1
|
Plante I, West DW, Weeks J, Risca VI. Simulation of Radiation-Induced DNA Damage and Protection by Histones Using the Code RITRACKS. BIOTECH 2024; 13:17. [PMID: 38921049 PMCID: PMC11201919 DOI: 10.3390/biotech13020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
(1) Background: DNA damage is of great importance in the understanding of the effects of ionizing radiation. Various types of DNA damage can result from exposure to ionizing radiation, with clustered types considered the most important for radiobiological effects. (2) Methods: The code RITRACKS (Relativistic Ion Tracks), a program that simulates stochastic radiation track structures, was used to simulate DNA damage by photons and ions spanning a broad range of linear energy transfer (LET) values. To perform these simulations, the transport code was modified to include cross sections for the interactions of ions or electrons with DNA and amino acids for ionizations, dissociative electron attachment, and elastic collisions. The radiochemistry simulations were performed using a step-by-step algorithm that follows the evolution of all particles in time, including reactions between radicals and DNA structures and amino acids. Furthermore, detailed DNA damage events, such as base pair positions, DNA fragment lengths, and fragment yields, were recorded. (3) Results: We report simulation results using photons and the ions 1H+, 4He2+, 12C6+, 16O8+, and 56Fe26+ at various energies, covering LET values from 0.3 to 164 keV/µm, and performed a comparison with other codes and experimental results. The results show evidence of DNA protection from damage at its points of contacts with histone proteins. (4) Conclusions: RITRACKS can provide a framework for studying DNA damage from a variety of ionizing radiation sources with detailed representations of DNA at the atomic scale, DNA-associated proteins, and resulting DNA damage events and statistics, enabling a broader range of future comparisons with experiments such as those based on DNA sequencing.
Collapse
Affiliation(s)
| | - Devany W. West
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY 10065, USA; (D.W.W.); (V.I.R.)
| | - Jason Weeks
- NASA Johnson Space Center, Houston, TX 77058, USA;
| | - Viviana I. Risca
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY 10065, USA; (D.W.W.); (V.I.R.)
| |
Collapse
|
2
|
Ilicic K, Dollinger G, Dombrowsky A, Greubel C, Girst S, Sammer M, Siebenwirth C, Schmid E, Friedrich T, Kundrát P, Friedland W, Scholz M, Combs SE, Schmid TE, Reindl J. Enhanced RBE of Particle Radiation Depends on Beam Size in the Micrometer Range. Radiat Res 2024; 201:140-149. [PMID: 38214379 DOI: 10.1667/rade-23-00217.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
High-linear energy transfer (LET) radiation, such as heavy ions is associated with a higher relative biological effectiveness (RBE) than low-LET radiation, such as photons. Irradiation with low- and high-LET particles differ in the interaction with the cellular matter and therefore in the spatial dose distribution. When a single high-LET particle interacts with matter, it results in doses of up to thousands of gray (Gy) locally concentrated around the ion trajectory, whereas the mean dose averaged over the target, such as a cell nucleus is only in the range of a Gy. DNA damage therefore accumulates in this small volume. In contrast, up to hundreds of low-LET particle hits are required to achieve the same mean dose, resulting in a quasi-homogeneous damage distribution throughout the cell nucleus. In this study, we investigated the dependence of RBE from different spatial dose depositions using different focused beam spot sizes of proton radiation with respect to the induction of chromosome aberrations and clonogenic cell survival. Human-hamster hybrid (AL) as well as Chinese hamster ovary cells (CHO-K1) were irradiated with focused low LET protons of 20 MeV (LET = 2.6 keV/µm) beam energy with a mean dose of 1.7 Gy in a quadratic matrix pattern with point spacing of 5.4 × 5.4 µm2 and 117 protons per matrix point at the ion microbeam SNAKE using different beam spot sizes between 0.8 µm and 2.8 µm (full width at half maximum). The dose-response curves of X-ray reference radiation were used to determine the RBE after a 1.7 Gy dose of radiation. The RBE for the induction of dicentric chromosomes and cell inactivation was increased after irradiation with the smallest beam spot diameter (0.8 µm for chromosome aberration experiments and 1.0 µm for cell survival experiments) compared to homogeneous proton radiation but was