1
|
Xie X, Wang P, Jin M, Wang Y, Qi L, Wu C, Guo S, Li C, Zhang X, Yuan Y, Ma X, Liu F, Liu W, Liu H, Duan C, Ye P, Li X, Borish L, Zhao W, Feng X. IL-1β-induced epithelial cell and fibroblast transdifferentiation promotes neutrophil recruitment in chronic rhinosinusitis with nasal polyps. Nat Commun 2024; 15:9101. [PMID: 39438439 PMCID: PMC11496833 DOI: 10.1038/s41467-024-53307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Neutrophilic inflammation contributes to multiple chronic inflammatory airway diseases, including asthma and chronic rhinosinusitis with nasal polyps (CRSwNP), and is associated with an unfavorable prognosis. Here, using single-cell RNA sequencing (scRNA-seq) to profile human nasal mucosa obtained from the inferior turbinates, middle turbinates, and nasal polyps of CRSwNP patients, we identify two IL-1 signaling-induced cell subsets-LY6D+ club cells and IDO1+ fibroblasts-that promote neutrophil recruitment by respectively releasing S100A8/A9 and CXCL1/2/3/5/6/8 into inflammatory regions. IL-1β, a pro-inflammatory cytokine involved in IL-1 signaling, induces the transdifferentiation of LY6D+ club cells and IDO1+ fibroblasts from primary epithelial cells and fibroblasts, respectively. In an LPS-induced neutrophilic CRSwNP mouse model, blocking IL-1β activity with a receptor antagonist significantly reduces the numbers of LY6D+ club cells and IDO1+ fibroblasts and mitigates nasal inflammation. This study implicates the function of two cell subsets in neutrophil recruitment and demonstrates an IL-1-based intervention for mitigating neutrophilic inflammation in CRSwNP.
Collapse
Affiliation(s)
- Xinyu Xie
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Key Medical and Health Discipline, Qilu Hospital of Shandong University, Jinan, China
| | - Pin Wang
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Key Medical and Health Discipline, Qilu Hospital of Shandong University, Jinan, China
| | - Min Jin
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yue Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Lijie Qi
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Key Medical and Health Discipline, Qilu Hospital of Shandong University, Jinan, China
| | - Changhua Wu
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Shu Guo
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Changqing Li
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaojun Zhang
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Key Medical and Health Discipline, Qilu Hospital of Shandong University, Jinan, China
| | - Ye Yuan
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinyi Ma
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Fangying Liu
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Weiyuan Liu
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Heng Liu
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Chen Duan
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Key Medical and Health Discipline, Qilu Hospital of Shandong University, Jinan, China
| | - Ping Ye
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Key Medical and Health Discipline, Qilu Hospital of Shandong University, Jinan, China
| | - Xuezhong Li
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Key Medical and Health Discipline, Qilu Hospital of Shandong University, Jinan, China
| | - Larry Borish
- Departments of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Departments of Microbiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Wei Zhao
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, China
- Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, China
| | - Xin Feng
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China.
- Shandong Provincial Key Medical and Health Discipline, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
2
|
Ahn SH, Oh JT, Kim DH, Lee EJ, Rha MS, Cho HJ, Kim CH. S100A9 induces tissue remodeling of human nasal epithelium in chronic rhinosinusitis with nasal polyp. Int Forum Allergy Rhinol 2024. [PMID: 39367796 DOI: 10.1002/alr.23460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Chronic inflammation triggers tissue remodeling in human nasal epithelial (HNE) cells. S100A9, a protein secreted by inflammatory cells, exhibits potent proinflammatory activity. However, its effect on HNE cell remodeling, such as squamous metaplasia, remains unclear. Therefore, this study aimed to determine the effects and underlying pathways of S100A9 on HNE cell remodeling and investigate its clinical implications in chronic rhinosinusitis (CRS). METHODS Cultured HNE cells were treated with S100A9. Bulk RNA sequencing was performed to analyze gene ontology (GO). Ingenuity pathway analysis (IPA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were also analyzed. Additionally, immunohistochemistry and multiplex immunofluorescence were performed on tissue samples obtained from 60 patients, whose clinical informations were also reviewed. RESULTS GO enrichment analysis indicated that S100A9 induced tissue remodeling in HNE cells toward squamous metaplasia. IPA and KEGG commonly showed that S100A9 affected HNE cells associated with the IL-17 signaling pathway, including target molecules such as matrix metalloproteinase 1 (MMP1) and small proline-rich protein 2A (SPRR2A). Squamous metaplasia with a marked expression of S100A9 was observed in 50% of CRS with nasal polyps (CRSwNPs). In addition, in multiplex immunofluorescence, the S100A9 in sub-epithelium was co-expressed with myeloperoxidase, a neutrophil marker, and MMP1 and SPRR2A were strongly expressed in epithelial remodeling. Clinically, the expression of S100A9 correlated with sino-nasal outcome test-22 (r = 0.294, p = 0.022) and Lund-Mackay scores (r = 0.348, p = 0.006). CONCLUSION S100A9 induces tissue remodeling in HNE cells. Its increased expression in CRSwNP, particularly squamous epithelium, correlates with disease severity. This suggests the clinical potential of S100A9 as a biomarker for CRS severity.
