1
|
Amirian J, Wychowaniec JK, D′este M, Vernengo AJ, Metlova A, Sizovs A, Brangule A, Bandere D. Preparation and Characterization of Photo-Cross-Linkable Methacrylated Silk Fibroin and Methacrylated Hyaluronic Acid Composite Hydrogels. Biomacromolecules 2024; 25:7078-7097. [PMID: 39401165 PMCID: PMC11558566 DOI: 10.1021/acs.biomac.4c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 11/12/2024]
Abstract
Composite biomaterials with excellent biocompatibility and biodegradability are crucial in tissue engineering. In this work, a composite protein and polysaccharide photo-cross-linkable hydrogel was prepared using silk fibroin methacrylate (SFMA) and hyaluronic acid methacrylate (HAMA). SFMA was obtained by the methacrylation of degummed SF with glycidyl methacrylate (GMA), while HA was methacrylated by 2-aminoethyl methacrylate hydrochloride (AEMA). We investigated the effect of the addition of 1 wt % HAMA to 5, 10, and 20 wt % SFMA, which resulted in an increase in both static and cycling mechanical strengths. All composite hydrogels gelled under UV light in <30 s, allowing for rapid stabilization and stiffness increases. The biocompatibility of the hydrogels was confirmed by direct and indirect contact methods and by evaluation against the NIH3T3 and MC3T3 cell lines with a live-dead assay by confocal imaging. The range of obtained mechanical properties from developed composite and UV-cross-linkable hydrogels sets the basis as possible future biomaterials for various biomedical applications.
Collapse
Affiliation(s)
- Jhaleh Amirian
- Department
of Pharmaceutical Chemistry, Riga Stradins
University, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1048, Latvia
| | | | - Matteo D′este
- AO
Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| | - Andrea J. Vernengo
- AO
Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| | - Anastasija Metlova
- Laboratory
of Pharmaceutical Pharmacology, Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | - Antons Sizovs
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1048, Latvia
- Laboratory
of Pharmaceutical Pharmacology, Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | - Agnese Brangule
- Department
of Pharmaceutical Chemistry, Riga Stradins
University, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1048, Latvia
| | - Dace Bandere
- Department
of Pharmaceutical Chemistry, Riga Stradins
University, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1048, Latvia
| |
Collapse
|
2
|
Pérez-Lloret M, Reidy E, Lozano-Pérez AA, Marchal JA, Lens PNL, Ryan AE, Erxleben A. Auranofin loaded silk fibroin nanoparticles for colorectal cancer treatment. Drug Deliv Transl Res 2024:10.1007/s13346-024-01719-2. [PMID: 39382824 DOI: 10.1007/s13346-024-01719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/10/2024]
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer related deaths worldwide and the prevalence in young people especially is increasing annually. In the search for innovative approaches to treat the disease, drug delivery systems (DDS) are promising owing to their unique properties, which allow improved therapeutic results with lower drug concentrations, overcoming drug resistance and at the same time potentially reducing side effects. Silk fibroin is a biopolymer that can be processed to obtain biocompatible and biodegradable nanoparticles that can be efficiently loaded by surface adsorption with small-molecule therapeutics and allow their transport and sustained release by modulating their pharmacokinetics. Auranofin (AF) has recently been repurposed for its strong anticancer activity and is currently in clinical trials. Its mechanism of action is through the inhibition of thioredoxin reductase enzymes, which play an essential role in several intracellular processes and are overexpressed in some tumours. Taking into account that AF has a low solubility in water, we propose silk fibroin nanoparticles (SFN) as AF carrier in order to improve its bioavailability, increasing cellular absorption and preventing its degradation or avoiding some resistance mechanisms. Here we report the preparation and characterization of a new formulation of AF-loaded silk fibroin nanoparticles (SFN-AF), its functionalization with FITC for the analysis of cellular uptake, as well as its cytotoxic activity against cell lines of human colorectal cancer (HT29 and HCT116) in both 2D and 3D cell cultures. 3D spheroid models provide a 3D environment which mimics the 3D aspects of CRC observed in vivo and represents an effective 3D environment to screen therapeutics for the treatment of CRC. The loaded nanoparticles showed a spherical morphology with a hydrodynamic diameter of ~ 160 nm and good stability in aqueous solution due to their negative surface charges. FESEM-EDX analysis revealed a homogeneous distribution of Au clusters with high electron density on the surface of the nanoparticles. SFN-AF incubated in phosphate buffer at 37 °C released 77% of the loaded AF over 10 days, showing an initial burst and then sustained release. Flow cytometry analysis showed that FITC-SFN-AF was efficiently internalized by both cell lines, which was confirmed by confocal microscopy imaging. SFN enhanced the cytotoxicity of AF in 2D cultures in both CRC lines. Promising results were also obtained in 3D culture paving the way for future application of this strategy as a therapy for CRC.