still below the RBE of a corresponding high LET single ion hit. By increasing the spot size to 1.6-1.8 µm, the RBE decreased but was still higher than for homogeneously distributed protons. By further increasing the spot size to 2.7-2.8 µm, the RBE was no longer different from the homogeneous radiation. Our experiments demonstrate that varying spot size of low-LET radiation gradually modifies the RBE. This underlines that a substantial fraction of enhanced RBE originates from inhomogeneous energy concentrations on the µm scale (mean intertrack distances of low-LET particles below 0.1 µm) and quantifies the link between such energy concentration and RBE. The missing fraction of RBE enhancement when comparing with high-LET ions is attributed to the high inner track energy deposition on the nanometer scale. The results are compared with model results of PARTRAC and LEM for chromosomal aberration and cell survival, respectively, which suggest mechanistic interpretations of the observed radiation effects.
Collapse
Affiliation(s)
- K Ilicic
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Technische Universität München, Germany
| | - G Dollinger
- Institute for Applied Physics and Measurement Technology, Universität der Bundeswehr München, Neubiberg, Germany
| | - A Dombrowsky
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Technische Universität München, Germany
| | - C Greubel
- Institute for Applied Physics and Measurement Technology, Universität der Bundeswehr München, Neubiberg, Germany
| | - S Girst
- Institute for Applied Physics and Measurement Technology, Universität der Bundeswehr München, Neubiberg, Germany
| | - M Sammer
- Institute for Applied Physics and Measurement Technology, Universität der Bundeswehr München, Neubiberg, Germany
| | - C Siebenwirth
- Department of Radiation Oncology, School of Medicine, Technische Universität München, Germany
- Institute for Applied Physics and Measurement Technology, Universität der Bundeswehr München, Neubiberg, Germany
| | - E Schmid
- Department for Anatomy and Cell Biology, Ludwig-Maximilians Universität München, Germany
| | - T Friedrich
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany
| | - P Kundrát
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany
| | - W Friedland
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - M Scholz
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany
| | - S E Combs
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Technische Universität München, Germany
| | - T E Schmid
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Technische Universität München, Germany
| | - J Reindl
- Institute for Applied Physics and Measurement Technology, Universität der Bundeswehr München, Neubiberg, Germany
| |
Collapse
|
3
|
Wang Z, Lei R, Zhang Z, Chen Z, Zhang J, Mao M, Li J, Tang H, Li M, Luo X, Yang J, Yan R, Liu Q, Lv L, Chen K, Chang YN, Yuan H, Liu T, Tong J, Zhu L, Liang T, Zhang W, Li J, Xing G. Boron-Containing MOF Nanoparticles with Stable Metabolism in U87-MG Cells Combining Microdosimetry To Evaluate Relative Biological Effectiveness of Boron Neutron Capture Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3232-3242. [PMID: 38221726 DOI: 10.1021/acsami.3c19113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Accurate prediction of the relative biological effectiveness (RBE) of boron neutron capture therapy (BNCT) is challenging. The therapy is different from other radiotherapy; the dynamic distribution of boron-containing compounds in tumor cells affects the therapeutic outcome considerably and hampers accurate measurement of the neutron-absorbed dose. Herein, we used boron-containing metal-organic framework nanoparticles (BMOFs) with high boron content to target U87-MG cells and maintain the concentration of the 10B isotope in cells. The content of boron in the cells could maintain 90% (60 ppm) within 20 min compared with that at the beginning; therefore, the accurate RBE of BNCT can be acquired. The effects of BNCT upon cells after neutron irradiation were observed, and the neutron-absorbed dose was obtained by Monte Carlo simulations. The RBE of BMOFs was 6.78, which was 4.1-fold higher than that of a small-molecule boron-containing agent (boric acid). The energy spectrum of various particles was analyzed by Monte Carlo simulations, and the RBE was verified theoretically. Our results suggested that the use of nanoparticle-based boron carriers in BNCT may have many advantages and that maintaining a stable boron distribution within cells may significantly improve the efficiency of BNCT.