Collapse
Affiliation(s)
- Sang Hyeon Ahn
- Department of Otorhinolaryngology, Daejin Medical Center, Bundang Jesaeng General Hospital, Seongnam, South Korea
| | - Jun Taek Oh
- Department of Otorhinolaryngology, Daejin Medical Center, Bundang Jesaeng General Hospital, Seongnam, South Korea
| | - Dae Hyun Kim
- Department of Otorhinolaryngology, Daejin Medical Center, Bundang Jesaeng General Hospital, Seongnam, South Korea
| | - Eun Jung Lee
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Min-Seok Rha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, South Korea
- Medical Research Center, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
3
|
Fan HL, Han ZT, Gong XR, Wu YQ, Fu YJ, Zhu TM, Li H. Macrophages in CRSwNP: Do they deserve more attention? Int Immunopharmacol 2024; 134:112236. [PMID: 38744174 DOI: 10.1016/j.intimp.2024.112236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Chronic rhinosinusitis (CRS) represents a heterogeneous disorder primarily characterized by the persistent inflammation of the nasal cavity and paranasal sinuses. The subtype known as chronic rhinosinusitis with nasal polyposis (CRSwNP) is distinguished by a significantly elevated recurrence rate and augmented challenges in the management of nasal polyps. The pathogenesis underlying this subtype remains incompletely understood. Macrophages play a crucial role in mediating the immune system's response to inflammatory stimuli. These cells exhibit remarkable plasticity and heterogeneity, differentiating into either the pro-inflammatory M1 phenotype or the anti-inflammatory and reparative M2 phenotype depending on the surrounding microenvironment. In CRSwNP, macrophages demonstrate reduced production of Interleukin 10 (IL-10), compromised phagocytic activity, and decreased autophagy. Dysregulation of pro-resolving mediators may occur during the inflammatory resolution process, which could potentially hinder the adequate functioning of anti-inflammatory macrophages in facilitating resolution. Collectively, these factors may contribute to the prolonged inflammation observed in CRSwNP. Additionally, macrophages may enhance fibrin cross-linking through the release of factor XIII-A (FAXIII), promoting fibrin deposition and plasma protein retention. Macrophages also modulate vascular permeability by releasing Vascular endothelial growth factor (VEGF). Moreover, they may disrupt the balance between Matrix Metalloproteinases (MMPs) and Tissue Inhibitors of Metalloproteinases (TIMPs), which favors extracellular matrix (ECM) degradation, edema formation, and pseudocyst development. Accumulating evidence suggests a close association between macrophage infiltration and CRSwNP; however, the precise mechanisms underlying this relationship warrant further investigation. In different subtypes of CRSwNP, different macrophage phenotypic aggregations trigger different types of inflammatory features. Increasing evidence suggests that macrophage infiltration is closely associated with CRSwNP, but the mechanism and the relationship between macrophage typing and CRSwNP endophenotyping remain to be further explored. This review discusses the role of different types of macrophages in the pathogenesis of different types of CRSwNP and their contribution to polyp formation, in the hope that a better understanding of the role of macrophages in specific CRSwNP will contribute to a precise and individualized understanding of the disease.
