1
|
Bondi CD, Hartman HL, Tan RJ. NRF2 in kidney physiology and disease. Physiol Rep 2024; 12:e15961. [PMID: 38418382 PMCID: PMC10901725 DOI: 10.14814/phy2.15961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 03/01/2024] Open
Abstract
The role of NRF2 in kidney biology has received considerable interest over the past decade. NRF2 transcriptionally controls genes responsible for cellular protection against oxidative and electrophilic stress and has anti-inflammatory functions. NRF2 is expressed throughout the kidney and plays a role in salt and water handling. In disease, animal studies show that NRF2 protects against tubulointerstitial damage and reduces interstitial fibrosis and tubular atrophy, and may slow progression of polycystic kidney disease. However, the role of NRF2 in proteinuric glomerular diseases is controversial. Although the NRF2 inducer, bardoxolone methyl (CDDO-Me), increases glomerular filtration rate in humans, it has not been shown to slow disease progression in diabetic kidney disease and Alport syndrome. Furthermore, bardoxolone methyl was associated with negative effects on fluid retention, proteinuria, and blood pressure. Several animal studies replicate findings of worsened proteinuria and a more rapid progression of kidney disease, although considerable controversy exists. It is clear that further study is needed to better understand the effects of NRF2 in the kidney. This review summarizes the available data to clarify the promise and risks associated with targeting NRF2 activity in the kidney.
Collapse
Affiliation(s)
- Corry D. Bondi
- Renal‐Electrolyte Division, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Hannah L. Hartman
- Renal‐Electrolyte Division, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Roderick J. Tan
- Renal‐Electrolyte Division, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
2
|
Elshani M, Um IH, Leung S, Reynolds PA, Chapman A, Kudsy M, Harrison DJ. Transcription Factor NFE2L1 Decreases in Glomerulonephropathies after Podocyte Damage. Cells 2023; 12:2165. [PMID: 37681897 PMCID: PMC10487238 DOI: 10.3390/cells12172165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
Podocyte cellular injury and detachment from glomerular capillaries constitute a critical factor contributing to kidney disease. Notably, transcription factors are instrumental in maintaining podocyte differentiation and homeostasis. This study explores the hitherto uninvestigated expression of Nuclear Factor Erythroid 2-related Factor 1 (NFE2L1) in podocytes. We evaluated the podocyte expression of NFE2L1, Nuclear Factor Erythroid 2-related Factor 2 (NFE2L2), and NAD(P)H:quinone Oxidoreductase (NQO1) in 127 human glomerular disease biopsies using multiplexed immunofluorescence and image analysis. We found that both NFE2L1 and NQO1 expressions were significantly diminished across all observed renal diseases. Furthermore, we exposed human immortalized podocytes and ex vivo kidney slices to Puromycin Aminonucleoside (PAN) and characterized the NFE2L1 protein isoform expression. PAN treatment led to a reduction in the nuclear expression of NFE2L1 in ex vivo kidney slices and podocytes.
Collapse
Affiliation(s)
- Mustafa Elshani
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
- Pathology, Laboratory Medicine, Royal Infirmary of Edinburgh, Little France, Edinburgh EH16 6NA, UK
- NuCana plc, 3 Lochside Way, Edinburgh EH12 9DT, UK
| | - In Hwa Um
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
| | - Steve Leung
- Urology Department, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Paul A. Reynolds
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
| | - Alex Chapman
- Urology Department, Victoria Hospital, Hayfield Road, Kirkcaldy KY2 5AH, UK
| | - Mary Kudsy
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
| | - David J. Harrison
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
- Pathology, Laboratory Medicine, Royal Infirmary of Edinburgh, Little France, Edinburgh EH16 6NA, UK
| |
Collapse
|
3
|
Shen Q, Fang J, Guo H, Su X, Zhu B, Yao X, Wang Y, Cao A, Wang H, Wang L. Astragaloside IV attenuates podocyte apoptosis through ameliorating mitochondrial dysfunction by up-regulated Nrf2-ARE/TFAM signaling in diabetic kidney disease. Free Radic Biol Med 2023; 203:45-57. [PMID: 37030337 DOI: 10.1016/j.freeradbiomed.2023.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/01/2023] [Accepted: 03/23/2023] [Indexed: 04/10/2023]
Abstract
Defective antioxidant system as well as mitochondrial dysfunction contributes to the pathogenesis and progression of diabetic kidney disease (DKD). Nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated signaling is the central defensive mechanism against oxidative stress and therefore pharmacological activation of Nrf2 is a promising therapeutic strategy. In this study, using molecular docking we found that Astragaloside IV (AS-IV), an active ingredient from traditional formula of Huangqi decoction (HQD), exerted a higher potential to promote Nrf2 escape from Keap1-Nrf2 interaction via competitively bind to amino acid sites in Keap1. When podocyte exposed to high glucose (HG) stimulation, mitochondrial morphological alterations and podocyte apoptosis were presented and accompanied by Nrf2 and mitochondrial transcription factor A (TFAM) downregulation. Mechanistically, HG promoted a decrease in mitochondria-specific electron transport chain (ETC) complexes, ATP synthesis and mtDNA content as well as increased ROS production. Conversely, all these mitochondrial defects were dramatically alleviated by AS-IV, but suppression of Nrf2 with inhibitor or siRNA and TFAM siRNA simultaneously alleviated the AS-IV efficacy. Moreover, experimental diabetic mice exhibited significant renal injury as well as mitochondrial disorder, corresponding with the decreased expression of Nrf2 and TFAM. On the contrary, AS-IV reversed the abnormality and the Nrf2 and TFAM expression were also restored. Taken together, the present findings demonstrate the improvement of AS-IV on mitochondrial function, thereby resistance to oxidative stress-induced diabetic kidney injury and podocyte apoptosis, and the process is closely associated with activation of Nrf2-ARE/TFAM signaling.