Collapse
Affiliation(s)
- Marta Pérez-Lloret
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91TK33, Ireland
| | - Eileen Reidy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine Nursing and health Sciences, University of Galway, University Road, Galway, H91TK33, Ireland
- CÚRAM Centre for Medical Devices, University of Galway, Galway, Ireland
- Lambe Institute for Translational Research, School of Medicine, College of Medicine Nursing and health Sciences, University of Galway, Galway, Ireland
| | - Antonio Abel Lozano-Pérez
- Departamento de Biotecnología Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental, Murcia, 30150, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, 30120, Spain
| | - Juan A Marchal
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18016, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, 18012, Spain
- Excellence Research Unit Modelling Nature (MNat), University of Granada, Granada, 18016, Spain
- BioFab i3D-Biofabrication and 3D (Bio)Printing Laboratory, University of Granada, Granada, 18100, Spain
| | - Piet N L Lens
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91TK33, Ireland
| | - Aideen E Ryan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine Nursing and health Sciences, University of Galway, University Road, Galway, H91TK33, Ireland.
- CÚRAM Centre for Medical Devices, University of Galway, Galway, Ireland.
| | - Andrea Erxleben
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91TK33, Ireland.
| |
Collapse
|
3
|
Linn C, O’Malley A, Khatri K, Wright EM, Sebagh D, Grbić M, Kowal K, Chruszcz M. Microscopic Menaces: The Impact of Mites on Human Health. Int J Mol Sci 2024; 25:3675. [PMID: 38612486 PMCID: PMC11011512 DOI: 10.3390/ijms25073675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Mites are highly prevalent arthropods that infest diverse ecological niches globally. Approximately 55,000 species of mites have been identified but many more are yet to be discovered. Of the ones we do know about, most go unnoticed by humans and animals. However, there are several species from the Acariformes superorder that exert a significant impact on global human health. House dust mites are a major source of inhaled allergens, affecting 10-20% of the world's population; storage mites also cause a significant allergy in susceptible individuals; chiggers are the sole vectors for the bacterium that causes scrub typhus; Demodex mites are part of the normal microfauna of humans and their pets, but under certain conditions populations grow out of control and affect the integrity of the integumentary system; and scabies mites cause one of the most common dermatological diseases worldwide. On the other hand, recent genome sequences of mites provide novel tools for mite control and the development of new biomaterial with applications in biomedicine. Despite the palpable disease burden, mites remain understudied in parasitological research. By better understanding mite biology and disease processes, researchers can identify new ways to diagnose, manage, and prevent common mite-induced afflictions. This knowledge can lead to improved clinical outcomes and reduced disease burden from these remarkably widespread yet understudied creatures.
Collapse
Affiliation(s)
- Christina Linn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; (C.L.); (A.O.); (K.K.); (E.M.W.); (D.S.)
| | - Andrea O’Malley
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; (C.L.); (A.O.); (K.K.); (E.M.W.); (D.S.)
| | - Kriti Khatri
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; (C.L.); (A.O.); (K.K.); (E.M.W.); (D.S.)
| | - Elaine M. Wright
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; (C.L.); (A.O.); (K.K.); (E.M.W.); (D.S.)
| | - Dylan Sebagh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; (C.L.); (A.O.); (K.K.); (E.M.W.); (D.S.)