Collapse
Affiliation(s)
- Hong-Li Fan
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhou-Tong Han
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xin-Ru Gong
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yu-Qi Wu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi-Jie Fu
- School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan, China
| | - Tian-Min Zhu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Hui Li
- School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Huang Y, Yan B, Meng C, Zhang L, Wang C. Matrix metalloproteinases in chronic rhinosinusitis. Expert Rev Clin Immunol 2024; 20:547-558. [PMID: 38251631 DOI: 10.1080/1744666x.2024.2302362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Matrix metalloproteinases (MMPs) are a group of enzymes that are essential in maintaining extracellular matrix (ECM) homeostasis, regulating inflammation and tissue remodeling. In chronic rhinosinusitis (CRS), the overexpression of certain MMPs can contribute to chronic nasal tissue inflammation, ECM remodeling, and tissue repair. AREAS COVERED This review provides a comprehensive overview of the biological characteristics and functions of the MMP family, particularly focusing on the expression and activity of MMPs in patients with CRS, and delves into their role in the pathogenesis of CRS and their potential as therapeutic targets. EXPERT OPINION MMPs are important in tissue remodeling and have been implicated in the pathophysiology of CRS. Previous studies have shown that the expression of MMPs is upregulated in the nasal mucosa of patients with CRS and positively correlates with the severity of CRS. However, there is still a large gap in the research content of MMP in CRS, and the specific expression and pathogenic mechanism of MMP still need to be clarified. The significance and value of the ratio of MMP to tissue inhibitors of metalloproteinase (TIMP) in diseases still need to be demonstrated. Moreover, further studies are needed to assess the efficacy and safety of biologics that target MMPs in patients with CRS.
Collapse
Affiliation(s)
- Yuqing Huang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Bing Yan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Meng
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Khayer N, Jalessi M, Farhadi M, Azad Z. S100a9 might act as a modulator of the Toll-like receptor 4 transduction pathway in chronic rhinosinusitis with nasal polyps. Sci Rep 2024; 14:9722. [PMID: 38678138 PMCID: PMC11055867 DOI: 10.1038/s41598-024-60205-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
Chronic rhinosinusitis with nasal polyp (CRSwNP) is a highly prevalent disorder characterized by persistent nasal and sinus mucosa inflammation. Despite significant morbidity and decreased quality of life, there are limited effective treatment options for such a disease. Therefore, identifying causal genes and dysregulated pathways paves the way for novel therapeutic interventions. In the current study, a three-way interaction approach was used to detect dynamic co-expression interactions involved in CRSwNP. In this approach, the internal evolution of the co-expression relation between a pair of genes (X, Y) was captured under a change in the expression profile of a third gene (Z), named the switch gene. Subsequently, the biological relevancy of the statistically significant triplets was confirmed using both gene set enrichment analysis and gene regulatory network reconstruction. Finally, the importance of identified switch genes was confirmed using a random forest model. The results suggested four dysregulated pathways in CRSwNP, including "positive regulation of intracellular signal transduction", "arachidonic acid metabolic process", "spermatogenesis" and "negative regulation of cellular protein metabolic process". Additionally, the S100a9 as a switch gene together with the gene pair {Cd14, Tpd52l1} form a biologically relevant triplet. More specifically, we suggested that S100a9 might act as a potential upstream modulator in toll-like receptor 4 transduction pathway in the major CRSwNP pathologies.