Collapse
Affiliation(s)
- Qian Shen
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ji Fang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hengjiang Guo
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Anesthesiology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China; Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, 230032, China
| | - Xue Su
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bingbing Zhu
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xingmei Yao
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunman Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Aili Cao
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Li Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
4
|
Chang MC, Mahar R, McLeod MA, Giacalone AG, Huang X, Boothman DA, Merritt ME. Synergistic Effect of β-Lapachone and Aminooxyacetic Acid on Central Metabolism in Breast Cancer. Nutrients 2022; 14:3020. [PMID: 35893874 PMCID: PMC9331106 DOI: 10.3390/nu14153020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
The compound β-lapachone, a naturally derived naphthoquinone, has been utilized as a potent medicinal nutrient to improve health. Over the last twelve years, numerous reports have demonstrated distinct associations of β-lapachone and NAD(P)H: quinone oxidoreductase 1 (NQO1) protein in the amelioration of various diseases. Comprehensive research of NQO1 bioactivity has clearly confirmed the tumoricidal effects of β-lapachone action through NAD+-keresis, in which severe DNA damage from reactive oxygen species (ROS) production triggers a poly-ADP-ribose polymerase-I (PARP1) hyperactivation cascade, culminating in NAD+/ATP depletion. Here, we report a novel combination strategy with aminooxyacetic acid (AOA), an aspartate aminotransferase inhibitor that blocks the malate-aspartate shuttle (MAS) and synergistically enhances the efficacy of β-lapachone metabolic perturbation in NQO1+ breast cancer. We evaluated metabolic turnover in MDA-MB-231 NQO1+, MDA-MB-231 NQO1-, MDA-MB-468, and T47D cancer cells by measuring the isotopic labeling of metabolites from a [U-13C]glucose tracer. We show that β-lapachone treatment significantly hampers lactate secretion by ~85% in NQO1+ cells. Our data demonstrate that combinatorial treatment decreases citrate, glutamate, and succinate enrichment by ~14%, ~50%, and ~65%, respectively. Differences in citrate, glutamate, and succinate fractional enrichments indicate synergistic effects on central metabolism based on the coefficient of drug interaction. Metabolic modeling suggests that increased glutamine anaplerosis is protective in the case of MAS inhibition.
Collapse
Affiliation(s)
- Mario C. Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.C.C.); (R.M.); (M.A.M.); (A.G.G.)
| | - Rohit Mahar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.C.C.); (R.M.); (M.A.M.); (A.G.G.)
| | - Marc A. McLeod
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.C.C.); (R.M.); (M.A.M.); (A.G.G.)
| | - Anthony G. Giacalone
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.C.C.); (R.M.); (M.A.M.); (A.G.G.)
| | - Xiumei Huang
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - David A. Boothman
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Matthew E. Merritt
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.C.C.); (R.M.); (M.A.M.); (A.G.G.)
| |
Collapse
|
5
|
Liao JX, Huang QF, Li YH, Zhang DW, Wang GH. Chitosan derivatives functionalized dual ROS-responsive nanocarriers to enhance synergistic oxidation-chemotherapy. Carbohydr Polym 2022; 282:119087. [PMID: 35123755 DOI: 10.1016/j.carbpol.2021.119087] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 01/10/2023]
Abstract
The efficient triggering of prodrug release has become a challengeable task for stimuli-responsive nanomedicine utilized in cancer therapy due to the subtle differences between normal and tumor tissues and heterogeneity. In this work, a dual ROS-responsive nanocarriers with the ability to self-regulate the ROS level was constructed, which could gradually respond to the endogenous ROS to achieve effective, hierarchical and specific drug release in cancer cells. In brief, DOX was conjugated with MSNs via thioketal bonds and loaded with β-Lapachone. TPP modified chitosan was then coated to fabricate nanocarriers for mitochondria-specific delivery. The resultant nanocarriers respond to the endogenous ROS and release Lap specifically in cancer cells. Subsequently, the released Lap self-regulated the ROS level, resulting in the specific DOX release and mitochondrial damage in situ, enhancing synergistic oxidation-chemotherapy. The tumor inhibition Ratio was achieved to 78.49%. The multi-functional platform provides a novel remote drug delivery system in vivo.
