1
|
Estêvão C, Rodrigues L, Rato AE, Garcia R, Cardoso H, Campos C. Applicability of metabolomics to improve sustainable grapevine production. Front Mol Biosci 2024; 11:1395677. [PMID: 39310375 PMCID: PMC11413592 DOI: 10.3389/fmolb.2024.1395677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Metabolites represent the end product of gene expression, protein interaction and other regulatory mechanisms. The metabolome reflects a biological system's response to genetic and environmental changes, providing a more accurate description of plants' phenotype than the transcriptome or the proteome. Grapevine (Vitis vinifera L.), established for the production of wine grapes, table grapes, and raisins, holds immense agronomical and economic significance not only in the Mediterranean region but worldwide. As all plants, grapevines face the adverse impact of biotic and abiotic stresses that negatively affect multiple stages of grape and wine industry, including plant and berry development pre- and post-harvest, fresh grapes processing and consequently wine quality. In the present review we highlight the applicability of metabolome analysis in the understanding of the mechanisms involved in grapevine response and acclimatization upon the main biotic and abiotic constrains. The metabolome of induced morphogenic processes such as adventitious rooting and somatic embryogenesis is also explored, as it adds knowledge on the physiological and molecular phenomena occurring in the explants used, and on the successfully propagation of grapevines with desired traits. Finally, the microbiome-induced metabolites in grapevine are discussed in view of beneficial applications derived from the plant symbioses.
Collapse
Affiliation(s)
- Catarina Estêvão
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Lénia Rodrigues
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Ana Elisa Rato
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Raquel Garcia
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Hélia Cardoso
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Departamento de Biologia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Catarina Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| |
Collapse
|
2
|
Rahman MU, Liu X, Wang X, Fan B. Grapevine gray mold disease: infection, defense and management. HORTICULTURE RESEARCH 2024; 11:uhae182. [PMID: 39247883 PMCID: PMC11374537 DOI: 10.1093/hr/uhae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/01/2024] [Indexed: 09/10/2024]
Abstract
Grapevine (Vitis vinifera L.,) is among the world's leading fruit crops. The production of grapes is severely affected by many diseases including gray mold, caused by the necrotrophic fungus Botrytis cinerea. Although all Vitis species can be hosts for B. cinerea, V. vinifera are particularly susceptible. Accordingly, this disease poses a significant threat to the grape industry and causes substantial economic losses. Development of resistant V. vinifera cultivars has progressed from incidental selection by farmers, to targeted selection through the use of statistics and experimental design, to the employment of genetic and genomic data. Emerging technologies such as marker-assisted selection and genetic engineering have facilitated the development of cultivars that possess resistance to B. cinerea. A promising method involves using the CRISPR/Cas9 system to induce targeted mutagenesis and develop genetically modified non-transgenic crops. Hence, scientists are now engaged in the active pursuit of identifying genes associated with susceptibility and resistance. This review focuses on the known mechanisms of interaction between the B. cinerea pathogen and its grapevine host. It also explores innate immune systems that have evolved in V. vinifera, with the objective of facilitating the rapid development of resistant grapevine cultivars.
Collapse
Affiliation(s)
- Mati Ur Rahman
- Co-Innovation Center for Sustainable Forestry in Southern China, Department of Forest Protection, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210073, China
| | - Xia Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Department of Forest Protection, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210073, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100 Yangling, Xianyang, Shaanxi, China
| | - Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, Department of Forest Protection, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210073, China
| |
Collapse
|
3
|
Ogrinc N, Barka EA, Clément C, Salzet M, Sanchez L, Fournier I. In Vivo and Real-Time Metabolic Profiling of Plant-Microbe Interactions in Leaves, Stems, and Roots of Bacterially Inoculated Chardonnay Plantlets using SpiderMass. Anal Chem 2024. [PMID: 39155838 DOI: 10.1021/acs.analchem.4c01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
There is growing interest in limiting the use of fungicides and implementing innovative, environmentally friendly strategies, such as the use of beneficial bacteria-triggered immunity, to protect grapevines from natural pathogens. Therefore, we need rapid and innovative ways to translate the knowledge of the molecular mechanisms underlying the activation of grapevine defenses against pathogens to induced resistance. Here, we have implemented an in vivo minimally invasive approach to study the interaction between plants and beneficial bacteria based on metabolic signatures. Paraburkholderia phytofirmans strain PsJN and PsJN-grapevine were used as bacterial and plant-bacterium interaction models, respectively. Using an innovative tool, SpiderMass, based on water-assisted laser desorption ionization with an IR microsampling probe, we simultaneously detect metabolic and lipidomic species. A metabolomic spectrum was thus generated, which was used to build a library and identify the most variable and discriminative peaks between the two conditions. We then showed that caftaric acid (m/z 311.04), caftaric acid dimer (m/z 623.09), derived caftaric acid (m/z 653.15), and quercetin-O-glucuronide tended to accumulate in grapevine leaves after root bacterization with PsJN. In addition, together with these phenolic messengers, we identified lipid biomarkers such as palmitic acid, linoleic acid, and α-linoleic acid as important messengers of enhanced defense mechanisms in Chardonnay plantlets. Taken together, SpiderMass is the next-generation methodology for studying plant-microorganism metabolic interactions with the prospect of in vivo real-time analysis in viticulture.
