxicity, damaging the neurons. However, how lipids are metabolized by spinal cord neurons after spinal cord injury remains unclear. Herein, we investigated lipid metabolism by spinal cord neurons after spinal cord injury and identified lipid-lowering compounds to treat spinal cord injury. We found that lipid droplets accumulated in perilesional spinal cord neurons after spinal cord injury in mice. Lipid droplet accumulation could be induced by myelin debris in HT22 cells. Myelin debris degradation by phospholipase led to massive free fatty acid production, which increased lipid droplet synthesis, β-oxidation, and oxidative phosphorylation. Excessive oxidative phosphorylation increased reactive oxygen species generation, which led to increased lipid peroxidation and HT22 cell apoptosis. Bromocriptine was identified as a lipid-lowering compound that inhibited phosphorylation of cytosolic phospholipase A2 by reducing the phosphorylation of extracellular signal-regulated kinases 1/2 in the mitogen-activated protein kinase pathway, thereby inhibiting myelin debris degradation by cytosolic phospholipase A2 and alleviating lipid droplet accumulation in myelin debris-treated HT22 cells. Motor function, lipid droplet accumulation in spinal cord neurons and neuronal survival were all improved in bromocriptine-treated mice after spinal cord injury. The results suggest that bromocriptine can protect neurons from lipotoxic damage after spinal cord injury via the extracellular signal-regulated kinases 1/2-cytosolic phospholipase A2 pathway.
Collapse
Affiliation(s)
- Ying Peng
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuoxuan Li
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyang Zhang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yinglun Chen
- Department of Rehabilitation Medicine, Shanghai Geriatric Medical Center, Shanghai, China
| | - Renyuan Wang
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nixi Xu
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanwu Cao
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chang Jiang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zixian Chen
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haodong Lin
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Klein Hazebroek M, Baars A, Mischke M, Oosting A, van Schothorst EM, Schipper L. Early-Life Exposure to Dietary Large Phospholipid-Coated Lipid Droplets Improves Markers of Metabolic and Immune Function in Adipose Tissue Later in Life in a Mouse Model. Mol Nutr Food Res 2024; 68:e2300470. [PMID: 37985953 DOI: 10.1002/mnfr.202300470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/11/2023] [Indexed: 11/22/2023]
Abstract
SCOPE Human milk (HM) is considered optimal nutrition for infants, beneficially programming adult health outcomes including reduced obesity risk. Early life exposure to infant formula with lipid droplets closely resembling the structural properties of HM lipid globules (Nuturis) attenuated white adipose tissue (WAT) accumulation in mice upon adult western-style diet (WSD) feeding. Here, the study aims to elucidate underlying mechanisms. METHODS AND RESULTS Mice are raised on control or Nuturis diets between postnatal days 16-42 followed by either standard diet or WSD for 16 weeks. While the adult body composition of mice on a standard diet is not significantly affected, Nuturis reduced adiposity in mice on WSD. Morphologically, mean adipocyte size is reduced in Nuturis-raised mice, independent of adult diet exposure, and WAT macrophage content is reduced, albeit not significantly. Transcriptomics of epididymal WAT indicate potential beneficial effects on energy metabolism and macrophage function by Nuturis. CONCLUSION Reduced adult adiposity by early life exposure to Nuturis appears to be associated with smaller adipocytes and alterations in WAT immune and energy metabolism. These results suggest that early modulation of WAT structure and/or function may contribute to the protective programming effects of the early-life Nuturis diet on later-life adiposity.
