1
|
Ausi Y, Barliana MI, Postma MJ, Suwantika AA. One Step Ahead in Realizing Pharmacogenetics in Low- and Middle-Income Countries: What Should We Do? J Multidiscip Healthc 2024; 17:4863-4874. [PMID: 39464786 PMCID: PMC11512769 DOI: 10.2147/jmdh.s458564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/29/2024] [Indexed: 10/29/2024] Open
Abstract
Pharmacogenetics is a promising approach in future personalized medicine. This field holds excellent prospects for healthcare quality acceleration. It promotes the transition to the precision medicine era, whereby a health treatment is driven by a deeper understanding of individual characteristics by interpreting the underlying genomic variation. Pharmacogenetics has been developing rapidly since the human genome project. Many pharmacogenetics studies have shown the association between genetic variants and therapy outcomes. Several pharmacogenetics working groups have recommended guidelines for the clinical application of pharmacogenetics. However, the development of pharmacogenetics in low- and middle-income countries (LMICs) is still retarded behind. The problems mainly include clinical evidence, technology, policy and regulation, and human resources. Currently, available genome and drug effect data in LMICs are scarce. Pharmacogenetics development should be escalated with evidence proof through research collaboration across countries. The challenges of pharmacogenetics implementation are discussed comprehensively in this article, along with the prospect of pharmacogenetics-guided personalized medicine in developed countries. Stepwise is expected to help the researchers and stakeholders define the problem that hindered the pharmacogenetics application.
Collapse
Affiliation(s)
- Yudisia Ausi
- Doctor Program in Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Melisa Intan Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| | - Maarten J Postma
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
- Department of Health Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Auliya A Suwantika
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
2
|
Wiesner A, Skrońska M, Gawlik G, Marcinkowska M, Zagrodzki P, Paśko P. Interactions of Antiretroviral Drugs with Food, Beverages, Dietary Supplements, and Alcohol: A Systematic Review and Meta-analyses. AIDS Behav 2022; 27:1441-1468. [PMID: 36318429 PMCID: PMC10129904 DOI: 10.1007/s10461-022-03880-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2022] [Indexed: 04/28/2023]
Abstract
Multiple factors may affect combined antiretroviral therapy (cART). We investigated the impact of food, beverages, dietary supplements, and alcohol on the pharmacokinetic and pharmacodynamic parameters of 33 antiretroviral drugs. Systematic review in adherence to PRISMA guidelines was performed, with 109 reports of 120 studies included. For each drug, meta-analyses or qualitative analyses were conducted. We have found clinically significant interactions with food for more than half of antiretroviral agents. The following drugs should be taken with or immediately after the meal: tenofovir disoproxil, etravirine, rilpivirine, dolutegravir, elvitegravir, atazanavir, darunavir, lopinavir, nelfinavir, ritonavir, saquinavir. Didanosine, zalcitabine, zidovudine, efavirenz, amprenavir, fosamprenavir, and indinavir should be taken on an empty stomach for maximum patient benefit. Antiretroviral agents not mentioned above can be administered regardless of food. There is insufficient evidence available to make recommendations about consuming juice or alcohol with antiretroviral drugs. Resolving drug-food interactions may contribute to maximized cART effectiveness and safety.
Collapse
Affiliation(s)
- Agnieszka Wiesner
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688, Kraków, Poland
| | - Magdalena Skrońska
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688, Kraków, Poland
| | - Gabriela Gawlik
- Department of Community and Public Health, Idaho State University, 1311 E Central Dr, Meridian, ID, 83642, USA
| | - Monika Marcinkowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688, Kraków, Poland
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688, Kraków, Poland
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688, Kraków, Poland.
| |
Collapse
|
3
|
Kwara A. Could pharmacogenetics aid the prediction of nevirapine pharmacokinetics and allow individualized treatment? Pharmacogenomics 2021; 22:881-884. [PMID: 34505542 DOI: 10.2217/pgs-2021-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tweetable abstract The large interindividual variability in nevirapine pharmacokinetics and clinical effects that remains unexplained by pharmacogenetic prediction is a major limitation for individualized nevirapine treatment.
Collapse
Affiliation(s)
- Awewura Kwara
- Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
4
|
Langmia IM, Just KS, Yamoune S, Brockmöller J, Masimirembwa C, Stingl JC. CYP2B6 Functional Variability in Drug Metabolism and Exposure Across Populations-Implication for Drug Safety, Dosing, and Individualized Therapy. Front Genet 2021; 12:692234. [PMID: 34322158 PMCID: PMC8313315 DOI: 10.3389/fgene.2021.692234] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Adverse drug reactions (ADRs) are one of the major causes of morbidity and mortality worldwide. It is well-known that individual genetic make-up is one of the causative factors of ADRs. Approximately 14 million single nucleotide polymorphisms (SNPs) are distributed throughout the entire human genome and every patient has a distinct genetic make-up which influences their response to drug therapy. Cytochrome P450 2B6 (CYP2B6) is involved in the metabolism of antiretroviral, antimalarial, anticancer, and antidepressant drugs. These drug classes are commonly in use worldwide and face specific population variability in side effects and dosing. Parts of this variability may be caused by single nucleotide polymorphisms (SNPs) in the CYP2B6 gene that are associated with altered protein expression and catalytic function. Population variability in the CYP2B6 gene leads to changes in drug metabolism which may result in adverse drug reactions or therapeutic failure. So far more than 30 non-synonymous variants in CYP2B6 gene have been reported. The occurrence of these variants show intra and interpopulation variability, thus affecting drug efficacy at individual and population level. Differences in disease conditions and affordability of drug therapy further explain why some individuals or populations are more exposed to CYP2B6 pharmacogenomics associated ADRs than others. Variabilities in drug efficacy associated with the pharmacogenomics of CYP2B6 have been reported in various populations. The aim of this review is to highlight reports from various ethnicities that emphasize on the relationship between CYP2B6 pharmacogenomics variability and the occurrence of adverse drug reactions. In vitro and in vivo studies evaluating the catalytic activity of CYP2B6 variants using various substrates will also be discussed. While implementation of pharmacogenomic testing for personalized drug therapy has made big progress, less data on pharmacogenetics of drug safety has been gained in terms of CYP2B6 substrates. Therefore, reviewing the existing evidence on population variability in CYP2B6 and ADR risk profiles suggests that, in addition to other factors, the knowledge on pharmacogenomics of CYP2B6 in patient treatment may be useful for the development of personalized medicine with regards to genotype-based prescription.
Collapse
Affiliation(s)
- Immaculate M. Langmia
- Institute of Clinical Pharmacology, University Hospital of Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Katja S. Just
- Institute of Clinical Pharmacology, University Hospital of Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Sabrina Yamoune
- Institute of Clinical Pharmacology, University Hospital of Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Jürgen Brockmöller
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Collen Masimirembwa
- African Institute of Biomedical Science and Technology (AiBST), Harare, Zimbabwe
| | - Julia C. Stingl
- Institute of Clinical Pharmacology, University Hospital of Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| |
Collapse
|