Collapse
Affiliation(s)
- Nina Ogrinc
- Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Université de Lille, F-59000 Lille, France
| | - Essaïd Ait Barka
- Unité de Recherche RIBP (Résistance Induite et Bioprotec-tion des Plantes), USC INRAE 1488, Université de Reims Champagne-Ardenne Moulin de la Housse BP 1039, 51687 Reim Cedex 2, France
| | - Christophe Clément
- Unité de Recherche RIBP (Résistance Induite et Bioprotec-tion des Plantes), USC INRAE 1488, Université de Reims Champagne-Ardenne Moulin de la Housse BP 1039, 51687 Reim Cedex 2, France
| | - Michel Salzet
- Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Université de Lille, F-59000 Lille, France
| | - Lisa Sanchez
- Unité de Recherche RIBP (Résistance Induite et Bioprotec-tion des Plantes), USC INRAE 1488, Université de Reims Champagne-Ardenne Moulin de la Housse BP 1039, 51687 Reim Cedex 2, France
- Institut Universitaire de France (IUF), Paris, France, https://www.iufrance.fr/
| | - Isabelle Fournier
- Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Université de Lille, F-59000 Lille, France
- Institut Universitaire de France (IUF), Paris, France, https://www.iufrance.fr/
| |
Collapse
|
4
|
Raman R, Morris S, Sharma N, Hobson K, Moore K. Metabolite profiling of chickpea ( Cicer arietinum) in response to necrotrophic fungus Ascochyta rabiei. FRONTIERS IN PLANT SCIENCE 2024; 15:1427688. [PMID: 39193211 PMCID: PMC11347347 DOI: 10.3389/fpls.2024.1427688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
Introduction Ascochyta blight (AB) caused by the necrotrophic fungus Ascochyta rabiei is one of the most significant diseases that limit the production of chickpea. Understanding the metabolic mechanisms underlying chickpea-A.rabiei interactions will provide important clues to develop novel approaches to manage this disease. Methods We performed metabolite profiling of the aerial tissue (leaf and stem) of two chickpea accessions comprising a moderately resistant breeding line (CICA1841) and a highly susceptible cultivar (Kyabra) in response to one of the highly aggressive Australian A. rabiei isolates TR9571 via non-targeted metabolomics analysis using liquid chromatography-mass spectrometry. Results The results revealed resistance and susceptibility-associated constitutive metabolites for example the moderately resistant breeding line had a higher mass abundance of ferulic acid while the levels of catechins, phthalic acid, and nicotinic acid were high in the susceptible cultivar. Further, the host-pathogen interaction resulted in the altered levels of various metabolites (induced and suppressed), especially in the susceptible cultivar revealing a possible reason for susceptibility against A.r abiei. Noticeably, the mass abundance of salicylic acid was induced in the aerial tissue of the susceptible cultivar after fungus colonization, while methyl jasmonate (MeJA) was suppressed, elucidating the key role of phytohormones in chickpea-A. rabiei interaction. Many differential metabolites in flavonoid biosynthesis, phenylalanine, Aminoacyl-tRNA biosynthesis, pentose and glucuronate interconversions, arginine biosynthesis, valine, leucine, and isoleucine biosynthesis, and alanine, aspartate, and glutamate metabolism pathways were up- and down-regulated showing the involvement of these metabolic pathways in chickpea-A. rabiei interaction. Discussion Taken together, this study highlights the chickpea - A. rabiei interaction at a metabolite level and shows how A. rabiei differentially alters the metabolite profile of moderately resistant and susceptible chickpea accessions and is probably exploiting the chickpea defense pathways in its favour.
Collapse
Affiliation(s)
- Rosy Raman
- Department of Primary Industry Research and Development, Wagga Wagga Agricultural Institute, Wagga Wagga, New South Wales, Australia
| | - Stephen Morris
- Department of Primary Industry Research and Development, Wollongbar Primary Industries Institute, Wollongbar, New South Wales, Australia
| | - Niharika Sharma
- Department of Primary Industry Research and Development, Orange Agricultural Institute, Orange, New South Wales, Australia
| | - Kristy Hobson
- Department of Primary Industry Research and Development, Tamworth Agricultural Institute, Tamworth, New South Wales, Australia
| | - Kevin Moore
- Department of Primary Industry Research and Development, Tamworth Agricultural Institute, Tamworth, New South Wales, Australia
| |
Collapse
|
5
|
Kaliapan K, Mazlin SNA, Chua KO, Rejab NA, Mohd-Yusuf Y. Secreted in Xylem (SIX) genes in Fusarium oxysporum f.sp. cubense (Foc) unravels the potential biomarkers for early detection of Fusarium wilt disease. Arch Microbiol 2024; 206:271. [PMID: 38767679 DOI: 10.1007/s00203-024-03996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Secreted in Xylem (SIX) are small effector proteins released by Fusarium oxysporum f.sp. cubense (Foc) into the plant's xylem sap disrupting the host's defence responses causing Fusarium wilt disease resulting in a significant decline in banana crop yields and economic losses. Notably, different races of Foc possess unique sets of SIX genes responsible for their virulence, however, these genes remain underutilized, despite their potential as biomarkers for early disease detection. Herein, we identified seven SIX genes i.e. SIX1, SIX2, SIX4, SIX6, SIX8a, SIX9a and SIX13 present in Foc Tropical Race 4 (FocTR4), while only SIX9b in Foc Race 1 (Foc1). Analysis of SIX gene expression in infected banana roots revealed differential patterns during infection providing valuable insights into host-pathogen interactions, virulence level, and early detection time points. Additionally, a comprehensive analysis of virulent Foc1_C2HIR and FocTR4_C1HIR isolates yielded informative genomic insights. Hence, these discoveries contribute to our comprehension of potential disease control targets in these plants, as well as enhancing plant diagnostics and breeding programs.
Collapse
Affiliation(s)
- Kausalyaa Kaliapan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siti Nur Akmar Mazlin
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kah Ooi Chua
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nur Ardiyana Rejab
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yusmin Mohd-Yusuf
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Glami Lemi Biotechnology Research Centre Universiti Malaya, 71650, Jelebu, Negeri Sembilan, Malaysia.
| |
Collapse
|
6
|
Nogues I, Passatore L, Bustamante MÁ, Pallozzi E, Luz J, Traquete F, Ferreira AEN, Sousa Silva M, Cordeiro C. Cultivation of Melilotus officinalis as a source of bioactive compounds in association with soil recovery practices. FRONTIERS IN PLANT SCIENCE 2023; 14:1218594. [PMID: 37771488 PMCID: PMC10523325 DOI: 10.3389/fpls.2023.1218594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023]
Abstract
Introduction Melilotus officinalis is a Leguminosae with relevant applications in medicine and soil recovery. This study reports the application of Melilotus officinalis plants in soil recovery and as a source of bioactive compounds. Methods Plants were cultivated in semiarid soil under four different fertilizer treatments, urban waste compost at 10 t/ha and 20 t/ha, inorganic fertilizer and a control (no fertilizer). Agronomic properties of soil (pH, EC, soil respiration, C content, macro- and microelements) were analyzed before and after treatment. Also, germination, biomass, element contents, and physiological response were evaluated. Metabolite composition of plants was analyzed through Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Results and discussion Results showed a significant enhancement of the soil microbial activity in planted soils amended with compost, though there were no other clear effects on the soil physicochemical and chemical characteristics during the short experimental period. An improvement in M. officinalis germination and growth was observed in soils with compost amendment. Metabolite composition of plants was analyzed through Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Principal Component and Agglomerative Hierarchical Clustering models suggest that there is a clear separation of the metabolome of four groups of plants grown under different soil treatments. The five most important discriminative metabolites (annotated) were oleamide, palmitic acid, stearic acid, 3-hydroxy-cis-5-octenoylcarnitine, and 6-hydroxynon-7- enoylcarnitine. This study provides information on how the metabolome of Melilotus might be altered by fertilizer application in poor soil regions. These metabolome changes might have repercussions for the application of this plant in medicine and pharmacology. The results support the profitability of Melilotus officinalis cultivation for bioactive compounds production in association with soil recovery practices.
