1
|
Garrido N, Boitrelle F, Saleh R, Durairajanayagam D, Colpi G, Agarwal A. Sperm epigenetics landscape: correlation with embryo quality, reproductive outcomes and offspring's health. Panminerva Med 2023; 65:166-178. [PMID: 37335245 DOI: 10.23736/s0031-0808.23.04871-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Epigenetics refers to how gene expression and function are modulated without modifying the DNA sequence but through subtle molecular changes or interactions with it. As spermatogenesis progresses, male germ cells suffer plenty of epigenetic modifications, resulting in the definitive epigenome of spermatozoa conditioning its functionality, and this process can be altered by several internal and external factors. The paternal epigenome is crucial for sperm function, fertilization, embryo development, and offspring's health, and altered epigenetic states are associated with male infertility with or without altered semen parameters, embryo quality impairment, and worse ART outcomes together with the future offspring's health risks mainly through intergenerational transmission of epigenetic marks. Identifying epigenetic biomarkers may improve male factor diagnosis and the development of targeted therapies, not only to improve fertility but also to allow an early detection of risk and disease prevention in the progeny. While still there is much research to be done, hopefully in the near future, improvements in high-throughput technologies applied to epigenomes will permit our understanding of the underlying epigenetic mechanisms and the development of diagnostics and therapies leading to improved reproductive outcomes. In this review, we discuss the mechanisms of epigenetics in sperm and how epigenetics behave during spermatogenesis. Additionally, we elaborate on the relationship of sperm epigenetics with sperm parameters and male infertility, and highlight the impact of sperm epigenetic alterations on sperm parameters, embryo quality, ART outcomes, miscarriage rates and offspring's health. Furthermore, we provide insights into the future research of epigenetic alterations in male infertility.
Collapse
Affiliation(s)
- Nicolás Garrido
- Global Andrology Forum, Moreland Hills, OH, USA
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Florence Boitrelle
- Global Andrology Forum, Moreland Hills, OH, USA
- Reproductive Biology, Fertility Preservation, Andrology, CECOS, Poissy Hospital, Poissy, France
- Paris Saclay University, UVSQ, INRAE, BREED, Jouy-en-Josas, France
| | - Ramadan Saleh
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Damayanthi Durairajanayagam
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| | - Giovanni Colpi
- Global Andrology Forum, Moreland Hills, OH, USA
- Next Fertility Procrea, Lugano, Switzerland
| | - Ashok Agarwal
- Global Andrology Forum, Moreland Hills, OH, USA -
- American Center for Reproductive Medicine, Cleveland, OH, USA
| |
Collapse
|
2
|
New Insights on the Regulation of the Insulin-Degrading Enzyme: Role of microRNAs and RBPs. Cells 2022; 11:cells11162538. [PMID: 36010613 PMCID: PMC9406717 DOI: 10.3390/cells11162538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
The evident implication of the insulin-degrading enzyme (IDE) in Alzheimer’s disease (AD) and type 2 diabetes mellitus (T2DM), among its capacity to degrade insulin and amyloid-β peptide (Aβ), suggests that IDE could be an essential link in the relation between hyperinsulinemia, insulin resistance and AD. However, little is known about the cellular and molecular regulation of IDE expression, and even less has been explored regarding the post-transcriptional regulation of IDE, although it represents a great molecular target of interest for therapeutic treatments. We recently described that miR-7, a novel candidate for linking AD and T2DM at the molecular level, regulates IDE and other key genes in both pathologies, including some key genes involved in the insulin signaling pathway. Here, we explored whether other miRNAs as well as other post-transcriptional regulators, such as RNA binding proteins (RBP), could potentially participate in the regulation of IDE expression in vitro. Our data showed that in addition to miR-7, miR-125, miR-490 and miR-199 regulate IDE expression at the post-transcriptional level. Moreover, we also found that IDE contains multiple potential binding sites for several RBPs, and a narrow-down prediction analysis led us to speculate on a novel regulation of IDE by RALY and HuD. Taken together, these results demonstrate the novel players controlling IDE expression that could represent potential therapeutical targets to treat several metabolic diseases with a high impact on human health, including AD and T2DM.