Collapse
Affiliation(s)
- Zhijie Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runhong Lei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
| | - Zizhu Zhang
- Beijing Nuclear Industry Hospital (BNIH), Beijing Capture Technology Co. Ltd. (BCTC), Beijing 100032, China
| | - Ziteng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxin Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiru Mao
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiacheng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianwei Luo
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingru Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruyu Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuyang Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linwen Lv
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Nan Chang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Yuan
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Liu
- Beijing Nuclear Industry Hospital (BNIH), Beijing Capture Technology Co. Ltd. (BCTC), Beijing 100032, China
| | - Jianfei Tong
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Linbo Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Tianjiao Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Weihua Zhang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Juan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gengmei Xing
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Nabha R, De Saint-Hubert M, Marichal J, Esser J, Van Hoey O, Bäumer C, Verbeek N, Struelens L, Sterpin E, Tabury K, Marek L, Granja C, Timmermann B, Vanhavere F. Biophysical characterization of collimated and uncollimated fields in pencil beam scanning proton therapy. Phys Med Biol 2023; 68. [PMID: 36821866 DOI: 10.1088/1361-6560/acbe8d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/23/2023] [Indexed: 02/25/2023]
Abstract
Objective. The lateral dose fall-off in proton pencil beam scanning (PBS) technique remains the preferred choice for sparing adjacent organs at risk as opposed to the distal edge due to the proton range uncertainties and potentially high relative biological effectiveness. However, because of the substantial spot size along with the scattering in the air and in the patient, the lateral penumbra in PBS can be degraded. Combining PBS with an aperture can result in a sharper dose fall-off, particularly for shallow targets.Approach. The aim of this work was to characterize the radiation fields produced by collimated and uncollimated 100 and 140 MeV proton beams, using Monte Carlo simulations and measurements with a MiniPIX-Timepix detector. The dose and the linear energy transfer (LET) were then coupled with publishedin silicobiophysical models to elucidate the potential biological effects of collimated and uncollimated fields.Main results. Combining an aperture with PBS reduced the absorbed dose in the lateral fall-off and out-of-field by 60%. However, the results also showed that the absolute frequency-averaged LET (LETF) values increased by a maximum of 3.5 keVμm-1in collimated relative to uncollimated fields, while the dose-averaged LET (LETD) increased by a maximum of 7 keVμm-1. Despite the higher LET values produced by collimated fields, the predicted DNA damage yields remained lower, owing to the large dose reduction.Significance. This work demonstrated the dosimetric advantages of combining an aperture with PBS coupled with lower DNA damage induction. A methodology for calculating dose in water derived from measurements with a silicon-based detector was also presented. This work is the first to demonstrate experimentally the increase in LET caused by combining PBS with aperture, and to assess the potential DNA damage which is the initial step in the cascade of events leading to the majority of radiation-induced biological effects.