Collapse
Affiliation(s)
- Nasibeh Khayer
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Maryam Jalessi
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, Rasoul Akram Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, Rasoul Akram Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Azad
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Hsu LF, Ratanasereeprasert N, Wang SK, Chen JT, Chen YJ, Yeh TH, Sung HH, Yao CCJ. Craniofacial and olfactory sensory changes after long-term unilateral nasal obstruction-an animal study using MMP-3-LUC transgenic rats. Sci Rep 2024; 14:2616. [PMID: 38297007 PMCID: PMC10830476 DOI: 10.1038/s41598-024-51544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/06/2024] [Indexed: 02/02/2024] Open
Abstract
Nasal obstruction exerts considerable physiological effects on the respiratory system and craniofacial morphology during the developmental stage. This study used MMP-3-LUC transgenic rats for in vivo tracking of long-term expression in the rat nasal region after unilateral nasal obstruction. Skeletal changes of the craniofacial, nasal, and sinus regions were measured through micro-computed tomography examination and analysis with 3D image processing and calculation. Matrix metalloproteinase-3 and olfactory marker protein expression were also investigated through immunohistochemistry (IHC). Unilateral nasal obstruction significantly reduced the MMP-3 signal in the nasal region of MMP-3-LUC transgenic rats, which was mainly expressed in the respiratory epithelium. Long-term obstruction also caused morphological changes of the craniofacial hard tissue, such as nasal septal deviation, longer inter-jaw distance, and increased maxillary molar dental height. It also caused compensatory growth in olfactory nerve bundles and the olfactory epithelium, as confirmed by IHC. In our study, long-term unilateral nasal obstruction caused nasal septal deviation toward the unobstructed side, hyper divergent facial development including longer molar dental height, and reduced MMP-3 production. However, further investigation is necessary to explore the mechanism in depth.
Collapse
Affiliation(s)
- Li-Fang Hsu
- Department of Dentistry, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, No. 1, Chang-Te Street, Taipei, 10048, Taiwan
| | - Nutthakarn Ratanasereeprasert
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, No. 1, Chang-Te Street, Taipei, 10048, Taiwan
| | - Shih-Kai Wang
- Department of Dentistry, National Taiwan University School of Dentistry, Taipei, Taiwan
| | - Jung-Tsu Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, No. 1, Chang-Te Street, Taipei, 10048, Taiwan
| | - Yi-Jane Chen
- Department of Dentistry, National Taiwan University School of Dentistry, Taipei, Taiwan
- Division of Orthodontics and Dentofacial Orthopedics, Dental Department, National Taiwan University Hospital, Taipei, Taiwan
| | - Te-Huei Yeh
- Department of Otolaryngology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Hsuan Sung
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Chung-Chen Jane Yao
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, No. 1, Chang-Te Street, Taipei, 10048, Taiwan.
- Division of Orthodontics and Dentofacial Orthopedics, Dental Department, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
7
|
Kan X, Guan R, Hao J, Zhao C, Sun Y. Integrative analysis of immune-related signature profiles in eosinophilic chronic rhinosinusitis with nasal polyposis. FEBS Open Bio 2023; 13:2273-2289. [PMID: 37867480 PMCID: PMC10699107 DOI: 10.1002/2211-5463.13720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023] Open
Abstract
Eosinophilic chronic rhinosinusitis with nasal polyps (ECRSwNP) is a subtype of chronic rhinosinusitis (CRS) that is associated with the nasal cavity and sinus polyps, elevated levels of eosinophils, and dysregulated immune responses to environmental triggers. The underlying cause of ECRSwNP is not well understood, and few studies have focused on the unique features of this subtype of CRS. Our study integrated proteomic and transcriptomic data with multi-omic bioinformatics analyses. We collected nasal polyps from three ECRSwNP patients and three control patients and identified 360 differentially expressed (DE) proteins, including 119 upregulated and 241 downregulated proteins. Functional analyses revealed several significant associations with ECRSwNP, including focal adhesion, hypertrophic cardiomyopathy, and extracellular matrix (ECM)-receptor interactions. Additionally, a protein-protein interaction (PPI) network revealed seven hub proteins that may play crucial roles in the development of ECRSwNP. We also compared the proteomic data with publicly available transcriptomic data and identified a total of 1077 DE genes. Pathways enriched by the DE genes involved angiogenesis, positive regulation of cell motility, and immune responses. Furthermore, we investigated immune cell infiltration and identified biomarkers associated with eosinophil and M2 macrophage infiltration using CIBERSORT and Weighted Gene Correlation Network Analysis (WGCNA). Our results provide a more complete picture of the immune-related mechanisms underlying ECRSwNP, which could contribute to the development of more precise treatment strategies for this condition.