Collapse
Affiliation(s)
- Isabel Nogues
- Research Institute on Terrestrial Ecosystems, National Research Council (IRET-CNR), Monterotondo Scalo, Rome, Italy
| | - Laura Passatore
- Research Institute on Terrestrial Ecosystems, National Research Council (IRET-CNR), Monterotondo Scalo, Rome, Italy
| | - María Ángeles Bustamante
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, Alicante, Spain
| | - Emanuele Pallozzi
- Research Institute on Terrestrial Ecosystems, National Research Council (IRET-CNR), Monterotondo Scalo, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - João Luz
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Francisco Traquete
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - António E. N. Ferreira
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Sousa Silva
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos Cordeiro
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
7
|
Spano M, Di Matteo G, Fernandez Retamozo CA, Lasalvia A, Ruggeri M, Sandri G, Cordeiro C, Sousa Silva M, Totaro Fila C, Garzoli S, Crestoni ME, Mannina L. A Multimethodological Approach for the Chemical Characterization of Edible Insects: The Case Study of Acheta domesticus. Foods 2023; 12:2331. [PMID: 37372542 DOI: 10.3390/foods12122331] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Acheta domesticus (house cricket) has been recently introduced into the official European list of novel foods, representing an alternative and sustainable food source. Up to now, the chemical characterization of this edible insect has been focused only on specific classes of compounds. Here, three production batches of an A. domesticus powder were investigated by means of a multimethodological approach based on NMR, FT-ICR MS, and GC-MS methodologies. The applied analytical protocol, proposed for the first time in the study of an edible insect, allowed us to identify and quantify compounds not previously reported in crickets. In particular, methyl-branched hydrocarbons, previously identified in other insects, together with other compounds such as citrulline, formate, γ-terpinene, p-cymene, α-thujene, β-thujene, and 4-carene were detected. Amino acids, organic acids, and fatty acids were also identified and quantified. The improved knowledge of the chemical profile of this novel food opens new horizons both for the use of crickets as a food ingredient and for the use of extracts for the production of new formulations. In order to achieve this objective, studies regarding safety, biological activity, bioaccessibility, and bioavailability are needed as future perspectives in this field.
Collapse
Affiliation(s)
- Mattia Spano
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giacomo Di Matteo
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carlos Alberto Fernandez Retamozo
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alba Lasalvia
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Carlos Cordeiro
- Laboratório de FT-ICR e Espectrometria de Massa Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo-Grande, 1749-016 Lisboa, Portugal
| | - Marta Sousa Silva
- Laboratório de FT-ICR e Espectrometria de Massa Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo-Grande, 1749-016 Lisboa, Portugal
| | | | - Stefania Garzoli
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Maria Elisa Crestoni
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Luisa Mannina
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
8
|
Serag A, Salem MA, Gong S, Wu JL, Farag MA. Decoding Metabolic Reprogramming in Plants under Pathogen Attacks, a Comprehensive Review of Emerging Metabolomics Technologies to Maximize Their Applications. Metabolites 2023; 13:424. [PMID: 36984864 PMCID: PMC10055942 DOI: 10.3390/metabo13030424] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
In their environment, plants interact with a multitude of living organisms and have to cope with a large variety of aggressions of biotic or abiotic origin. What has been known for several decades is that the extraordinary variety of chemical compounds the plants are capable of synthesizing may be estimated in the range of hundreds of thousands, but only a fraction has been fully characterized to be implicated in defense responses. Despite the vast importance of these metabolites for plants and also for human health, our knowledge about their biosynthetic pathways and functions is still fragmentary. Recent progress has been made particularly for the phenylpropanoids and oxylipids metabolism, which is more emphasized in this review. With an increasing interest in monitoring plant metabolic reprogramming, the development of advanced analysis methods should now follow. This review capitalizes on the advanced technologies used in metabolome mapping in planta, including different metabolomics approaches, imaging, flux analysis, and interpretation using bioinformatics tools. Advantages and limitations with regards to the application of each technique towards monitoring which metabolite class or type are highlighted, with special emphasis on the necessary future developments to better mirror such intricate metabolic interactions in planta.
Collapse
Affiliation(s)
- Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt
| | - Mohamed A. Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shibin Elkom 32511, Menoufia, Egypt
| | - Shilin Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| |
Collapse
|
9
|
Ndlovu IS, Silas E, Tshilwane SI, Chaisi M, Vosloo A, Mukaratirwa S. Preliminary insights on the metabolomics of Trichinella zimbabwensis infection in Sprague Dawley rats using GCxGC-TOF-MS (untargeted approach). Front Mol Biosci 2023; 10:1128542. [PMID: 36876045 PMCID: PMC9983363 DOI: 10.3389/fmolb.2023.1128542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/08/2023] [Indexed: 02/19/2023] Open
Abstract
Trichinella infections have been documented globally and have been detected in wild and/or domestic animals except Antarctica. There is paucity of information in the metabolic responses of hosts during Trichinella infections and biomarkers for infection that can be used in the diagnosis of the disease. The current study aimed to apply a non-targeted metabolomic approach to identify Trichinella zimbabwensis biomarkers including metabolic response from sera of infected Sprague-Dawley rats. Fifty-four male Sprague-Dawley rats were randomly assigned into T. zimbabwensis infected group (n = 36) and the non-infected control (n = 18). Results from the study showed that the metabolic signature of T. zimbabwensis infection consists of enriched methyl histidine metabolism, disturbance of the liver urea cycle, impeded TCA cycle, and upregulation of gluconeogenesis metabolism. The observed disturbance in the metabolic pathways was attributed to the effects caused by the parasite during its migration to the muscles resulting in downregulation of amino acids intermediates in the Trichinella-infected animals, and therefore affecting energy production and degradation of biomolecules. It was concluded that T. zimbabwensis infection caused an upregulation of amino acids; pipecolic acid, histidine, and urea, and upregulation of glucose and meso-Erythritol. Moreover, T. zimbabwensis infection caused upregulation of the fatty acids, retinoic acid, and acetic acid. These findings highlight the potential of metabolomics as a novel approach for fundamental investigations of host-pathogen interactions as well as for disease progression and prognosis.
Collapse
Affiliation(s)
- I. S. Ndlovu
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Ekuyikeno Silas
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - S. I. Tshilwane
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - M. Chaisi
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
- Foundational Biodiversity Science, South African National Biodiversity Institute, Pretoria, South Africa
| | - A. Vosloo
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - S. Mukaratirwa
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
- One Health Center for Zoonoses and Tropical Veterinary Medicine, School of Veterinary Medicine, Ross University, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
10
|
Ciubotaru RM, Franceschi P, Vezzulli S, Zulini L, Stefanini M, Oberhuber M, Robatscher P, Chitarrini G, Vrhovsek U. Secondary and primary metabolites reveal putative resistance-associated biomarkers against Erysiphe necator in resistant grapevine genotypes. FRONTIERS IN PLANT SCIENCE 2023; 14:1112157. [PMID: 36798701 PMCID: PMC9927228 DOI: 10.3389/fpls.2023.1112157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Numerous fungicide applications are required to control Erysiphe necator, the causative agent of powdery mildew. This increased demand for cultivars with strong and long-lasting field resistance to diseases and pests. In comparison to the susceptible cultivar 'Teroldego', the current study provides information on some promising disease-resistant varieties (mono-locus) carrying one E. necator-resistant locus: BC4 and 'Kishmish vatkana', as well as resistant genotypes carrying several E. necator resistant loci (pyramided): 'Bianca', F26P92, F13P71, and NY42. A clear picture of the metabolites' alterations in response to the pathogen is shown by profiling the main and secondary metabolism: primary compounds and lipids; volatile organic compounds and phenolic compounds at 0, 12, and 48 hours after pathogen inoculation. We identified several compounds whose metabolic modulation indicated that resistant plants initiate defense upon pathogen inoculation, which, while similar to the susceptible genotype in some cases, did not imply that the plants were not resistant, but rather that their resistance was modulated at different percentages of metabolite accumulation and with different effect sizes. As a result, we discovered ten up-accumulated metabolites that distinguished resistant from susceptible varieties in response to powdery mildew inoculation, three of which have already been proposed as resistance biomarkers due to their role in activating the plant defense response.