Collapse
Affiliation(s)
- Racell Nabha
- Radiation Protection Dosimetry and Calibration Expert Group, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.,KU Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | - Marijke De Saint-Hubert
- Radiation Protection Dosimetry and Calibration Expert Group, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | | | - Johannes Esser
- West German Proton Therapy Centre Essen, Essen, Germany.,West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Olivier Van Hoey
- Radiation Protection Dosimetry and Calibration Expert Group, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Christian Bäumer
- West German Proton Therapy Centre Essen, Essen, Germany.,West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany.,TU Dortmund University, Department of Physics, Dortmund, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Nico Verbeek
- West German Proton Therapy Centre Essen, Essen, Germany.,West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Lara Struelens
- Radiation Protection Dosimetry and Calibration Expert Group, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Edmond Sterpin
- KU Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium.,UCLouvain, Institut de Recherche Expérimentale et Clinique, MIRO Lab, Brussels, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | | | | | - Beate Timmermann
- West German Proton Therapy Centre Essen, Essen, Germany.,West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Particle Therapy, University Hospital Essen, Essen, Germany
| | - Filip Vanhavere
- Radiation Protection Dosimetry and Calibration Expert Group, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.,KU Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| |
Collapse
|
5
|
Mentana A, Lamartinière Y, Orsière T, Malard V, Payet M, Slomberg D, Guardamagna I, Lonati L, Grisolia C, Jha A, Lebaron-Jacobs L, Rose J, Ottolenghi A, Baiocco G. Tritiated Steel Micro-Particles: Computational Dosimetry and Prediction of Radiation-Induced DNA Damage for In Vitro Cell Culture Exposures. Radiat Res 2023; 199:25-38. [PMID: 36442022 DOI: 10.1667/rade-22-00043.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022]
Abstract
Biological effects of radioactive particles can be experimentally investigated in vitro as a function of particle concentration, specific activity and exposure time. However, a careful dosimetric analysis is needed to elucidate the role of radiation emitted by radioactive products in inducing cyto- and geno-toxicity: the quantification of radiation dose is essential to eventually inform dose-risk correlations. This is even more fundamental when radioactive particles are short-range emitters and when they have a chemical speciation that might further concur to the heterogeneity of energy deposition at the cellular and sub-cellular level. To this aim, we need to use computational models. In this work, we made use of a Monte Carlo radiation transport code to perform a computational dosimetric reconstruction for in vitro exposure of cells to tritiated steel particles of micrometric size. Particles of this kind have been identified as worth of attention in nuclear power industry and research: tritium easily permeates in steel elements of nuclear reactor machinery, and mechanical operations on these elements (e.g., sawing) during decommissioning of old facilities can result in particle dispersion, leading to human exposure via inhalation. Considering the software replica of a representative in vitro setup to study the effect of such particles, we therefore modelled the radiation field due to the presence of particles in proximity of cells. We developed a computational approach to reconstruct the dose range to individual cell nuclei in contact with a particle, as well as the fraction of "hit" cells and the average dose for the whole cell population, as a function of particle concentration in the culture medium. The dosimetric analysis also provided the basis to make predictions on tritium-induced DNA damage: we estimated the dose-dependent expected yield of DNA double strand breaks due to tritiated steel particle radiation, as an indicator of their expected biological effectiveness.
Collapse
Affiliation(s)
- Alice Mentana
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| | | | - Thierry Orsière
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Véronique Malard
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | | | - Danielle Slomberg
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Isabella Guardamagna
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| | - Leonardo Lonati
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| | | | - Awadhesh Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | | | - Jerome Rose
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Andrea Ottolenghi
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| | - Giorgio Baiocco
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| |
Collapse
|
6
|
Track Structure-Based Simulations on DNA Damage Induced by Diverse Isotopes. Int J Mol Sci 2022; 23:ijms232213693. [PMID: 36430172 PMCID: PMC9690858 DOI: 10.3390/ijms232213693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Diverse isotopes such as 2H, 3He, 10Be, 11C and 14C occur in nuclear reactions in ion beam radiotherapy, in cosmic ray shielding, or are intentionally accelerated in dating techniques. However, only a few studies have specifically addressed the biological effects of diverse isotopes and were limited to energies of several MeV/u. A database of simulations with the PARTRAC biophysical tool is presented for H, He, Li, Be, B and C isotopes at energies from 0.5 GeV/u down to stopping. The doses deposited to a cell nucleus and also the yields per unit dose of single- and double-strand breaks and their clusters induced in cellular DNA are predicted to vary among diverse isotopes of the same element at energies < 1 MeV/u, especially for isotopes of H and He. The results may affect the risk estimates for astronauts in deep space missions or the models of biological effectiveness of ion beams and indicate that radiation protection in 14C or 10Be dating techniques may be based on knowledge gathered with 12C or 9Be.