Collapse
|
3
|
Tahmasbpour Marzouni E, Ilkhani H, Beigi Harchegani A, Shafaghatian H, Layali I, Shahriary A. Epigenetic Modifications, A New Approach to Male Infertility Etiology: A Review. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2022; 16:1-9. [PMID: 35103425 PMCID: PMC8808252 DOI: 10.22074/ijfs.2021.138499.1032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/11/2021] [Indexed: 11/14/2022]
Abstract
Recent studies have indicated that epigenetic alterations are critical for normal function and development of spermatozoa during the fertilization process. This review will focus on the latest advances in epigenome profiling of the chromatin modifications during sperm development, as well as the potential roles of epigenetic mechanisms in the context of male infertility. In this review, all data were collected from published studies that considered the effect of epigenetic abnormalities on human spermatogenesis, sperm parameters quality, fertilization process, embryo development and live births. The database PubMed was searched for all experimental and clinical studies using the Keywords "epigenetic modifications", "male infertility", "spermatogenesis", "embryo development" and "reproductive function". Post-translational modifications of histone, DNA methylations and chromatin remodeling are among the most common forms of epigenetic modifications that regulate all stages of spermatogenesis and fertilization process. Incorrect epigenetic modifications of certain genes involved in the spermatogenesis and sperm maturation may be a main reason of male reproductive disorder and infertility. Most importantly, abnormal patterns of epigenetic modifications or transgenerational phenotypes and miRNAs expression may be transmitted from one generation to the next through assisted reproductive techniques (ART) and cause an increased risk of birth defects, infertility and congenital anomalies in children. Epigenetic modifications must be considered as a one of the main factors of unexplained male infertility etiology. Due to high risk of transmitting incorrect primary imprints to offspring, there is a need for more research into epigenetic alterations in couples who benefit of ART support.
Collapse
Affiliation(s)
- Eisa Tahmasbpour Marzouni
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Hanieh Ilkhani
- Islamic Azad University, Pharmaceutical Sciences Branch, Tehran, Iran
| | - Asghar Beigi Harchegani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Shafaghatian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Issa Layali
- Department of Biochemistry, Islamic Azad University, Sari Branch, Sari, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran,P.O.Box: 19945-581Chemical Injuries Research CenterSystems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| |
Collapse
|
4
|
Jazayeri M, Alizadeh A, Sadighi Gilani MA, Eftekhari-Yazdi P, Sharafi M, Shahverdi A. Underestimated Aspects in Male Infertility: Epigenetics is A New Approach in Men with Obesity or Diabetes: A Review. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2022; 16:132-139. [PMID: 36029047 PMCID: PMC9396004 DOI: 10.22074/ijfs.2021.534003.1158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/25/2022]
Abstract
Infertility is a complex multifactorial problem that affects about 7% of men and 15% of couples worldwide. Many molecular mechanisms involved in male infertility. Destructive effects of infertility on the next generations are not well understood. Approximately 60-75% of male infertility cases have idiopathic causes, and there is a need for additional investigations other than routine examinations. Molecular factors that surround DNA, which are mitotically stable and independently regulate genome activity of DNA sequences, are known as epigenetics. The known epigenetic mechanisms are DNA methylation, histone modifications and non-coding RNAs. Prevalence of metabolic diseases has been increased dramatically because of changes in lifestyle and the current levels of inactivity. Metabolic disorders, such<br />as obesity and diabetes, are prevalent reasons for male infertility; despite the association between metabolic diseases and male infertility, few studies have been conducted on the effects of epigenetic alterations associated with these diseases and sperm abnormalities. Diabetes can affect the reproductive system and testicular function at multiple levels;<br />however, there are very few molecular and epigenetic studies related to sperm from males with diabetes. On the other hand, obesity has similar conditions, while male obesity is linked to notable alterations in the sperm molecular architecture affecting both function and embryo quality. Therefore, in this review article, we presented new and developed technologies to study different patterns of epigenetic changes, and explained the exact mechanisms of epigenetic changes linked to metabolic diseases and their relationship with male infertility.
Collapse
Affiliation(s)
- Maryam Jazayeri
- Department of Reproductive Biology, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran,Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - AliReza Alizadeh
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Ali Sadighi Gilani
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Poopak Eftekhari-Yazdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohsen Sharafi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran,Department of Poultry Sciences, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran,P.O. Box: 16635-148Department of EmbryologyReproductive Biomedicine Research CenterRoyan Institute for Reproductive BiomedicineACECRTehranIran
| |
Collapse
|