Collapse
Affiliation(s)
- Ramona Mihaela Ciubotaru
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Pietro Franceschi
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michelle All'Adige, Italy
| | - Silvia Vezzulli
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michelle All'Adige, Italy
| | - Luca Zulini
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michelle All'Adige, Italy
| | - Marco Stefanini
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michelle All'Adige, Italy
| | - Michael Oberhuber
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Auer (Ora), Italy
| | - Peter Robatscher
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Auer (Ora), Italy
| | - Giulia Chitarrini
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Auer (Ora), Italy
| | - Urska Vrhovsek
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| |
Collapse
|
11
|
Savoi S, Santiago A, Orduña L, Matus JT. Transcriptomic and metabolomic integration as a resource in grapevine to study fruit metabolite quality traits. FRONTIERS IN PLANT SCIENCE 2022; 13:937927. [PMID: 36340350 PMCID: PMC9630917 DOI: 10.3389/fpls.2022.937927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Transcriptomics and metabolomics are methodologies being increasingly chosen to perform molecular studies in grapevine (Vitis vinifera L.), focusing either on plant and fruit development or on interaction with abiotic or biotic factors. Currently, the integration of these approaches has become of utmost relevance when studying key plant physiological and metabolic processes. The results from these analyses can undoubtedly be incorporated in breeding programs whereby genes associated with better fruit quality (e.g., those enhancing the accumulation of health-promoting compounds) or with stress resistance (e.g., those regulating beneficial responses to environmental transition) can be used as selection markers in crop improvement programs. Despite the vast amount of data being generated, integrative transcriptome/metabolome meta-analyses (i.e., the joint analysis of several studies) have not yet been fully accomplished in this species, mainly due to particular specificities of metabolomic studies, such as differences in data acquisition (i.e., different compounds being investigated), unappropriated and unstandardized metadata, or simply no deposition of data in public repositories. These meta-analyses require a high computational capacity for data mining a priori, but they also need appropriate tools to explore and visualize the integrated results. This perspective article explores the universe of omics studies conducted in V. vinifera, focusing on fruit-transcriptome and metabolome analyses as leading approaches to understand berry physiology, secondary metabolism, and quality. Moreover, we show how omics data can be integrated in a simple format and offered to the research community as a web resource, giving the chance to inspect potential gene-to-gene and gene-to-metabolite relationships that can later be tested in hypothesis-driven research. In the frame of the activities promoted by the COST Action CA17111 INTEGRAPE, we present the first grapevine transcriptomic and metabolomic integrated database (TransMetaDb) developed within the Vitis Visualization (VitViz) platform (https://tomsbiolab.com/vitviz). This tool also enables the user to conduct and explore meta-analyses utilizing different experiments, therefore hopefully motivating the community to generate Findable, Accessible, Interoperable and Reusable (F.A.I.R.) data to be included in the future.
Collapse
Affiliation(s)
- Stefania Savoi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| |
Collapse
|
12
|
Maia M, McCann A, Malherbe C, Far J, Cunha J, Eiras-Dias J, Cordeiro C, Eppe G, Quinton L, Figueiredo A, De Pauw E, Sousa Silva M. Grapevine leaf MALDI-MS imaging reveals the localisation of a putatively identified sucrose metabolite associated to Plasmopara viticola development. FRONTIERS IN PLANT SCIENCE 2022; 13:1012636. [PMID: 36299787 PMCID: PMC9589281 DOI: 10.3389/fpls.2022.1012636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Despite well-established pathways and metabolites involved in grapevine-Plasmopara viticola interaction, information on the molecules involved in the first moments of pathogen contact with the leaf surface and their specific location is still missing. To understand and localise these molecules, we analysed grapevine leaf discs infected with P. viticola with MSI. Plant material preparation was optimised, and different matrices and solvents were tested. Our data shows that trichomes hamper matrix deposition and the ion signal. Results show that putatively identified sucrose presents a higher accumulation and a non-homogeneous distribution in the infected leaf discs in comparison with the controls. This accumulation was mainly on the veins, leading to the hypothesis that sucrose metabolism is being manipulated by the development structures of P. viticola. Up to our knowledge this is the first time that the localisation of a putatively identified sucrose metabolite was shown to be associated to P. viticola infection sites.
Collapse
Affiliation(s)
- Marisa Maia
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- Grapevine Pathogen Systems Lab (GPS Lab), Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Andréa McCann
- Mass Spectrometry Laboratory (MolSys), University of Liège, Liège, Belgium
| | - Cédric Malherbe
- Mass Spectrometry Laboratory (MolSys), University of Liège, Liège, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory (MolSys), University of Liège, Liège, Belgium
| | - Jorge Cunha
- Estação Vitivinícola Nacional, Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Torres-Vedras, Portugal
| | - José Eiras-Dias
- Estação Vitivinícola Nacional, Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Torres-Vedras, Portugal
| | - Carlos Cordeiro
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Gauthier Eppe
- Mass Spectrometry Laboratory (MolSys), University of Liège, Liège, Belgium
| | - Loïc Quinton
- Mass Spectrometry Laboratory (MolSys), University of Liège, Liège, Belgium
| | - Andreia Figueiredo
- Grapevine Pathogen Systems Lab (GPS Lab), Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Edwin De Pauw
- Mass Spectrometry Laboratory (MolSys), University of Liège, Liège, Belgium
| | - Marta Sousa Silva
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
13
|
Traquete F, Luz J, Cordeiro C, Sousa Silva M, Ferreira AEN. Graph Properties of Mass-Difference Networks for Profiling and Discrimination in Untargeted Metabolomics. Front Mol Biosci 2022; 9:917911. [PMID: 35936789 PMCID: PMC9353772 DOI: 10.3389/fmolb.2022.917911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
Untargeted metabolomics seeks to identify and quantify most metabolites in a biological system. In general, metabolomics results are represented by numerical matrices containing data that represent the intensities of the detected variables. These matrices are subsequently analyzed by methods that seek to extract significant biological information from the data. In mass spectrometry-based metabolomics, if mass is detected with sufficient accuracy, below 1 ppm, it is possible to derive mass-difference networks, which have spectral features as nodes and chemical changes as edges. These networks have previously been used as means to assist formula annotation and to rank the importance of chemical transformations. In this work, we propose a novel role for such networks in untargeted metabolomics data analysis: we demonstrate that their properties as graphs can also be used as signatures for metabolic profiling and class discrimination. For several benchmark examples, we computed six graph properties and we found that the degree profile was consistently the property that allowed for the best performance of several clustering and classification methods, reaching levels that are competitive with the performance using intensity data matrices and traditional pretreatment procedures. Furthermore, we propose two new metrics for the ranking of chemical transformations derived from network properties, which can be applied to sample comparison or clustering. These metrics illustrate how the graph properties of mass-difference networks can highlight the aspects of the information contained in data that are complementary to the information extracted from intensity-based data analysis.