Collapse
|
7
|
Bertolet A, Ramos-Méndez J, McNamara A, Yoo D, Ingram S, Henthorn N, Warmenhoven JW, Faddegon B, Merchant M, McMahon SJ, Paganetti H, Schuemann J. Impact of DNA Geometry and Scoring on Monte Carlo Track-Structure Simulations of Initial Radiation-Induced Damage. Radiat Res 2022; 198:207-220. [PMID: 35767729 PMCID: PMC9458623 DOI: 10.1667/rade-21-00179.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/07/2022] [Indexed: 11/03/2022]
Abstract
Track structure Monte Carlo simulations are a useful tool to investigate the damage induced to DNA by ionizing radiation. These simulations usually rely on simplified geometrical representations of the DNA subcomponents. DNA damage is determined by the physical and physicochemical processes occurring within these volumes. In particular, damage to the DNA backbone is generally assumed to result in strand breaks. DNA damage can be categorized as direct (ionization of an atom part of the DNA molecule) or indirect (damage from reactive chemical species following water radiolysis). We also consider quasi-direct effects, i.e., damage originated by charge transfers after ionization of the hydration shell surrounding the DNA. DNA geometries are needed to account for the damage induced by ionizing radiation, and different geometry models can be used for speed or accuracy reasons. In this work, we use the Monte Carlo track structure tool TOPAS-nBio, built on top of Geant4-DNA, for simulation at the nanometer scale to evaluate differences among three DNA geometrical models in an entire cell nucleus, including a sphere/spheroid model specifically designed for this work. In addition to strand breaks, we explicitly consider the direct, quasi-direct, and indirect damage induced to DNA base moieties. We use results from the literature to determine the best values for the relevant parameters. For example, the proportion of hydroxyl radical reactions between base moieties was 80%, and between backbone, moieties was 20%, the proportion of radical attacks leading to a strand break was 11%, and the expected ratio of base damages and strand breaks was 2.5-3. Our results show that failure to update parameters for new geometric models can lead to significant differences in predicted damage yields.
Collapse
Affiliation(s)
- Alejandro Bertolet
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - José Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Aimee McNamara
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dohyeon Yoo
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Samuel Ingram
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Nicholas Henthorn
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - John-William Warmenhoven
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Bruce Faddegon
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Michael Merchant
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Stephen J McMahon
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Kundrát P, Pachnerová Brabcová K, Jelínek Michaelidesová A, Zahradníček O, Danilová I, Štěpán V, Jamborová Z, Davídková M. BORON-ENHANCED BIOLOGICAL EFFECTIVENESS OF PROTON IRRADIATION: STRATEGY TO ASSESS THE UNDERPINNING MECHANISM. RADIATION PROTECTION DOSIMETRY 2022; 198:527-531. [PMID: 36005957 DOI: 10.1093/rpd/ncac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Proton radiotherapy for the treatment of cancer offers an excellent dose distribution. Cellular experiments have shown that in terms of biological effects, the sharp dose distribution is further amplified, by as much as 75%, in the presence of boron. It is a matter of debate whether the underlying physical processes involve the nuclear reaction of 11B with protons or 10B with secondary neutrons, both producing densely ionizing short-ranged particles. Likewise, potential roles of intercellular communication or boron acting as a radiosensitizer are not clear. We present an ongoing research project based on a multiscale approach to elucidate the mechanism by which boron enhances the effectiveness of proton irradiation in the Bragg peak. It combines experimental with simulation tools to study the physics of proton-boron interactions, and to analyze intra- and inter-cellular boron biology upon proton irradiation.