Collapse
Affiliation(s)
- Xuan Kan
- Department of Otorhinolaryngology, Head and Neck SurgeryThe Second Affiliated Hospital, Harbin Medical UniversityChina
| | - Ruidi Guan
- Department of Otorhinolaryngology, Head and Neck SurgeryThe Second Affiliated Hospital, Harbin Medical UniversityChina
| | - Jianwei Hao
- Department of Otorhinolaryngology, Head and Neck SurgeryThe Second Affiliated Hospital, Harbin Medical UniversityChina
| | - Chunyuan Zhao
- Department of Otorhinolaryngology, Head and Neck SurgeryThe Second Affiliated Hospital, Harbin Medical UniversityChina
| | - Yanan Sun
- Department of Otorhinolaryngology, Head and Neck SurgeryThe Second Affiliated Hospital, Harbin Medical UniversityChina
| |
Collapse
|
8
|
Yoshikawa M, Asaba K, Nakayama T. Prioritization of nasal polyp-associated genes by integrating GWAS and eQTL summary data. Front Genet 2023; 14:1195213. [PMID: 37424726 PMCID: PMC10326843 DOI: 10.3389/fgene.2023.1195213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Background: Nasal polyps (NP) are benign inflammatory growths of nasal and paranasal sinus mucosa that can substantially impair patients' quality of life by various symptoms such as nasal obstruction, insomnia, and anosmia. NP often relapse even after surgical treatment, and the curative therapy would be challenging without understanding the underlying mechanisms. Genome wide association studies (GWASs) on NP have been conducted; however, few genes that are causally associated with NP have been identified. Methods: We aimed to prioritize NP associated genes for functional follow-up studies using the summary data-based Mendelian Randomization (SMR) and Bayesian colocalization (COLOC) methods to integrate the summary-level data of the GWAS on NP and the expression quantitative trait locus (eQTL) study in blood. We utilized the GWAS data including 5,554 NP cases and 258,553 controls with 34 genome-wide significant loci from the FinnGen consortium (data freeze 8) and the eQTL data from 31,684 participants of predominantly European ancestry from the eQTLGen consortium. Results: The SMR analysis identified several genes including TNFRSF18, CTSK, and IRF1 that were associated with NP due to not linkage but pleiotropy or causality. The COLOC analysis strongly suggested that these genes and the trait of NP were affected by shared causal variants, and thus were colocalized. An enrichment analysis by Metascape suggested that these genes might be involved in the biological process of cellular response to cytokine stimulus. Conclusion: We could prioritize several NP associated genes including TNFRSF18, CTSK, and IRF1 for follow-up functional studies in future to elucidate the underlying disease mechanisms.
Collapse
Affiliation(s)
- Masahiro Yoshikawa
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Technology Development of Disease Proteomics Division, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Kensuke Asaba
- Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Tomohiro Nakayama
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Technology Development of Disease Proteomics Division, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Singh P, Ali SA. Multifunctional Role of S100 Protein Family in the Immune System: An Update. Cells 2022; 11:cells11152274. [PMID: 35892571 PMCID: PMC9332480 DOI: 10.3390/cells11152274] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
S100 is a broad subfamily of low-molecular weight calcium-binding proteins (9–14 kDa) with structural similarity and functional discrepancy. It is required for inflammation and cellular homeostasis, and can work extracellularly, intracellularly, or both. S100 members participate in a variety of activities in a healthy cell, including calcium storage and transport (calcium homeostasis). S100 isoforms that have previously been shown to play important roles in the immune system as alarmins (DAMPs), antimicrobial peptides, pro-inflammation stimulators, chemo-attractants, and metal scavengers during an innate immune response. Currently, during the pandemic, it was found that several members of the S100 family are implicated in the pathophysiology of COVID-19. Further, S100 family protein members were proposed to be used as a prognostic marker for COVID-19 infection identification using a nasal swab. In the present review, we compiled the vast majority of recent studies that focused on the multifunctionality of S100 proteins in the complex immune system and its associated activities. Furthermore, we shed light on the numerous molecular approaches and signaling cascades regulated by S100 proteins during immune response. In addition, we discussed the involvement of S100 protein members in abnormal defense systems during the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Parul Singh