Collapse
|
14
|
Grover S, Cardona JB, Zogli P, Alvarez S, Naldrett MJ, Sattler SE, Louis J. Reprogramming of sorghum proteome in response to sugarcane aphid infestation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111289. [PMID: 35643611 DOI: 10.1016/j.plantsci.2022.111289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Sugarcane aphid (SCA; Melanaphis sacchari Zehntner) is a key piercing-sucking pest of sorghum (Sorghum bicolor) that cause significant yield losses. While feeding on host plants, complex signaling networks are invoked from recognition of insect attack to induction of plant defenses. Consequently, these signaling networks lead to the production of insecticidal compounds or limited access of nutrients to insects. Previously, several studies were published on the transcriptomics analysis of sorghum in response to SCA infestation, but no information is available on the physiological changes of sorghum at the proteome level. We used the SCA resistant sorghum genotype SC265 for the global proteomics analysis after 1 and 7 days of SCA infestation using the TMT-plex technique. Peptides matching a total of 4211 proteins were identified and 158 proteins were differentially expressed at day 1 and 7. Overall, proteome profiling of SC265 after SCA infestation at days 1 and 7 revealed the suppression of plant defense-related proteins and upregulation of plant defense and signaling-related proteins, respectively. The plant defense responses based on proteome data were validated using electrical penetration graph (EPG) technique to observe changes in aphid feeding. Feeding behavior analyses revealed that SCA spent significantly longer time in phloem phase on SCA infested plants for day 1 and lesser time in day 7 SCA infested sorghum plants, compared to their respective control plants. Overall, our study provides insights into underlying mechanisms that contribute to sorghum resistance to SCA.
Collapse
Affiliation(s)
- Sajjan Grover
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | | | - Prince Zogli
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sophie Alvarez
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Michael J Naldrett
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Scott E Sattler
- Wheat, Sorghum, and Forage Research Unit, US Department of Agriculture-Agricultural Research Service, Lincoln, NE 68583, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln NE 68583, USA.
| |
Collapse
|
15
|
Mandrile L, D’Errico C, Nuzzo F, Barzan G, Matić S, Giovannozzi AM, Rossi AM, Gambino G, Noris E. Raman Spectroscopy Applications in Grapevine: Metabolic Analysis of Plants Infected by Two Different Viruses. FRONTIERS IN PLANT SCIENCE 2022; 13:917226. [PMID: 35774819 PMCID: PMC9239551 DOI: 10.3389/fpls.2022.917226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Grapevine is one of the most cultivated fruit plant among economically relevant species in the world. It is vegetatively propagated and can be attacked by more than 80 viruses with possible detrimental effects on crop yield and wine quality. Preventive measures relying on extensive and robust diagnosis are fundamental to guarantee the use of virus-free grapevine plants and to manage its diseases. New phenotyping techniques for non-invasive identification of biochemical changes occurring during virus infection can be used for rapid diagnostic purposes. Here, we have investigated the potential of Raman spectroscopy (RS) to identify the presence of two different viruses, grapevine fan leaf virus (GFLV) and grapevine rupestris stem pitting-associated virus (GRSPaV) in Vitis vinifera cv. Chardonnay. We showed that RS can discriminate healthy plants from those infected by each of the two viruses, even in the absence of visible symptoms, with accuracy up to 100% and 80% for GFLV and GRSPaV, respectively. Chemometric analyses of the Raman spectra followed by chemical measurements showed that RS could probe a decrease in the carotenoid content in infected leaves, more profoundly altered by GFLV infection. Transcriptional analysis of genes involved in the carotenoid pathway confirmed that this biosynthetic process is altered during infection. These results indicate that RS is a cutting-edge alternative for a real-time dynamic monitoring of pathogens in grapevine plants and can be useful for studying the metabolic changes ensuing from plant stresses.
Collapse
Affiliation(s)
- Luisa Mandrile
- Istituto Nazionale di Ricerca Metrologica (INRIM), Torino, Italy
| | - Chiara D’Errico
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Torino, Italy
| | - Floriana Nuzzo
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Torino, Italy
| | - Giulia Barzan
- Istituto Nazionale di Ricerca Metrologica (INRIM), Torino, Italy
| | - Slavica Matić
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Torino, Italy
| | | | - Andrea M. Rossi
- Istituto Nazionale di Ricerca Metrologica (INRIM), Torino, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Torino, Italy
| | - Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Torino, Italy
| |
Collapse
|
16
|
Gur L, Cohen Y, Frenkel O, Schweitzer R, Shlisel M, Reuveni M. Mixtures of Macro and Micronutrients Control Grape Powdery Mildew and Alter Berry Metabolites. PLANTS (BASEL, SWITZERLAND) 2022; 11:978. [PMID: 35406958 PMCID: PMC9002579 DOI: 10.3390/plants11070978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Powdery mildew caused by the fungus Erysiphe necator is a major grape disease worldwide. It attacks foliage and berries and reduces yield and wine quality. Fungicides are mainly used for combating the disease. Fungicide resistance and the global requisite to reduce pesticide deployment encourage the use of environment-friendly alternatives for disease management. Our field experiments showed that the foliar application of the potassium phosphate fertilizer Top-KP+ (1-50-33 NPK) reduced disease incidence on leaves and clusters by 15-65% and severity by 75-90%, compared to untreated vines. Top-KP+ mixed with Nanovatz (containing the micronutrients boron (B) and zinc (Zn)) or with TruPhos Platinum (a mixture containing N, P2O5, K2O, Zn, B, Mg, Fe, Mn, Cu, Mo, and CO) further reduced disease incidence by 30-90% and disease severity by 85-95%. These fertilizers were as effective as the fungicide tebuconazole. Tank mixtures of fertilizers and tebuconazole further enhanced control efficacy in the vineyards. The modes of action of fertilizers in disease control were elucidated via tests with grape seedlings, microscopy, and berry metabolomics. Fertilizers applied preventively to the foliage of grape seedlings inhibited powdery mildew development. Application onto existing mildew colonies plasmolyzed mycelia and conidia and arrested the development of the disease. Berries treated with fertilizers or with a fungicide showed a significant increase in anti-fungal and antioxidant metabolites. Twenty-two metabolites, including non-protein amino acids and carbohydrates, known for their anti-fungal and bioactive effects, were significantly upregulated in grapes treated with fertilizers as compared to grapes treated with a fungicide, suggesting possible indirect activity against the pathogen. Esters and organic acids that contribute to wine quality were also upregulated. We conclude that integrating macro and micronutrients in spray programs in commercial vineyards shall control powdery mildew, reduce fungicide deployment, delay the buildup of fungicide resistance, and may improve wine quality.