Collapse
Affiliation(s)
- Pavel Kundrát
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
| | - Kateřina Pachnerová Brabcová
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
| | - Anna Jelínek Michaelidesová
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 110 00 Praha 1, Czech Republic
| | - Oldřich Zahradníček
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
| | - Irina Danilová
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 110 00 Praha 1, Czech Republic
| | - Václav Štěpán
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 110 00 Praha 1, Czech Republic
| | - Zuzana Jamborová
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 110 00 Praha 1, Czech Republic
| | - Marie Davídková
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
| |
Collapse
|
9
|
Danforth JM, Provencher L, Goodarzi AA. Chromatin and the Cellular Response to Particle Radiation-Induced Oxidative and Clustered DNA Damage. Front Cell Dev Biol 2022; 10:910440. [PMID: 35912116 PMCID: PMC9326100 DOI: 10.3389/fcell.2022.910440] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/21/2022] [Indexed: 12/03/2022] Open
Abstract
Exposure to environmental ionizing radiation is prevalent, with greatest lifetime doses typically from high Linear Energy Transfer (high-LET) alpha particles via the radioactive decay of radon gas in indoor air. Particle radiation is highly genotoxic, inducing DNA damage including oxidative base lesions and DNA double strand breaks. Due to the ionization density of high-LET radiation, the consequent damage is highly clustered wherein ≥2 distinct DNA lesions occur within 1–2 helical turns of one another. These multiply-damaged sites are difficult for eukaryotic cells to resolve either quickly or accurately, resulting in the persistence of DNA damage and/or the accumulation of mutations at a greater rate per absorbed dose, relative to lower LET radiation types. The proximity of the same and different types of DNA lesions to one another is challenging for DNA repair processes, with diverse pathways often confounding or interplaying with one another in complex ways. In this context, understanding the state of the higher order chromatin compaction and arrangements is essential, as it influences the density of damage produced by high-LET radiation and regulates the recruitment and activity of DNA repair factors. This review will summarize the latest research exploring the processes by which clustered DNA damage sites are induced, detected, and repaired in the context of chromatin.
Collapse
|
10
|
The Effect of Hypoxia on Relative Biological Effectiveness and Oxygen Enhancement Ratio for Cells Irradiated with Grenz Rays. Cancers (Basel) 2022; 14:cancers14051262. [PMID: 35267573 PMCID: PMC8909589 DOI: 10.3390/cancers14051262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/11/2022] [Accepted: 02/25/2022] [Indexed: 12/31/2022] Open
Abstract
Grenz-ray therapy (GT) is commonly used for dermatological radiotherapy and has a higher linear energy transfer, relative biological effectiveness (RBE) and oxygen enhancement ratio (OER). GT is a treatment option for lentigo maligna and lentigo maligna melanoma. This study aims to calculate the RBE for DNA double-strand break (DSB) induction and cell survival under hypoxic conditions for GT. The yield of DSBs induced by GT is calculated at the aerobic and hypoxic conditions, using a Monte Carlo damage simulation (MCDS) software. The RBE value for cell survival is calculated using the repair–misrepair–fixation (RMF) model. The RBE values for cell survival for cells irradiated by 15 kV, 10 kV and 10 kVp and titanium K-shell X-rays (4.55 kV) relative to 60Co γ-rays are 1.0–1.6 at the aerobic conditions and moderate hypoxia (2% O2), respectively, but increase to 1.2, 1.4 and 1.9 and 2.1 in conditions of severe hypoxia (0.1% O2). The OER values for DSB induction relative to 60Co γ-rays are about constant and ~2.4 for GT, but the OER for cell survival is 2.8–2.0 as photon energy decreases from 15 kV to 4.55 kV. The results indicate that GT results in more DSB induction and allows effective tumor control for superficial and hypoxic tumors.