| | - Miodrag Grbić
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada;
| | - Krzysztof Kowal
- Department of Allergology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland;
- Department of Experimental Allergology and Immunology, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Maksymilian Chruszcz
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; (C.L.); (A.O.); (K.K.); (E.M.W.); (D.S.)
| |
Collapse
|
4
|
Li X, Liu R, Li G, Jin D, Guo J, Ochoa R, Yi T. Identification of the fibroin of Stigmaeopsis nanjingensis by a nanocarrier-based transdermal dsRNA delivery system. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 87:31-47. [PMID: 35543822 PMCID: PMC9287230 DOI: 10.1007/s10493-022-00718-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Stigmaeopsis nanjingensis (Ma and Yuan) (Acari: Tetranychidae) is an important pest of bamboo-feeding behavior and silk production by the female adult mites is seriously harmful to bamboo leaves. Due to its small size, silking and cocooning, its management is difficult. This study discusses a fast and easy method for management of the pest by disturbing the spinning behavior. Stigmaeopsis nanjingensis is host specific and feeds only on bamboo leaves. Leaf margins of bamboo are highly hydrophobic, which makes dsRNA difficult to immerse. Hence, it is a challenge to apply the commonly used feeding method to inhibit gene expression in mites. In this study, we deliver dsRNA to interfere with the expression of fibroin by body wall permeation with a nanocarrier-based delivery system. The dsRNA/nanocarrier formulation droplets could enter the body cavity within 2 min after falling on the mite. The fibroin silencing efficiency was 75.4%, and the results of electron microscopy showed that dsRNA/nanocarrier damage the morphological structure of the silk thread. This study demonstrated the effectiveness of a nanocarrier-based percutaneous dsRNA delivery system in S. nanjingensis and its effect on the fibroin gene that influences the spinning behavior of S. nanjingensis. These findings may provide a new delivery system for RNAi-based control of spider mites that utilize protective webbing in the field.
Collapse
Affiliation(s)
- Xia Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agricultural and Rural Affairs, Guiyang, 550025, China
| | - Rundong Liu
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agricultural and Rural Affairs, Guiyang, 550025, China
| | - Gang Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agricultural and Rural Affairs, Guiyang, 550025, China
| | - Daochao Jin
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agricultural and Rural Affairs, Guiyang, 550025, China
| | - Jianjun Guo
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agricultural and Rural Affairs, Guiyang, 550025, China
| | - Ronald Ochoa
- Systematic Entomology Laboratory (SEL), Agricultural Research Service (ARS), Beltsville Agricultural Research Centre (BARC), United States Department of Agriculture (USDA), Maryland, 20705, USA
| | - Tianci Yi
- Institute of Entomology, Guizhou University, Guiyang, 550025, China.
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China.
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agricultural and Rural Affairs, Guiyang, 550025, China.
| |
Collapse
|
5
|
Insuasti‐Cruz E, Suárez‐Jaramillo V, Mena Urresta KA, Pila‐Varela KO, Fiallos‐Ayala X, Dahoumane SA, Alexis F. Natural Biomaterials from Biodiversity for Healthcare Applications. Adv Healthc Mater 2022; 11:e2101389. [PMID: 34643331 DOI: 10.1002/adhm.202101389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/20/2021] [Indexed: 12/22/2022]
Abstract
Natural biomaterials originating during the growth cycles of all living organisms have been used for many applications. They span from bioinert to bioactive materials including bioinspired ones. As they exhibit an increasing degree of sophistication, natural biomaterials have proven suitable to address the needs of the healthcare sector. Here the different natural healthcare biomaterials, their biodiversity sources, properties, and promising healthcare applications are reviewed. The variability of their properties as a result of considered species and their habitat is also discussed. Finally, some limitations of natural biomaterials are discussed and possible future developments are provided as more natural biomaterials are yet to be discovered and studied.