Collapse
Affiliation(s)
- Lior Gur
- Shamir Research Institute, University of Haifa, Haifa 3498838, Israel; (L.G.); (M.R.)
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290000, Israel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel;
| | - Yigal Cohen
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290000, Israel
| | - Omer Frenkel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel;
| | - Ron Schweitzer
- Analytical Chemistry Laboratory, Tel-Hai College, Qiryat Shemona 1220800, Israel; (R.S.); (M.S.)
| | - Meir Shlisel
- Analytical Chemistry Laboratory, Tel-Hai College, Qiryat Shemona 1220800, Israel; (R.S.); (M.S.)
| | - Moshe Reuveni
- Shamir Research Institute, University of Haifa, Haifa 3498838, Israel; (L.G.); (M.R.)
- STK Bio-Ag Technologies Ltd., Petach Tikva 4951447, Israel
| |
Collapse
|
17
|
Štambuk P, Šikuten I, Karoglan Kontić J, Maletić E, Preiner D, Tomaz I. Leaf Polyphenolic Profile as a Determinant of Croatian Native Grapevine Varieties' Susceptibility to Plasmopara viticola. FRONTIERS IN PLANT SCIENCE 2022; 13:836318. [PMID: 35360327 PMCID: PMC8963502 DOI: 10.3389/fpls.2022.836318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Since grapevine is highly susceptible to various pathogens, enormous amounts of pesticides are applied each season to achieve profitable production. One of the most destructive grapevine diseases is downy mildew, and their interaction has been in the spotlight for more than a decade. When it comes to a metabolome level, phenolic compounds are relevant to investigate due to their involvement in the plant immune system and known antifungal properties. Croatian grapevine germplasm is highly heterogeneous due to its long history of cultivation in diversified geographical regions. Since it has been found that native varieties react differently to the infection of Plasmopara viticola, the intention of this study is to define if the chemical background of the leaves, i.e., polyphenolic composition, is responsible for these dissimilarities. Therefore, the leaves of 17 genotypes, among which 14 were native and 3 were controls, were analyzed using high-performance liquid chromatography (HPLC) in four terms: before inoculation and 24, 48, and 96 h post inoculation (hpi). During this early phase, significant differences were found neither between the terms nor between the non-inoculated and inoculated samples, except for resveratrol-3-O-glucoside. By applying principal component analysis (PCA) using initial leaf polyphenolic composition, varieties of V. vinifera were clearly separated into three different groups corresponding to their International Organization of Vine and Wine (OIV) classes of susceptibility to P. viticola. Results obtained in this research suggest that the initial constitutive polyphenolic composition of the cultivar leaves has a crucial influence on their susceptibility to P. viticola, and this finding can be used to improve the success of grapevine breeding programs toward downy mildew resistance.
Collapse
Affiliation(s)
- Petra Štambuk
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Zagreb, Croatia
| | - Iva Šikuten
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Zagreb, Croatia
| | - Jasminka Karoglan Kontić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Zagreb, Croatia
| | - Edi Maletić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Zagreb, Croatia
| | - Darko Preiner
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Zagreb, Croatia
| | - Ivana Tomaz
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Zagreb, Croatia
| |
Collapse
|
18
|
Gonçalves MFM, Hilário S, Tacão M, Van de Peer Y, Alves A, Esteves AC. Genome and Metabolome MS-Based Mining of a Marine Strain of Aspergillus affinis. J Fungi (Basel) 2021; 7:1091. [PMID: 34947073 PMCID: PMC8709101 DOI: 10.3390/jof7121091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 01/09/2023] Open
Abstract
Aspergillus section Circumdati encompasses several species that express both beneficial (e.g., biochemical transformation of steroids and alkaloids, enzymes and metabolites) and harmful compounds (e.g., production of ochratoxin A (OTA)). Given their relevance, it is important to analyze the genetic and metabolic diversity of the species of this section. We sequenced the genome of Aspergillus affinis CMG 70, isolated from sea water, and compared it with the genomes of species from section Circumdati, including A. affinis's strain type. The A. affinis genome was characterized considering secondary metabolites biosynthetic gene clusters (BGCs), carbohydrate-active enzymes (CAZymes), and transporters. To uncover the biosynthetic potential of A. affinis CMG 70, an untargeted metabolomics (LC-MS/MS) approach was used. Cultivating the fungus in the presence and absence of sea salt showed that A. affinis CMG 70 metabolite profiles are salt dependent. Analyses of the methanolic crude extract revealed the presence of both unknown and well-known Aspergillus compounds, such as ochratoxin A, anti-viral (e.g., 3,5-Di-tert-butyl-4-hydroxybenzoic acid and epigallocatechin), anti-bacterial (e.g., 3-Hydroxybenzyl alcohol, l-pyroglutamic acid, lecanoric acid), antifungal (e.g., lpyroglutamic acid, 9,12,13-Trihydroxyoctadec-10-enoic acid, hydroxyferulic acid), and chemotherapeutic (e.g., daunomycinone, mitoxantrone) related metabolites. Comparative analysis of 17 genomes from 16 Aspergillus species revealed abundant CAZymes (568 per species), secondary metabolite BGCs (73 per species), and transporters (1359 per species). Some BGCs are highly conserved in this section (e.g., pyranonigrin E and UNII-YC2Q1O94PT (ACR toxin I)), while others are incomplete or completely lost among species (e.g., bikaverin and chaetoglobosins were found exclusively in series Sclerotiorum, while asperlactone seemed completely lost). The results of this study, including genome analysis and metabolome characterization, emphasize the molecular diversity of A. affinis CMG 70, as well as of other species in the section Circumdati.
Collapse
Affiliation(s)
- Micael F. M. Gonçalves
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.F.M.G.); (S.H.); (M.T.); (A.C.E.)
| | - Sandra Hilário
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.F.M.G.); (S.H.); (M.T.); (A.C.E.)
| | - Marta Tacão
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.F.M.G.); (S.H.); (M.T.); (A.C.E.)