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, Karnal 132001, India;
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, Karnal 132001, India;
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +91-8708591790
| |
Collapse
|
10
|
Jinlian Xiaodu Decoction Protects against Bleomycin-Induced Pulmonary Fibrosis in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4206364. [PMID: 35783517 PMCID: PMC9246571 DOI: 10.1155/2022/4206364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/17/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022]
Abstract
Background Jinlian Xiaodu Decoction (JXD) was reported to have anti-inflammatory and lung protection effects. This study aimed to explore the role and mechanism of JXD on bleomycin (BLM)-induced pulmonary fibrosis (PF). Methods The UHPLC-Q/TOF-MS system was applied to analyze JXD composition. The PF model was established by BLM intratracheal administration in Wistar rats. Subsequently, BLM-treated rats were intragastrically administered with dexamethasone (DXM, 1 g/kg/d) or JXD (3.5, 7 or 14 g/kg/d). Next, the lung coefficient was calculated; H&E, Masson, and TUNEL staining were used for lung morphological analysis and apoptosis assessment. Bronchoalveolar lavage fluid (BALF) biochemical analysis was conducted to count the inflammatory cell number. The expression of inflammatory factors mRNA in the lung tissue and BALF were measured by qRT-PCR. The content and activity of oxidative stress-related proteins were detected. The expression of PF-related, apoptosis-related, and TGF-β1 pathway-related protein were assessed by immunohistochemistry or Western blot. Results Twenty-six compounds were identified from JXD in both negative and positive ion modes. In BLM-induced rats, JXD reduced the lung coefficient and alleviated PF injury. JXD decreased inflammatory cell count and TNF-α, IL-1β, IL-6, and MCP-1 content. Meanwhile, JXD blunted BLM-induced oxidative stress and a high level of HYP. Furthermore, TUNEL analysis found that JXD inhibited cell apoptosis and increased Bcl-2/Bax ratio in BLM-induced lung. Moreover, JXD relieved the role of BLM on α-SMA, TGF-β1, collagen I, fibronectin, E-cadherin protein expression, and the phosphorylation of Smad2/3 in PF rat. Conclusion This study revealed the protective effect and possible element of JXD on BLM-caused PF.
Collapse
|
11
|
Liu J, Li J, Du H, Xu L, Yang Z, Yuan M, Zhang K, Li J, Xing W, Wang S, Hu T, Wang J, Wang J, Gong Q. Three Potential Tumor Markers Promote Metastasis and Recurrence of Colorectal Cancer by Regulating the Inflammatory Response: ADAM8, LYN, and S100A9. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3118046. [PMID: 35103068 PMCID: PMC8800630 DOI: 10.1155/2022/3118046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
Metastasis and recurrence are major causes of colorectal cancer (CRC) death, but their molecular mechanisms are unclear. In this study, genes associated with CRC metastasis and recurrence were identified by weighted gene coexpression network analysis, selecting the top 25% most variant genes in the dataset GSE33113. By average linkage hierarchical clustering, a total of 21 modules were generated. One key module was identified as the most relevant to the prognosis of CRC. Gene Ontology analysis indicated that genes associated with tumor metastasis and recurrence in this module were significantly enriched in inflammatory biological functions. Functional analysis was performed on the key module, and candidate hub genes (ADAM8, LYN, and S100A9) were screened out by expression and survival analysis. In summary, the three core genes identified in this study could greatly improve our understanding of CRC metastasis and recurrence. The results also provide a theoretical basis for the use of three core genes (ADAM8, LYN, and S100A9) as a combined marker for early diagnosis, which could benefit CRC patients.
