1
|
Chen R, Jiao Y, Zhu JS, Wang XH, Zhao MT. Frequency-specific static and dynamic neural activity indices in children with different attention deficit hyperactivity disorder subtypes: a resting-state fMRI study. Front Hum Neurosci 2024; 18:1412572. [PMID: 39188407 PMCID: PMC11345791 DOI: 10.3389/fnhum.2024.1412572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/17/2024] [Indexed: 08/28/2024] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders in childhood. Numerous resting-state functional magnetic resonance imaging (rs-fMRI) studies in ADHD have been performed using traditional low-frequency bands (0.01-0.08 Hz). However, the neural activity patterns of frequency subbands in ADHD still require further investigation. The purpose of this study is to explore the frequency-dependent characteristics and neural activity patterns of ADHD subtypes. We selected the ADHD combined type (ADHD-C, N = 25), ADHD inattentive type (ADHD-I, N = 26) and typically developing (TD, N = 28) children from the ADHD-200 Consortium. Based on the slow-5 band (0.01-0.027 Hz) and slow-4 band (0.027-0.073 Hz), we generated static and dynamic fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo) maps for each participant. A flexible-factorial analysis of variance model was performed on static and temporal dynamic rs-fMRI measurements within two subbands. Results revealed that the orbital-frontal gyrus, precuneus, superior temporal gyrus and angular gyrus were found to have obvious frequency band and group interaction effects. The intrinsic neural activity differences among three groups were more prominent in the slow-5 frequency band compared to the slow-4 band. In addition, the indices of significant interaction regions showed correlations with the progression of the disease and the features in slow-5 showed an advantageous diagnostic performance compared with those in slow-4. The results suggested the intrinsic neural activities of ADHD subtypes were frequency-dependent. The frequency-specific analysis of static and dynamic brain activity may provide a deeper understanding of neurophysiological dysfunction patterns in ADHD subtypes and provide supplementary information for assessing ADHD subtypes.
Collapse
Affiliation(s)
- Ran Chen
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging and Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
- Department of Radiology, Nanjing BenQ Medical Center, the Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Jiao
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging and Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
- Network Information Center, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Jun-Sa Zhu
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging and Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Xun-Heng Wang
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Mei-Ting Zhao
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging and Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
2
|
Li J, Kuang S, Liu Y, Wu Y, Li H. Structural and functional brain alterations in subthreshold depression: A multimodal coordinate-based meta-analysis. Hum Brain Mapp 2024; 45:e26702. [PMID: 38726998 PMCID: PMC11083971 DOI: 10.1002/hbm.26702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
Imaging studies of subthreshold depression (StD) have reported structural and functional abnormalities in a variety of spatially diverse brain regions. However, there is no consensus among different studies. In the present study, we applied a multimodal meta-analytic approach, the Activation Likelihood Estimation (ALE), to test the hypothesis that StD exhibits spatially convergent structural and functional brain abnormalities compared to healthy controls. A total of 31 articles with 25 experiments were included, collectively representing 1001 subjects with StD. We found consistent differences between StD and healthy controls mainly in the left insula across studies with various neuroimaging methods. Further exploratory analyses found structural atrophy and decreased functional activities in the right pallidum and thalamus in StD, and abnormal spontaneous activity converged to the middle frontal gyrus. Coordinate-based meta-analysis found spatially convergent structural and functional impairments in StD. These findings provide novel insights for understanding the neural underpinnings of subthreshold depression and enlighten the potential targets for its early screening and therapeutic interventions in the future.