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Artur Alves
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.F.M.G.); (S.H.); (M.T.); (A.C.E.)
| | - Ana C. Esteves
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.F.M.G.); (S.H.); (M.T.); (A.C.E.)
| |
Collapse
|
19
|
Traquete F, Luz J, Cordeiro C, Sousa Silva M, Ferreira AEN. Binary Simplification as an Effective Tool in Metabolomics Data Analysis. Metabolites 2021; 11:metabo11110788. [PMID: 34822446 PMCID: PMC8621519 DOI: 10.3390/metabo11110788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Metabolomics aims to perform a comprehensive identification and quantification of the small molecules present in a biological system. Due to metabolite diversity in concentration, structure, and chemical characteristics, the use of high-resolution methodologies, such as mass spectrometry (MS) or nuclear magnetic resonance (NMR), is required. In metabolomics data analysis, suitable data pre-processing, and pre-treatment procedures are fundamental, with subsequent steps aiming at highlighting the significant biological variation between samples over background noise. Traditional data analysis focuses primarily on the comparison of the features' intensity values. However, intensity data are highly variable between experimental batches, instruments, and pre-processing methods or parameters. The aim of this work was to develop a new pre-treatment method for MS-based metabolomics data, in the context of sample profiling and discrimination, considering only the occurrence of spectral features, encoding feature presence as 1 and absence as 0. This "Binary Simplification" encoding (BinSim) was used to transform several benchmark datasets before the application of clustering and classification methods. The performance of these methods after the BinSim pre-treatment was consistently as good as and often better than after different combinations of traditional, intensity-based, pre-treatments. Binary Simplification is, therefore, a viable pre-treatment procedure that effectively simplifies metabolomics data-analysis pipelines.
Collapse
|
20
|
Song Y, Hanner RH, Meng B. Genome-wide screening of novel RT-qPCR reference genes for study of GLRaV-3 infection in wine grapes and refinement of an RNA isolation protocol for grape berries. PLANT METHODS 2021; 17:110. [PMID: 34711253 PMCID: PMC8554853 DOI: 10.1186/s13007-021-00808-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Grapevine, as an essential fruit crop with high economic values, has been the focus of molecular studies in diverse areas. Two challenges exist in the grapevine research field: (i) the lack of a rapid, user-friendly and effective RNA isolation protocol for mature dark-skinned berries and, (ii) the lack of validated reference genes that are stable for quantification of gene expression across desired experimental conditions. Successful isolation of RNA with sufficient yield and quality is essential for downstream analyses involving nucleic acids. However, ripe berries of dark-skinned grape cultivars are notoriously challenging in RNA isolation due to high contents of polyphenolics, polysaccharides, RNase and water. RESULTS We have optimized an RNA isolation protocol through modulating two factors at the lysis step that could impact results of RNA isolation - 2-ME concentration and berry mass. By finding the optimal combination among the two factors, our refined protocol was highly effective in isolating total RNA with high yield and quality from whole mature berries of an array of dark-skinned wine grape cultivars. Our protocol takes a much shorter time to complete, is highly effective, and eliminates the requirement for hazardous organic solvents. We have also shown that the resulting RNA preps were suitable for multiple downstream analyses, including the detection of viruses and amplification of grapevine genes using reverse transcription-polymerase chain reaction (RT-PCR), gene expression analysis via quantitative reverse transcription PCR (RT-qPCR), and RNA Sequencing (RNA-Seq). By using RNA-Seq data derived from Cabernet Franc, we have identified seven novel reference gene candidates (CYSP, NDUFS8, YLS8, EIF5A2, Gluc, GDT1, and EF-Hand) with stable expression across two tissue types, three developmental stages and status of infection with grapevine leafroll-associated virus 3 (GLRaV-3). We evaluated the stability of these candidate genes together with two conventional reference genes (actin and NAD5) using geNorm, NormFinder and BestKeeper. We found that the novel reference gene candidates outperformed both actin and NAD5. The three most stable reference genes were CYSP, NDUFS8 and YSL8, whereas actin and NAD5 were among the least stable. We further tested if there would be a difference in RT-qPCR quantification results when the most stable (CYSP) and the least stable (actin and NAD5) genes were used for normalization. We concluded that both actin and NAD5 led to erroneous RT-qPCR results in determining the statistical significance and fold-change values of gene expressional change. CONCLUSIONS We have formulated a rapid, safe and highly effective protocol for isolating RNA from recalcitrant berry tissue of wine grapes. The resulting RNA is of high quality and suitable for RT-qPCR and RNA-Seq. We have identified and validated a set of novel reference genes based on RNA-Seq dataset. We have shown that these new reference genes are superior over actin and NAD5, two of the conventional reference genes commonly used in early studies.
Collapse
Affiliation(s)
- Yashu Song
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON, N1G2W1, Canada.
| | - Robert H Hanner
- Department of Integrative Biology, University of Guelph, 50 Stone Road, Guelph, ON, N1G2W1, Canada
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON, N1G2W1, Canada
| |
Collapse
|
21
|
Maia M, Figueiredo A, Cordeiro C, Sousa Silva M. FT-ICR-MS-based metabolomics: A deep dive into plant metabolism. MASS SPECTROMETRY REVIEWS 2021. [PMID: 34545595 DOI: 10.1002/mas.21731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Metabolomics involves the identification and quantification of metabolites to unravel the chemical footprints behind cellular regulatory processes and to decipher metabolic networks, opening new insights to understand the correlation between genes and metabolites. In plants, it is estimated the existence of hundreds of thousands of metabolites and the majority is still unknown. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) is a powerful analytical technique to tackle such challenges. The resolving power and sensitivity of this ultrahigh mass accuracy mass analyzer is such that a complex mixture, such as plant extracts, can be analyzed and thousands of metabolite signals can be detected simultaneously and distinguished based on the naturally abundant elemental isotopes. In this review, FT-ICR-MS-based plant metabolomics studies are described, emphasizing FT-ICR-MS increasing applications in plant science through targeted and untargeted approaches, allowing for a better understanding of plant development, responses to biotic and abiotic stresses, and the discovery of new natural nutraceutical compounds. Improved metabolite extraction protocols compatible with FT-ICR-MS, metabolite analysis methods and metabolite identification platforms are also explored as well as new in silico approaches. Most recent advances in MS imaging are also discussed.