Collapse
Affiliation(s)
- Jia-Xin Liao
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Qun-Fa Huang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Yan-Hong Li
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Da-Wei Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Guan-Hai Wang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
6
|
Effects of heme oxygenase 1 in the molecular changes and neuropathy associated with type 2 diabetes in mice. Biochem Pharmacol 2022; 199:114987. [PMID: 35276215 DOI: 10.1016/j.bcp.2022.114987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/26/2022]
Abstract
Painful diabetic neuropathy is one of the most common complications of diabetes in humans. The current treatments are not completely effective, and the main mechanisms implicated in the development of diabetic neuropathy are not completely elucidated. Thus, in male db/db mice, a murine model of type 2 diabetes, we investigated the effects of treatment with a heme oxygenase 1 (HO-1) inducer, cobalt protoporphyrin IX (CoPP), on the 1) hyperglycemia and mechanical allodynia associated with type 2 diabetes and 2) molecular changes induced by diabetic neuropathy in the central nervous system (CNS). Thus, we evaluated the effects of CoPP on the protein levels of 4-HNE (oxidative stress), Nrf2, superoxide dismutase 1 (SOD1), NAD(P)H quinone oxidoreductase 1 (NQO1), HO-1, glutathione S-transferase Mu 1 (GSTM1) (antioxidant enzymes), phosphatidylinositol 3-kinase/protein kinase B (nociceptive pathway), CD11b/c (microglial activation), and BAX (apoptosis) in the amygdala and spinal cord of db/db mice. Our results showed the antihyperglycemic and antiallodynic effects of CoPP treatment as well as the potent antioxidant, antinociceptive, anti-inflammatory, and antiapoptotic properties of this HO-1 inducer in the CNS of type 2 diabetic mice. Treatment with CoPP also prevented the downregulation of several antioxidant proteins (Nrf2, SOD-1, and NQO1) and/or enhanced the protein levels of HO-1 and GSTM1 in the spinal cord and/or amygdala of db/db mice. These effects might be implicated in the antiallodynic actions of CoPP. Our findings revealed the modulatory effects of CoPP in the CNS of db/db mice and provide new prospects for novel type 2 diabetes-associated neuropathy therapies.
Collapse
|
7
|
Qiu D, Song S, Wang Y, Bian Y, Wu M, Wu H, Shi Y, Duan H. NAD(P)H: quinone oxidoreductase 1 attenuates oxidative stress and apoptosis by regulating Sirt1 in diabetic nephropathy. J Transl Med 2022; 20:44. [PMID: 35090502 PMCID: PMC8796493 DOI: 10.1186/s12967-021-03197-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/14/2021] [Indexed: 12/29/2022] Open
Abstract
Background Diabetic nephropathy (DN) is one of the main complications of diabetes, and oxidative stress plays an important role in its progression. NAD(P)H: quinone oxidoreductase 1 (NQO1) protects cells from oxidative stress and toxic quinone damage. In the present study, we aimed to investigate the protective effects and underlying mechanisms of NQO1 on diabetes-induced renal tubular epithelial cell oxidative stress and apoptosis. Methods In vivo, the kidneys of db/db mice, which are a type 2 diabetes model, were infected with adeno-associated virus to induce NQO1 overexpression. In vitro, human renal tubular epithelial cells (HK-2 cells) were transfected with NQO1 pcDNA3.1(+) and cultured in high glucose (HG). Gene and protein expression was assessed by quantitative real-time PCR, western blotting, immunofluorescence analysis, and immunohistochemical staining. Reactive oxygen species (ROS) were examined by MitoSox red and flow cytometry. TUNEL assays were used to measure apoptosis. Result In vivo, NQO1 overexpression reduced the urinary albumin/creatinine ratio (UACR) and blood urea nitrogen (BUN) level in db/db mice. Our results revealed that NQO1 overexpression could significantly increase the ratio of NAD+/NADH and silencing information regulator 1 (Sirt1) expression and block tubular oxidative stress and apoptosis in diabetic kidneys. In vitro, NQO1 overexpression reduced the generation of ROS, NADPH oxidase 1 (Nox1) and Nox4, the Bax/Bcl-2 ratio and the expression of Cleaved Caspase-3 and increased NAD+/NADH levels and Sirt1 expression in HK-2 cells under HG conditions. However, these effects were reversed by the Sirt1 inhibitor EX527. Conclusions All these data suggest that NQO1 has a protective effect against oxidative stress and apoptosis in DN, which may be mediated by the regulation of Sirt1 through increasing intracellular NAD+/NADH levels. Therefore, NQO1 may be a new therapeutic target for DN.