Collapse
Affiliation(s)
- Jingyu Li
- School of PsychologyShanghai Normal UniversityShanghaiChina
- Lab for Educational Big Data and Policymaking, Ministry of EducationShanghai Normal UniversityShanghaiChina
| | - Shunrong Kuang
- School of PsychologyShanghai Normal UniversityShanghaiChina
- Lab for Educational Big Data and Policymaking, Ministry of EducationShanghai Normal UniversityShanghaiChina
| | - Yang Liu
- School of PsychologyShanghai Normal UniversityShanghaiChina
- Department of PsychologyUniversity of WashingtonSeattleWashingtonUSA
| | - Yuedong Wu
- Lab for Educational Big Data and Policymaking, Ministry of EducationShanghai Normal UniversityShanghaiChina
| | - Haijiang Li
- School of PsychologyShanghai Normal UniversityShanghaiChina
- Lab for Educational Big Data and Policymaking, Ministry of EducationShanghai Normal UniversityShanghaiChina
- The Research Base of Online Education for Shanghai Middle and Primary SchoolsShanghaiChina
| |
Collapse
|
3
|
Ao Y, Catal Y, Lechner S, Hua J, Northoff G. Intrinsic neural timescales relate to the dynamics of infraslow neural waves. Neuroimage 2024; 285:120482. [PMID: 38043840 DOI: 10.1016/j.neuroimage.2023.120482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/05/2023] Open
Abstract
The human brain is a highly dynamic organ that operates across a variety of timescales, the intrinsic neural timescales (INT). In addition to the INT, the neural waves featured by its phase-related processes including their cycles with peak/trough and rise/fall play a key role in shaping the brain's neural activity. However, the relationship between the brain's ongoing wave dynamics and INT remains yet unclear. In this study, we utilized functional magnetic resonance imaging (fMRI) rest and task data from the Human Connectome Project (HCP) to investigate the relationship of infraslow wave dynamics [as measured in terms of speed by changes in its peak frequency (PF)] with INT. Our findings reveal that: (i) the speed of phase dynamics (PF) is associated with distinct parts of the ongoing phase cycles, namely higher PF in peak/trough and lower PF in rise/fall; (ii) there exists a negative correlation between phase dynamics (PF) and INT such that slower PF relates to longer INT; (iii) exposure to a movie alters both PF and INT across the different phase cycles, yet their negative correlation remains intact. Collectively, our results demonstrate that INT relates to infraslow phase dynamics during both rest and task states.
Collapse
Affiliation(s)
- Yujia Ao
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yasir Catal
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Stephan Lechner
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Research Group Neuroinformatics, Faculty of Computer Science, University of Vienna, 1010 Vienna, Austria; Vienna Doctoral School Cognition, Behavior and Neuroscience, University of Vienna, 1030 Vienna, Austria
| | - Jingyu Hua
- Department of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
4
|
Ao Y, Yang C, Drewes J, Jiang M, Huang L, Jing X, Northoff G, Wang Y. Spatiotemporal dedifferentiation of the global brain signal topography along the adult lifespan. Hum Brain Mapp 2023; 44:5906-5918. [PMID: 37800366 PMCID: PMC10619384 DOI: 10.1002/hbm.26484] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023] Open
Abstract
Age-related variations in many regions and/or networks of the human brain have been uncovered using resting-state functional magnetic resonance imaging. However, these findings did not account for the dynamical effect the brain's global activity (global signal [GS]) causes on local characteristics, which is measured by GS topography. To address this gap, we tested GS topography including its correlation with age using a large-scale cross-sectional adult lifespan dataset (n = 492). Both GS topography and its variation with age showed frequency-specific patterns, reflecting the spatiotemporal characteristics of the dynamic change of GS topography with age. A general trend toward dedifferentiation of GS topography with age was observed in both spatial (i.e., less differences of GS between different regions) and temporal (i.e., less differences of GS between different frequencies) dimensions. Further, methodological control analyses suggested that although most age-related dedifferentiation effects remained across different preprocessing strategies, some were triggered by neuro-vascular coupling and physiological noises. Together, these results provide the first evidence for age-related effects on global brain activity and its topographic-dynamic representation in terms of spatiotemporal dedifferentiation.
Collapse
Affiliation(s)
- Yujia Ao
- Institute of Brain and Psychological SciencesSichuan Normal UniversityChengduChina
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Chengxiao Yang
- Institute of Brain and Psychological SciencesSichuan Normal UniversityChengduChina
| | - Jan Drewes
- Institute of Brain and Psychological SciencesSichuan Normal UniversityChengduChina
| | - Muliang Jiang
- First Affiliated HospitalGuangxi Medical UniversityNanningChina
| | - Lihui Huang
- Institute of Brain and Psychological SciencesSichuan Normal UniversityChengduChina
| | - Xiujuan Jing
- Institute of Brain and Psychological SciencesSichuan Normal UniversityChengduChina
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Yifeng Wang
- Institute of Brain and Psychological SciencesSichuan Normal UniversityChengduChina
| |
Collapse
|
5
|
Llorens A, Bellier L, Blenkmann AO, Ivanovic J, Larsson PG, Lin JJ, Endestad T, Solbakk AK, Knight RT. Decision and response monitoring during working memory are sequentially represented in the human insula. iScience 2023; 26:107653. [PMID: 37674986 PMCID: PMC10477069 DOI: 10.1016/j.isci.2023.107653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/05/2023] [Accepted: 07/11/2023] [Indexed: 09/08/2023] Open
Abstract
Emerging research supports a role of the insula in human cognition. Here, we used intracranial EEG to investigate the spatiotemporal dynamics in the insula during a verbal working memory (vWM) task. We found robust effects for theta, beta, and high frequency activity (HFA) during probe presentation requiring a decision. Theta band activity showed differential involvement across left and right insulae while sequential HFA modulations were observed along the anteroposterior axis. HFA in anterior insula tracked decision making and subsequent HFA was observed in posterior insula after the behavioral response. Our results provide electrophysiological evidence of engagement of different insula subregions in both decision-making and response monitoring during vWM and expand our knowledge of the role of the insula in complex human behavior.