Collapse
|
11
|
Matsuya Y, Kai T, Sato T, Ogawa T, Hirata Y, Yoshii Y, Parisi A, Liamsuwan T. Track-structure modes in particle and heavy ion transport code system (PHITS): application to radiobiological research. Int J Radiat Biol 2021; 98:148-157. [PMID: 34930091 DOI: 10.1080/09553002.2022.2013572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE In radiation physics, Monte Carlo radiation transport simulations are powerful tools to evaluate the cellular responses after irradiation. When investigating such radiation-induced biological effects, it is essential to perform track structure simulations by explicitly considering each atomic interaction in liquid water at the sub-cellular and DNA scales. The Particle and Heavy-Ion Transport code System (PHITS) is a Monte Carlo code which enables to calculate track structure at DNA scale by employing the track-structure modes for electrons, protons and carbon ions. In this paper, we review the recent development status and future prospects of the track-structure modes in the PHITS code. CONCLUSIONS To date, the physical features of these modes have been verified using the available experimental data and Monte Carlo simulation results reported in literature. These track-structure modes can be used for calculating microdosimetric distributions to estimate cell survival and for estimating initial DNA damage yields. The use of PHITS track-structure mode is expected not only to clarify the underlying mechanisms of radiation effects but also to predict curative effects in radiation therapy. The results of PHITS simulations coupled with biophysical models will contribute to the radiobiological studies by precisely predicting radiation-induced biological effects based on the Monte Carlo approach.
Collapse
Affiliation(s)
- Yusuke Matsuya
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Japan
| | - Takeshi Kai
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Japan
| | - Tatsuhiko Sato
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Japan
| | - Tatsuhiko Ogawa
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Japan
| | - Yuho Hirata
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Japan
| | - Yuji Yoshii
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Alessio Parisi
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida
| | - Thiansin Liamsuwan
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
12
|
Chan CC, Chen FH, Hsiao YY. Impact of Hypoxia on Relative Biological Effectiveness and Oxygen Enhancement Ratio for a 62-MeV Therapeutic Proton Beam. Cancers (Basel) 2021; 13:2997. [PMID: 34203882 PMCID: PMC8232608 DOI: 10.3390/cancers13122997] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 01/11/2023] Open
Abstract
This study uses the yields of double-strand breaks (DSBs) to determine the relative biological effectiveness (RBE) of proton beams, using cell survival as a biological endpoint. DSB induction is determined when cells locate at different depths (6 positions) along the track of 62 MeV proton beams. The DNA damage yields are estimated using Monte Carlo Damage Simulation (MCDS) software. The repair outcomes are estimated using Monte Carlo excision repair (MCER) simulations. The RBE for cell survival at different oxygen concentrations is calculated using the repair-misrepair-fixation (RMF) model. Using 60Co γ-rays (linear energy transfer (LET) = 2.4 keV/μm) as the reference radiation, the RBE for DSB induction and enzymatic DSB under aerobic condition (21% O2) are in the range 1.0-1.5 and 1.0-1.6 along the track depth, respectively. In accord with RBE obtained from experimental data, RMF model-derived RBE values for cell survival are in the range of 1.0-3.0. The oxygen enhancement ratio (OER) for cell survival (10%) decreases from 3.0 to 2.5 as LET increases from 1.1 to 22.6 keV/μm. The RBE values for severe hypoxia (0.1% O2) are in the range of 1.1-4.4 as LET increases, indicating greater contributions of direct effects for protons. Compared with photon therapy, the overall effect of 62 MeV proton beams results in greater cell death and is further intensified under hypoxic conditions.
Collapse
Affiliation(s)
- Chun-Chieh Chan
- Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Fang-Hsin Chen
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 33302, Taiwan;
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital—Linkou Branch, Taoyuan 33305, Taiwan
| | - Ya-Yun Hsiao
- Department of Radiology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|