Collapse
Affiliation(s)
- Jiawei Liu
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing Li
- Department of Hepatobiliary Surgery, Kailuan General Hospital, Tangshan, Hebei 063210, China
| | - Haolin Du
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
- Department of Clinical Laboratory, Tianshui Hospital of Traditional Chinese Medicine, Tianshui 741000, China
| | - Liming Xu
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Zhenbang Yang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Mengjiao Yuan
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Kaiyue Zhang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Jialei Li
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Wenjun Xing
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Shoujie Wang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Tingting Hu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Jinjin Wang
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Jin Wang
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Qian Gong
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| |
Collapse
|
12
|
Jiang Y, Song F, Hu X, Guo D, Liu Y, Wang J, Jiang L, Huang P, Zhang Y. Analysis of dynamic molecular networks: the progression from colorectal adenoma to cancer. J Gastrointest Oncol 2021; 12:2823-2837. [PMID: 35070410 PMCID: PMC8748073 DOI: 10.21037/jgo-21-674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the deadliest cancers worldwide. It is the fourth most deadly cancer in the world with nearly 900,000 people die every year, the progression of polyps into cancer as one of its most common developmental pathways. METHODS This study obtained gene chip data collections from the Gene Expression Omnibus for colorectal adenoma (GSE8671) and colorectal cancer (GSE32323). Differentially expressed genes (DEGs) in normal tissue and different stages of CRC were analyzed for clustering, comparison, and visualization using R software. The Cytoscape plugin DyNetViewer was used to construct a dynamic protein-protein interaction network. Subsequently, through the Database for Annotation, Visualization and Integrated Discovery, the DEGs were functionally annotated and path enriched. RESULTS Our study found that the matrix metalloprotein family and chemokines were the key regulatory genes that drove CRC progression. The Wnt signaling pathway, chemokine signaling pathway, and CRC pathway were the pathological pathways for CRC. Maintenance played an important role in this process. In addition, the related nodes and pathways at various stages may be potential mechanisms for promoting dynamic CRC progression. CONCLUSIONS Our study provides a better understanding of the dynamic pattern of molecular interaction networks during CRC progression and provides relevant markers for more accurate screening of cancer in polyps.
Collapse
Affiliation(s)
- Yuchen Jiang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Feifeng Song
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaoping Hu
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Dandan Guo
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yujia Liu
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jiafeng Wang
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Liehao Jiang
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Ping Huang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Yiwen Zhang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
13
|
The S100 Protein Family as Players and Therapeutic Targets in Pulmonary Diseases. Pulm Med 2021; 2021:5488591. [PMID: 34239729 PMCID: PMC8214497 DOI: 10.1155/2021/5488591] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
The S100 protein family consists of over 20 members in humans that are involved in many intracellular and extracellular processes, including proliferation, differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation, tissue repair, and migration/invasion. Although there are structural similarities between each member, they are not functionally interchangeable. The S100 proteins function both as intracellular Ca2+ sensors and as extracellular factors. Dysregulated responses of multiple members of the S100 family are observed in several diseases, including the lungs (asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, cystic fibrosis, pulmonary hypertension, and lung cancer). To this degree, extensive research was undertaken to identify their roles in pulmonary disease pathogenesis and the identification of inhibitors for several S100 family members that have progressed to clinical trials in patients for nonpulmonary conditions. This review outlines the potential role of each S100 protein in pulmonary diseases, details the possible mechanisms observed in diseases, and outlines potential therapeutic strategies for treatment.
Collapse
|
14
|
New Biomarkers of Hymenoptera Venom Allergy in a Group of Inflammation Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084011. [PMID: 33920429 PMCID: PMC8069624 DOI: 10.3390/ijerph18084011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 01/30/2023]
Abstract
Hymenoptera venom allergy significantly affects the quality of life. Due to the divergences in the results of the available test and clinical symptoms of patients, the current widely applied diagnostic methods are often insufficient to classify patients for venom immunotherapy (VIT). Therefore it is still needed to search for new, more precise, and accurate diagnostic methods. Hence, this research aimed to discover new biomarkers of Hymenoptera venom allergy in a group of inflammation factors using set of multi-marker Bioplex panel. The adoption of a novel methodology based on Luminex/xMAP enabled simultaneous determination of serum levels of 37 different inflammatory proteins in one experiment. The study involved 21 patients allergic to wasp and/or honey bee venom and 42 healthy participants. According to univariate and multivariate statistics, soluble CD30/tumor necrosis factor receptor superfamily, member 8 (sCD30/TNFRSF8), and the soluble tumor necrosis factor receptor 1 (sTNF-R1) may be considered as effective prognostic factors, their circulating levels were significantly decreased in the allergy group (p-value < 0.05; the Area Under the Curve (AUC) ~0.7; Variable Importance in Projection (VIP) scores >1.2). The obtained results shed new light on the allergic inflammatory response and may contribute to modification and improvement of the diagnostic and monitoring methods. Further, large-scale studies are still needed to explain mechanisms of action of studied compounds and to definitively prove their usefulness in clinical practice.
Collapse
|