Collapse
Affiliation(s)
- Erick Insuasti‐Cruz
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| | | | | | - Kevin O. Pila‐Varela
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| | - Xiomira Fiallos‐Ayala
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| | - Si Amar Dahoumane
- Department of Chemical Engineering Polytech Montreal Montreal Quebec H3C 3A7 Canada
- Center for Advances in Water and Air Quality (CAWAQ) Lamar University Beaumont TX 77710 USA
| | - Frank Alexis
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| |
Collapse
|
6
|
Kumar A, Choudhary A, Kaur H, Mehta S, Husen A. Smart nanomaterial and nanocomposite with advanced agrochemical activities. NANOSCALE RESEARCH LETTERS 2021; 16:156. [PMID: 34664133 PMCID: PMC8523620 DOI: 10.1186/s11671-021-03612-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/06/2021] [Indexed: 05/10/2023]
Abstract
Conventional agriculture solely depends upon highly chemical compounds that have negatively ill-affected the health of every living being and the entire ecosystem. Thus, the smart delivery of desired components in a sustainable manner to crop plants is the primary need to maintain soil health in the upcoming years. The premature loss of growth-promoting ingredients and their extended degradation in the soil increases the demand for reliable novel techniques. In this regard, nanotechnology has offered to revolutionize the agrotechnological area that has the imminent potential over conventional agriculture and helps to reform resilient cropping systems withholding prominent food security for the ever-growing world population. Further, in-depth investigation on plant-nanoparticles interactions creates new avenues toward crop improvement via enhanced crop yield, disease resistance, and efficient nutrient utilization. The incorporation of nanomaterial with smart agrochemical activities and establishing a new framework relevant to enhance efficacy ultimately help to address the social acceptance, potential hazards, and management issues in the future. Here, we highlight the role of nanomaterial or nanocomposite as a sustainable as well stable alternative in crop protection and production. Additionally, the information on the controlled released system, role in interaction with soil and microbiome, the promising role of nanocomposite as nanopesticide, nanoherbicide, nanofertilizer, and their limitations in agrochemical activities are discussed in the present review.
Collapse
Affiliation(s)
- Antul Kumar
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Anuj Choudhary
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Harmanjot Kaur
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | | |
Collapse
|
7
|
Deptuch T, Florczak A, Lewandowska A, Leporowska E, Penderecka K, Marszalek A, Mackiewicz A, Dams-Kozlowska H. MS1-type bioengineered spider silk nanoparticles do not exhibit toxicity in an in vivo mouse model. Nanomedicine (Lond) 2021; 16:1553-1565. [PMID: 34165326 DOI: 10.2217/nnm-2021-0029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Due to factors such as silk sequence, purification, degradation, morphology and functionalization, each silk variant should be individually tested for potential toxicity. Aim: In vivo toxicological evaluation of the previously characterized bioengineered H2.1MS1 spider silk particles that can deliver chemotherapeutics to human epidermal growth factor receptor 2-positive breast cancer. Materials & methods: Silk nanoparticles (H2.1MS1 and control MS1) were administered intravenously to mice, and then the organismal response was assessed. Several parameters of acute and subchronic toxicity were analyzed, including animal mortality and behavior, nanosphere biodistribution, and histopathological analysis of internal organs. Also, the complete blood count, as well as the concentration of biochemical parameters and cytokines in the serum, were examined. Results & conclusion: No toxicity of the systemically administrated silk nanosphere was observed, indicating their potential application in biomedicine.