Collapse
Affiliation(s)
- Anaïs Llorens
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Université de Franche-Comté, SUPMICROTECH, CNRS, Institut FEMTO-ST, 25000 Besançon, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team TURC, 75014 Paris, France
| | - Ludovic Bellier
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Alejandro O. Blenkmann
- Department of Psychology, University of Oslo, Oslo, Norway
- RITMO Center for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
| | | | - Pål G. Larsson
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Jack J. Lin
- Department of Neurology and Center for Mind and Brain, University of California, Davis, Davis, CA, USA
| | - Tor Endestad
- Department of Psychology, University of Oslo, Oslo, Norway
- RITMO Center for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
- Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway
| | - Anne-Kristin Solbakk
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- RITMO Center for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
- Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway
| | - Robert T. Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
6
|
Wang Y, Yang C, Li G, Ao Y, Jiang M, Cui Q, Pang Y, Jing X. Frequency-dependent effective connections between local signals and the global brain signal during resting-state. Cogn Neurodyn 2023; 17:555-560. [PMID: 37007197 PMCID: PMC10050607 DOI: 10.1007/s11571-022-09831-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 03/07/2022] [Accepted: 06/04/2022] [Indexed: 11/03/2022] Open
Abstract
The psychological and physiological meanings of resting-state global brain signal (GS) and GS topography have been well confirmed. However, the causal relationship between GS and local signals was largely unknown. Based on the Human Connectome Project dataset, we investigated the effective GS topography using the Granger causality (GC) method. In consistent with GS topography, both effective GS topographies from GS to local signals and from local signals to GS showed greater GC values in sensory and motor regions in most frequency bands, suggesting that the unimodal superiority is an intrinsic architecture of GS topography. However, the significant frequency effect for GC values from GS to local signals was primarily located in unimodal regions and dominated at slow 4 frequency band whereas that from local signals to GS was mainly located in transmodal regions and dominated at slow 6 frequency band, consisting with the opinion that the more integrated the function, the lower the frequency. These findings provided valuable insight for the frequency-dependent effective GS topography, improving the understanding of the underlying mechanism of GS topography. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09831-0.
Collapse
Affiliation(s)
- Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, No.5, Jing’an Road, Chengdu, 610066 China
| | - Chengxiao Yang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, No.5, Jing’an Road, Chengdu, 610066 China
| | - Gen Li
- Institute of Brain and Psychological Sciences, Sichuan Normal University, No.5, Jing’an Road, Chengdu, 610066 China
| | - Yujia Ao
- Institute of Brain and Psychological Sciences, Sichuan Normal University, No.5, Jing’an Road, Chengdu, 610066 China
| | - Muliang Jiang
- First Affiliated Hospital, Guangxi Medical University, Nanning, 530021 China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Yajing Pang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiujuan Jing
- Tianfu College of Southwestern University of Finance and Economics, Chengdu, China
| |
Collapse
|
7
|
Moro V, Pacella V, Scandola M, Besharati S, Rossato E, Jenkinson P, Fotopoulou A. A fronto-insular-parietal network for the sense of body ownership. Cereb Cortex 2023; 33:512-522. [PMID: 35235644 PMCID: PMC7614133 DOI: 10.1093/cercor/bhac081] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Neuropsychological disturbances in the sense of limb ownership provide unique opportunities to study the neurocognitive basis of body ownership. Previous small sample studies that showed discrete cortical lesions cannot explain why multisensory, affective, and cognitive manipulations alter disownership symptoms. We tested the novel hypothesis that disturbances in the sense of limb ownership would be associated not only with discrete cortical lesions but also with disconnections of white-matter tracts supporting specific functional networks. We drew on an advanced lesion-analysis and Bayesian statistics approach in 49 right-hemisphere patients (23 with and 26 without limb disownership). Our results reveal that disturbances in the sense of ownership are associated with lesions in the supramarginal gyrus and disconnections of a fronto-insular-parietal network, involving the frontal-insular and frontal inferior longitudinal tracts, confirming previous disconnection hypotheses. Together with previous behavioral and neuroanatomical results, these findings lead us to propose that the sense of body ownership involves the convergence of bottom-up, multisensory integration, and top-down monitoring of sensory salience based on contextual demands.