Collapse
Affiliation(s)
- Marisa Maia
- Departamento de Química e Bioquímica, Laboratório de FTICR e Espectrometria de Massa Estrutural, MARE-Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Grapevine Pathogen Systems Lab (GPS Lab), Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Lisboa, Portugal
| | - Andreia Figueiredo
- Departamento de Biologia Vegetal, Faculdade de Ciências, Grapevine Pathogen Systems Lab (GPS Lab), Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Lisboa, Portugal
| | - Carlos Cordeiro
- Departamento de Química e Bioquímica, Laboratório de FTICR e Espectrometria de Massa Estrutural, MARE-Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Sousa Silva
- Departamento de Química e Bioquímica, Laboratório de FTICR e Espectrometria de Massa Estrutural, MARE-Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
22
|
Ciubotaru RM, Franceschi P, Zulini L, Stefanini M, Škrab D, Rossarolla MD, Robatscher P, Oberhuber M, Vrhovsek U, Chitarrini G. Mono-Locus and Pyramided Resistant Grapevine Cultivars Reveal Early Putative Biomarkers Upon Artificial Inoculation With Plasmopara viticola. FRONTIERS IN PLANT SCIENCE 2021; 12:693887. [PMID: 34276743 PMCID: PMC8281963 DOI: 10.3389/fpls.2021.693887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/04/2021] [Indexed: 06/02/2023]
Abstract
One of the most economically important grapevine diseases is Downy mildew (DM) caused by the oomycete Plasmopara viticola. A strategy to reduce the use of fungicides to compensate for the high susceptibility of V. vinifera is the selection of grapevine varieties showing pathogen-specific resistance. We applied a metabolomics approach to evaluate the metabolic modulation in mono-locus resistant genotypes carrying one locus associated with P. viticola resistance (Rpv) (BC4- Rpv1, Bianca- Rpv3-1, F12P160- Rpv12, Solaris- Rpv10), as well as in pyramided resistant genotypes carrying more than one Rpv (F12P60- Rpv3-1; Rpv12 and F12P127- Rpv3-1, Rpv3-3; Rpv10) taking as a reference the susceptible genotype Pinot Noir. In order to understand if different sources of resistance are associated with different degrees of resistance and, implicitly, with different responses to the pathogen, we considered the most important classes of plant metabolite primary compounds, lipids, phenols and volatile organic compounds at 0, 12, 48, and 96 h post-artificial inoculation (hpi). We identified 264 modulated compounds; among these, 22 metabolites were found accumulated in significant quantities in the resistant cultivars compared to Pinot Noir. In mono-locus genotypes, the highest modulation of the metabolites was noticed at 48 and 96 hpi, except for Solaris, that showed a behavior similar to the pyramided genotypes in which the changes started to occur as early as 12 hpi. Bianca, Solaris and F12P60 showed the highest number of interesting compounds accumulated after the artificial infection and with a putative effect against the pathogen. In contrast, Pinot Noir showed a less effective defense response in containing DM growth.
Collapse
Affiliation(s)
- Ramona Mihaela Ciubotaru
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Pietro Franceschi
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Luca Zulini
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Marco Stefanini
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Domen Škrab
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | | | | | | | - Urska Vrhovsek
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Giulia Chitarrini
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Laimburg Research Centre, Auer, Italy
| |
Collapse
|
23
|
The Impact of Metabolic Scion-Rootstock Interactions in Different Grapevine Tissues and Phloem Exudates. Metabolites 2021; 11:metabo11060349. [PMID: 34070718 PMCID: PMC8228596 DOI: 10.3390/metabo11060349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 12/28/2022] Open
Abstract
In viticulture, grafting is used to propagate Phylloxera-susceptible European grapevines, thereby using resistant American rootstocks. Although scion–rootstock reciprocal signaling is essential for the formation of a proper vascular union and for coordinated growth, our knowledge of graft partner interactions is very limited. In order to elucidate the scale and the content of scion–rootstock metabolic interactions, we profiled the metabolome of eleven graft combination in leaves, stems, and phloem exudate from both above and below the graft union 5–6 months after grafting. We compared the metabolome of scions vs. rootstocks of homografts vs. heterografts and investigated the reciprocal effect of the rootstock on the scion metabolome. This approach revealed that (1) grafting has a minor impact on the metabolome of grafted grapevines when tissues and genotypes were compared, (2) heterografting affects rootstocks more than scions, (3) the presence of a heterologous grafting partner increases defense-related compounds in both scion and rootstocks in shorter and longer distances from the graft, and (4) leaves were revealed as the best tissue to search for grafting-related metabolic markers. These results will provide a valuable metabolomics resource for scion–rootstock interaction studies and will facilitate future efforts on the identification of metabolic markers for important agronomic traits in grafted grapevines.
Collapse
|
24
|
Metabolic Analysis Reveals Cry1C Gene Transformation Does Not Affect the Sensitivity of Rice to Rice Dwarf Virus. Metabolites 2021; 11:metabo11040209. [PMID: 33808359 PMCID: PMC8065979 DOI: 10.3390/metabo11040209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolomics is beginning to be used for assessing unintended changes in genetically modified (GM) crops. To investigate whether Cry1C gene transformation would induce metabolic changes in rice plants, and whether the metabolic changes would pose potential risks when Cry1C rice plants are exposed to rice dwarf virus (RDV), the metabolic profiles of Cry1C rice T1C-19 and its non-Bt parental rice MH63 under RDV-free and RDV-infected status were analyzed using gas chromatography–mass spectrometry (GC-MS). Compared to MH63 rice, slice difference was detected in T1C-19 under RDV-free conditions (less than 3%), while much more metabolites showed significant response to RDV infection in T1C-19 (15.6%) and in MH63 (5.0%). Pathway analysis showed biosynthesis of lysine, valine, leucine, and isoleucine may be affected by RDV infection in T1C-19. No significant difference in the contents of free amino acids (AAs) was found between T1C-19 and MH63 rice, and the free AA contents of the two rice plants showed similar responses to RDV infection. Furthermore, no significant differences of the RDV infection rates between T1C-19 and MH63 were detected. Our results showed the Cry1C gene transformation did not affect the sensitivity of rice to RDV, indicating Cry1C rice would not aggravate the epidemic and dispersal of RDV.
Collapse
|
25
|
Maia M, Ferreira AE, Cunha J, Eiras-Dias J, Cordeiro C, Figueiredo A, Silva MS. Comparison of the chemical diversity of Vitis rotundifolia and Vitis vinifera cv. ‘Cabernet Sauvignon’. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2021. [DOI: 10.1051/ctv/20213601001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Grapevine is one of the most important fruit plants in the world, mainly due to its grapes and related products, with a highly economic and cultural importance. Every year, vineyards are affected by several pathogen outbreaks and the only way to control them is through preventive applications of agrochemicals every 12 to 15 days. This approach is not sustainable and not always effective. The Vitis genus comprise different species that exhibit varying levels of resistance to pathogens, thus the understanding of the innate resistance/susceptibility mechanisms of these different Vitis species is crucial to cope with these threats. In this work, an untargeted metabolomics approach was followed, using Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR-MS), to analyse the metabolic chemical diversity of two Vitis species: Vitis rotundifolia (resistant to pathogens) and V. vinifera cv. ‘Cabernet Sauvignon’ (susceptible to pathogens). Chemical formulas from both Vitis were used to build Van Krevelen diagrams and compositional space plots, which do not require full metabolite identification and provide an easy comparison method. Based only on these visualization tools, it was shown that the V. rotundifolia metabolome is more complex than the metabolome of V. vinifera cv. ‘Cabernet Sauvignon’. Moreover, the regions that present a higher density are associated to lipids, polyketides and carbohydrates. Also, V. rotundifolia metabolome presented a higher ratio O/C compounds.
Collapse
|
26
|
Domenick TM, Gill EL, Vedam-Mai V, Yost RA. Mass Spectrometry-Based Cellular Metabolomics: Current Approaches, Applications, and Future Directions. Anal Chem 2020; 93:546-566. [PMID: 33146525 DOI: 10.1021/acs.analchem.0c04363] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Taylor M Domenick
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Emily L Gill
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-4283, United States.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-4283, United States
| | - Vinata Vedam-Mai
- Department of Neurology, University of Florida, Gainesville, Florida 32610, United States
| | - Richard A Yost
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|