Collapse
Affiliation(s)
- Tomasz Deptuch
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, 15 Garbary St, 61-866, Poznan, Poland.,Department of Diagnostics & Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, 61-866, Poznan, Poland
| | - Anna Florczak
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, 15 Garbary St, 61-866, Poznan, Poland.,Department of Diagnostics & Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, 61-866, Poznan, Poland
| | - Anna Lewandowska
- Department of Tumor Pathology, Greater Poland Cancer Centre, 15 Garbary St, 61-866, Poznan, Poland.,Department of Tumor Pathology & Prophylaxis, Poznan University of Medical Sciences, 15 Garbary St, 61-866, Poznan, Poland
| | - Ewa Leporowska
- Department of Laboratory Diagnostics, Greater Poland Cancer Centre, 15 Garbary St, 61-866, Poznan, Poland
| | - Karolina Penderecka
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, 15 Garbary St, 61-866, Poznan, Poland.,Department of Diagnostics & Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, 61-866, Poznan, Poland
| | - Andrzej Marszalek
- Department of Tumor Pathology, Greater Poland Cancer Centre, 15 Garbary St, 61-866, Poznan, Poland.,Department of Tumor Pathology & Prophylaxis, Poznan University of Medical Sciences, 15 Garbary St, 61-866, Poznan, Poland
| | - Andrzej Mackiewicz
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, 15 Garbary St, 61-866, Poznan, Poland.,Department of Diagnostics & Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, 61-866, Poznan, Poland
| | - Hanna Dams-Kozlowska
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, 15 Garbary St, 61-866, Poznan, Poland.,Department of Diagnostics & Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, 61-866, Poznan, Poland
| |
Collapse
|
8
|
Arakawa K, Mori M, Kono N, Suzuki T, Gotoh T, Shimano S. Proteomic evidence for the silk fibroin genes of spider mites (Order Trombidiformes: Family Tetranychidae). J Proteomics 2021; 239:104195. [PMID: 33757880 DOI: 10.1016/j.jprot.2021.104195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Spider mites are a group of arachnids belonging to Acari (mites and ticks), family Tetranychidae, known to produce nanoscale silk fibers characterized by a high Young's modulus. The silk fibroin gene of spider mites has been computationally predicted through genomic analysis of Tetranychus urticae Koch, but it has yet to be confirmed by proteomic evidence. In this work, we sequenced and assembled the transcriptome from two genera of spider mites, Tetranychus kanzawai Kishida and Panonychus citri (McGregor), and combined it with silk proteomics of T. urticae and P. citri to characterize the fibroin genes through comparative genomics and multiomics analysis. As a result, two fibroins were identified, which were different genes than those previously predicted by computational methods. The amino acid composition and secondary structure suggest similarity to aciniform or cylindrical spidroins of spider silk, which partly mirrors their mechanical properties, exhibiting a high Young's modulus. The availability of full-length fibroin sequences of spider mites facilitates the study of the evolution of silk genes that sometimes emerge in multiple lineages in a convergent manner and in the industrial application of artificial protein fibers through the study of the amino acid sequence and the resulting mechanical properties of these silks. SIGNIFICANCE: Here we sequenced and assembled the transcriptome from two genera of spider mites, T. kanzawai and P. citri, and combined it with silk proteomics of T. urticae and P. citri to characterize the fibroin genes through comparative genomics and multiomics analysis. Spider mite silk is especially characterized by its extremely fine nano-scale diameter and high Young's modulus, even exceeding those of spider silks. The availability of full-length fibroin sequences of spider mites facilitates the study of the evolution of silk genes, which independently evolved in mites, insects, and spiders but yet show sequence convergence, and in the industrial application of artificial protein fibers through the study of the amino acid sequence and the resulting mechanical properties of these silks.
Collapse
Affiliation(s)
- Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Nihonkoku 403-1, Daihoji, Tsuruoka, Yamagata 997-0017, Japan; Faculty of Environment and Information Studies, Keio University, Endo 5322, Fujisawa, Kanagawa 252-0882, Japan; Graduate School of Media and Governance, Keio University, Endo 5322, Fujisawa, Kanagawa 252-0882, Japan.
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, Nihonkoku 403-1, Daihoji, Tsuruoka, Yamagata 997-0017, Japan; Graduate School of Media and Governance, Keio University, Endo 5322, Fujisawa, Kanagawa 252-0882, Japan.
| | - Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, Nihonkoku 403-1, Daihoji, Tsuruoka, Yamagata 997-0017, Japan; Graduate School of Media and Governance, Keio University, Endo 5322, Fujisawa, Kanagawa 252-0882, Japan.
| | - Takeshi Suzuki
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588, Japan.
| | - Tetsuo Gotoh
- Faculty of Economics, Ryutsu Keizai University, Hirahata 120, Ryugasaki, Ibaraki 301-8555, Japan.
| | - Satoshi Shimano
- Science Research Center, Hosei University, Fujimi 2-17-1 Chiyoda, Tokyo 102-8160, Japan.
| |
Collapse
|