Collapse
Affiliation(s)
- V. Moro
- NPSY-Lab.VR, Department of Human Sciences, University of Verona, 37129 Verona, Italy
| | - V. Pacella
- NPSY-Lab.VR, Department of Human Sciences, University of Verona, 37129 Verona, Italy,Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, CS F-33076 Bordeaux
| | - M. Scandola
- NPSY-Lab.VR, Department of Human Sciences, University of Verona, 37129 Verona, Italy
| | - S. Besharati
- Department of Psychology, School of Human and Community Development, University of Witwatersrand, 2000 Johannesburg, South Africa,CIFAR Azrieli Global Scholars program, CIFAR, Toronto, ON M5G 1M1 Canada
| | - E. Rossato
- Department of Rehabilitation, IRCSS Sacro Cuore Don Calabria, 37024, Negrar, Verona, Italy
| | - P.M. Jenkinson
- Institute for Social Neuroscience, Ivanhoe, Melbourne, Victoria. Australia
| | - A Fotopoulou
- Department of Clinical, Educational and Health Psychology, University College of London, London WC1E 6BT, UK
| |
Collapse
|
8
|
Qiao J, Li X, Wang Y, Wang Y, Li G, Lu P, Wang S. The Infraslow Frequency Oscillatory Transcranial Direct Current Stimulation Over the Left Dorsolateral Prefrontal Cortex Enhances Sustained Attention. Front Aging Neurosci 2022; 14:879006. [PMID: 35431889 PMCID: PMC9009338 DOI: 10.3389/fnagi.2022.879006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 12/18/2022] Open
Abstract
Background The vigilance fluctuation and decrement of sustained attention have large detrimental consequences to most tasks in daily life, especially among the elderly. Non-invasive brain stimulations (e.g., transcranial direct current stimulation, tDCS) have been widely applied to improve sustained attention, however, with mixed results. Objective An infraslow frequency oscillatory tDCS approach was designed to improve sustained attention. Methods The infraslow frequency oscillatory tDCS (O-tDCS) over the left dorsolateral prefrontal cortex at 0.05 Hz was designed and compared with conventional tDCS (C-tDCS) to test whether this new protocol improves sustained attention more effectively. The sustained attention was evaluated by reaction time and accuracy. Results Compared with the C-tDCS and sham, the O-tDCS significantly enhanced sustained attention by increasing response accuracy, reducing response time, and its variability. These effects were predicted by the evoked oscillation of response time at the stimulation frequency. Conclusion Similar to previous studies, the modulation effect of C-tDCS on sustained attention is weak and unstable. In contrast, the O-tDCS effectively and systematically enhances sustained attention by optimizing vigilance fluctuation. The modulation effect of O-tDCS is probably driven by neural oscillations at the infraslow frequency range.
Collapse
Affiliation(s)
- Jingwen Qiao
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Xinyu Li
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Youhao Wang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Gen Li
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Ping Lu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Shouyan Wang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Hartig R, Karimi A, Evrard HC. Interconnected sub-networks of the macaque monkey gustatory connectome. Front Neurosci 2022; 16:818800. [PMID: 36874640 PMCID: PMC9978403 DOI: 10.3389/fnins.2022.818800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 08/24/2022] [Indexed: 02/18/2023] Open
Abstract
Macroscopic taste processing connectivity was investigated using functional magnetic resonance imaging during the presentation of sour, salty, and sweet tastants in anesthetized macaque monkeys. This examination of taste processing affords the opportunity to study the interactions between sensory regions, central integrators, and effector areas. Here, 58 brain regions associated with gustatory processing in primates were aggregated, collectively forming the gustatory connectome. Regional regression coefficients (or β-series) obtained during taste stimulation were correlated to infer functional connectivity. This connectivity was then evaluated by assessing its laterality, modularity and centrality. Our results indicate significant correlations between same region pairs across hemispheres in a bilaterally interconnected scheme for taste processing throughout the gustatory connectome. Using unbiased community detection, three bilateral sub-networks were detected within the graph of the connectome. This analysis revealed clustering of 16 medial cortical structures, 24 lateral structures, and 18 subcortical structures. Across the three sub-networks, a similar pattern was observed in the differential processing of taste qualities. In all cases, the amplitude of the response was greatest for sweet, but the network connectivity was strongest for sour and salty tastants. The importance of each region in taste processing was computed using node centrality measures within the connectome graph, showing centrality to be correlated across hemispheres and, to a smaller extent, region volume. Connectome hubs exhibited varying degrees of centrality with a prominent leftward increase in insular cortex centrality. Taken together, these criteria illustrate quantifiable characteristics of the macaque monkey gustatory connectome and its organization as a tri-modular network, which may reflect the general medial-lateral-subcortical organization of salience and interoception processing networks.