Collapse
Affiliation(s)
- Marlou Klein Hazebroek
- Danone Nutricia Research, Utrecht, 3584 CT, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, 6708 WD, The Netherlands
| | | | - Mona Mischke
- Danone Nutricia Research, Utrecht, 3584 CT, The Netherlands
| | | | - Evert M van Schothorst
- Human and Animal Physiology, Wageningen University, Wageningen, 6708 WD, The Netherlands
| | | |
Collapse
|
5
|
Oosting A, Harvey L, Ringler S, van Dijk G, Schipper L. Beyond ingredients: Supramolecular structure of lipid droplets in infant formula affects metabolic and brain function in mouse models. PLoS One 2023; 18:e0282816. [PMID: 37531323 PMCID: PMC10395839 DOI: 10.1371/journal.pone.0282816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
Human milk beneficially affects infant growth and brain development. The supramolecular structure of lipid globules in human milk i.e., large lipid globules covered by the milk fat globule membrane, is believed to contribute to this effect, in addition to the supply of functional ingredients. Three preclinical (mouse) experiments were performed to study the effects of infant formula mimicking the supramolecular structure of human milk lipid globules on brain and metabolic health outcomes. From postnatal day 16 to 42, mouse offspring were exposed to a diet containing infant formula with large, phospholipid-coated lipid droplets (structure, STR) or infant formula with the same ingredients but lacking the unique structural properties as observed in human milk (ingredient, ING). Subsequently, in Study 1, the fatty acid composition in liver and brain membranes was measured, and expression of hippocampal molecular markers were analyzed. In Study 2 and 3 adult (Western-style diet-induced) body fat accumulation and cognitive function were evaluated. Animals exposed to STR compared to ING showed improved omega-3 fatty acid accumulation in liver and brain, and higher expression of brain myelin-associated glycoprotein. Early exposure to STR reduced fat mass accumulation in adulthood; the effect was more pronounced in animals exposed to a Western-style diet. Additionally, mice exposed to STR demonstrated better memory performance later in life. In conclusion, early life exposure to infant formula containing large, phospholipid-coated lipid droplets, that are closer to the supramolecular structure of lipid globules in human milk, positively affects adult brain and metabolic health outcomes in pre-clinical animal models.
Collapse
Affiliation(s)
| | | | | | - Gertjan van Dijk
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Lidewij Schipper
- Danone Nutricia Research, Utrecht, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
6
|
Gong T, Li C, Li S, Zhang X, He Z, Jiang X, He Q, Huang R, Wang Y, Liu X. Capsaicin regulates dyslipidemia by altering the composition of bile acids in germ-free mice. Food Funct 2022; 13:10665-10679. [PMID: 36172720 DOI: 10.1039/d2fo02209e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The improvement of lipid metabolism by capsaicin (CAP) has been extensively studied, mostly with respect to the vanilloid type 1 (TRPV1) ion channel and intestinal flora. In this study, a model was established in germ-free mice by using resiniferatoxin (RTX) to ablate TRPV1 ion channels. Bile acid composition, blood parameters, and colonic transcriptome analyses revealed that CAP could improve dyslipidemia caused by high-fat diet even in the absence of TRPV1 ion channels and intestinal flora. CAP fed to germ mice decreased the concentrations of low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), fasting blood glucose and fasting insulin, increased the concentration of high-density lipoprotein (HDL-C), and decreased the levels of plasma endotoxin and pro-inflammatory factor interleukin 6 (IL-6). Furthermore, CAP could affect both classical and alternative pathways of cholesterol conversion by changing the composition of bile acids, reducing the concentrations of glycocholic acid (GCA), ursodeoxycholic acid (UDCA) and glycochenodeoxycholic acid (GCDCA). First, changing the composition of bile acids inhibited the expression of colon Fgf15. CAP promoted the expression of Cyp7a1 (Cytochrome p450, family 7, subfamily a, and polypeptide 1) in the liver, and thus reduced TC and TG levels. In addition, it could change the composition of bile acids and increase the expression of Cyp7b1 (Cytochrome p450, family 7, subfamily b, and polypeptide 1) in the colon, increase Cyp7b1 protein in the liver and thus inhibit fat accumulation. In conclusion, CAP could alter the composition of bile acids and promote the conversion of cholesterol to bile acids, thereby improving lipid metabolism abnormalities caused by a high-fat diet.