Collapse
Affiliation(s)
- Duojun Qiu
- Department of Pathology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, China
| | - Shan Song
- Department of Pathology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, China
| | - Yuhan Wang
- Department of Pathology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, China.,Digestive Department, Tangshan Workers Hospital, Tangshan, China
| | - Yawei Bian
- Department of Pathology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, China
| | - Ming Wu
- Department of Pathology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, China
| | - Haijiang Wu
- Department of Pathology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, China. .,Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China.
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, China. .,Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China.
| |
Collapse
|
8
|
Ito Y, Suzuki A, Nasukawa H, Miyaki K, Yano A, Nagasawa T. Ameliorative effects of Japanese barnyard millet (<i>Echinochloa esculenta</i> H. Scholz) bran supplementation in streptozotocin-induced diabetic rats. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2022. [DOI: 10.3136/fstr.fstr-d-22-00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Yoshiaki Ito
- Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University
| | - Ayaka Suzuki
- Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University
| | - Haruka Nasukawa
- Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University
| | - Kenji Miyaki
- Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University
| | | | - Takashi Nagasawa
- Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University
| |
Collapse
|
9
|
Wang Y, Tian J, Mi Y, Ren X, Lian S, Kang J, Wang J, Zang H, Wu Z, Yang J, Qiao X, Zhou X, Wang G, Zhou Y, Li R. Experimental study on renoprotective effect of intermedin on diabetic nephropathy. Mol Cell Endocrinol 2021; 528:111224. [PMID: 33675865 DOI: 10.1016/j.mce.2021.111224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 01/17/2021] [Accepted: 01/23/2021] [Indexed: 12/16/2022]
Abstract
Intermedin(IMD) is a novel member of the calcitonin/calcitonin gene-related peptide (CT/CGRP) family that has anti-inflammatory, antioxidant and anti-apoptosis properties. This study aimed to evaluate the renoprotective effects of IMD on podocyte apoptotic loss and slit diaphragm protein deficiency the kidneys of rats with in streptozotocin (STZ) induced diabetes in high glucose-exposed podocytes. Our results showed that IMD significantly attenuated proteinuria, and alleviated the abnormal alterations in glomerular ultrastructure in vivo. IMD also improved the induction of slit diaphragm proteins, and restored the decreased Bcl-2 expression and suppressed Bax and caspase-3 induction in the diabetic glomeruli. In addition, IMD attenuated podocyte apoptosis and filamentous actin (F-actin) rearrangement in high glucose-exposed podocytes. Exposure to high glucose elevated the unfolded protein response (UPR) to endoplasmic reticulum (ER) stress in renal podocytes, and IMD treatment blocked such ER stress responses pertinent to podocyte apoptosis and reduced synthesis of slit diaphragm proteins in vivo and in vitro. These observations demonstrate that targeting ER stress is an underlying mechanism of IMD-mediated amelioration of diabetes-associated podocyte injury and dysfunction.
Collapse
Affiliation(s)
- Yanhong Wang
- Department of Nephrology, Postdoctoral Workstation of Shanxi Provincial People's Hospital, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, 030012, China; Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jihua Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yang Mi
- Department of Urology, The Affiliated Bethune Hospital of Shanxi Medical University, Shanxi Bethune Hospital (Shanxi Academy of Medical Sciences), Taiyuan, Shanxi, 030032, China
| | - Xiaojun Ren
- Department of Nephrology, The Affiliated Bethune Hospital of Shanxi Medical University, Shanxi Bethune Hospital (Shanxi Academy of Medical Sciences), Taiyuan, Shanxi, 030032, China
| | - Shizhong Lian
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jing Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Juanjuan Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Haojing Zang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Zhijing Wu
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jia Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xi Qiao
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Postdoctoral Workstation of Shanxi Provincial People's Hospital, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, 030012, China
| | - Guiqin Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yun Zhou
- Department of Nephrology, Postdoctoral Workstation of Shanxi Provincial People's Hospital, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, 030012, China.
| | - Rongshan Li
- Department of Nephrology, Postdoctoral Workstation of Shanxi Provincial People's Hospital, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, 030012, China.
| |
Collapse
|