Collapse
Affiliation(s)
- Renée Hartig
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Functional and Comparative Neuroanatomy Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karl University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany.,Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Ali Karimi
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Henry C Evrard
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Functional and Comparative Neuroanatomy Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karl University of Tübingen, Tübingen, Germany.,Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States.,International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
10
|
Ikeda S, Kawano K, Watanabe S, Yamashita O, Kawahara Y. Predicting behavior through dynamic modes in resting-state fMRI data. Neuroimage 2021; 247:118801. [PMID: 34896588 DOI: 10.1016/j.neuroimage.2021.118801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022] Open
Abstract
Dynamic properties of resting-state functional connectivity (FC) provide rich information on brain-behavior relationships. Dynamic mode decomposition (DMD) has been used as a method to characterize FC dynamics. However, it remains unclear whether dynamic modes (DMs), spatial-temporal coherent patterns computed by DMD, provide information about individual behavioral differences. This study established a methodological approach to predict individual differences in behavior using DMs. Furthermore, we investigated the contribution of DMs within each of seven specific frequency bands (0-0.1,...,0.6-0.7 Hz) for prediction. To validate our approach, we tested whether each of 59 behavioral measures could be predicted by performing multivariate pattern analysis on a Gram matrix, which was created using subject-specific DMs computed from resting-state functional magnetic resonance imaging (rs-fMRI) data of individuals. DMD successfully predicted behavior and outperformed temporal and spatial independent component analysis, which is the conventional data decomposition method for extracting spatial activity patterns. Most of the behavioral measures that were predicted with significant accuracy in a permutation test were related to cognition. We found that DMs within frequency bands <0.2 Hz primarily contributed to prediction and had spatial structures similar to several common resting-state networks. Our results indicate that DMD is efficient in extracting spatiotemporal features from rs-fMRI data.
Collapse
Affiliation(s)
- Shigeyuki Ikeda
- RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan; ATR Neural Information Analysis Laboratories, Kyoto 619-0288, Japan.
| | - Koki Kawano
- RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Soichi Watanabe
- RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Okito Yamashita
- RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan; ATR Neural Information Analysis Laboratories, Kyoto 619-0288, Japan
| | - Yoshinobu Kawahara
- RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan; Institute of Mathematics for Industry, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
11
|
Zhang Y, Chen H, Zeng M, He J, Qi G, Zhang S, Liu R. Abnormal Whole Brain Functional Connectivity Pattern Homogeneity and Couplings in Migraine Without Aura. Front Hum Neurosci 2020; 14:619839. [PMID: 33362498 PMCID: PMC7759668 DOI: 10.3389/fnhum.2020.619839] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/18/2020] [Indexed: 02/05/2023] Open
Abstract
Previous studies have reported abnormal amplitude of low-frequency fluctuation and regional homogeneity in patients with migraine without aura using resting-state functional magnetic resonance imaging. However, how whole brain functional connectivity pattern homogeneity and its corresponding functional connectivity changes in patients with migraine without aura is unknown. In the current study, we employed a recently developed whole brain functional connectivity homogeneity (FcHo) method to identify the voxel-wise changes of functional connectivity patterns in 21 patients with migraine without aura and 21 gender and age matched healthy controls. Moreover, resting-state functional connectivity analysis was used to reveal the changes of corresponding functional connectivities. FcHo analyses identified significantly decreased FcHo values in the posterior cingulate cortex (PCC), thalamus (THA), and left anterior insula (AI) in patients with migraine without aura compared to healthy controls. Functional connectivity analyses further found decreased functional connectivities between PCC and medial prefrontal cortex (MPFC), between AI and anterior cingulate cortex, and between THA and left precentral gyrus (PCG). The functional connectivities between THA and PCG were negatively correlated with pain intensity. Our findings indicated that whole brain FcHo and connectivity abnormalities of these regions may be associated with functional impairments in pain processing in patients with migraine without aura.
Collapse
Affiliation(s)
- Yingxia Zhang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, The Third Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Hong Chen
- Department of Radiology, The Third Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Min Zeng
- Department of Radiology, The Third Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Junwei He
- Department of Radiology, The Third Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Guiqiang Qi
- Department of Radiology, The Third Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Shaojin Zhang
- Department of Radiology, The Third Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Rongbo Liu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|