Collapse
Affiliation(s)
- Ting Gong
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China. .,Chongqing Medical and Pharmaceutical College, Chongqing 401331, People's Republic of China
| | - Chuangen Li
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Army Medical University, China.
| | - Shiqiang Li
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Army Medical University, China.
| | - Xiaojuan Zhang
- Chongqing Medical and Pharmaceutical College, Chongqing 401331, People's Republic of China
| | - Zhongming He
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Army Medical University, China.
| | - Xianhong Jiang
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Army Medical University, China.
| | - Qiuyue He
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Army Medical University, China.
| | - Rongjuan Huang
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Army Medical University, China.
| | - Yong Wang
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Army Medical University, China.
| | - Xiong Liu
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
7
|
Venkat M, Chia LW, Lambers TT. Milk polar lipids composition and functionality: a systematic review. Crit Rev Food Sci Nutr 2022; 64:31-75. [PMID: 35997253 DOI: 10.1080/10408398.2022.2104211] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polar lipids including glycerophospholipids and sphingophospholipids are important nutrients and milk is a major source, particularly for infants. This systematic review describes the human and bovine milk polar lipid composition, structural organization, sources for formulation, and physiological functionality. A total of 2840 records were retrieved through Scopus, 378 were included. Bovine milk is a good source of polar lipids, where yield and composition are highly dependent on the choice of dairy streams and processing. In milk, polar lipids are organized in the milk fat globule membrane as a tri-layer encapsulating triglyceride. The overall polar lipid concentration in human milk is dependent on many factors including lactational stage and maternal diet. Here, reasonable ranges were determined where possible. Similar for bovine milk, where differences in milk lipid concentration proved the largest factor determining variation. The role of milk polar lipids in human health has been demonstrated in several areas and critical review indicated that brain, immune and effects on lipid metabolism are best substantiated areas. Moreover, insights related to the milk fat globule membrane structure-function relation as well as superior activity of milk derived polar lipid compared to plant-derived sources are emerging areas of interest regarding future research and food innovations.
Collapse
Affiliation(s)
- Meyya Venkat
- FrieslandCampina Development Centre AMEA, Singapore
| | - Loo Wee Chia
- FrieslandCampina Development Centre AMEA, Singapore
- FrieslandCampina, Amersfoort, The Netherlands
| | | |
Collapse
|
8
|
Dietary lipid droplet structure in postnatal life improves hepatic energy and lipid metabolism in a mouse model for postnatal programming. Pharmacol Res 2022; 179:106193. [DOI: 10.1016/j.phrs.2022.106193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/09/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022]
|
9
|
Sánchez C, Franco L, Regal P, Lamas A, Cepeda A, Fente C. Breast Milk: A Source of Functional Compounds with Potential Application in Nutrition and Therapy. Nutrients 2021; 13:1026. [PMID: 33810073 PMCID: PMC8005182 DOI: 10.3390/nu13031026] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Breast milk is an unbeatable food that covers all the nutritional requirements of an infant in its different stages of growth up to six months after birth. In addition, breastfeeding benefits both maternal and child health. Increasing knowledge has been acquired regarding the composition of breast milk. Epidemiological studies and epigenetics allow us to understand the possible lifelong effects of breastfeeding. In this review we have compiled some of the components with clear functional activity that are present in human milk and the processes through which they promote infant development and maturation as well as modulate immunity. Milk fat globule membrane, proteins, oligosaccharides, growth factors, milk exosomes, or microorganisms are functional components to use in infant formulas, any other food products, nutritional supplements, nutraceuticals, or even for the development of new clinical therapies. The clinical evaluation of these compounds and their commercial exploitation are limited by the difficulty of isolating and producing them on an adequate scale. In this work we focus on the compounds produced using milk components from other species such as bovine, transgenic cattle capable of expressing components of human breast milk or microbial culture engineering.
Collapse
Affiliation(s)
- Cristina Sánchez
- Pharmacy Faculty, San Pablo-CEU University, 28003 Madrid, Spain;
| | - Luis Franco
- Medicine Faculty, Santiago de Compostela University, 15782 Santiago de Compostela, Spain;
| | - Patricia Regal
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| | - Alexandre Lamas
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| | - Alberto Cepeda
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| | - Cristina Fente
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| |
Collapse
|