1
|
Chen S, Tan Z, Liao P, Li Y, Qu Y, Zhang Q, Yang M, Chan KWY, Zhang L, Man K, Chen Z, Sun D. Biodegradable Microrobots for DNA Vaccine Delivery. Adv Healthc Mater 2023; 12:e2202921. [PMID: 37156574 DOI: 10.1002/adhm.202202921] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/03/2023] [Indexed: 05/10/2023]
Abstract
The delivery of nucleic acid vaccine to stimulate host immune responses against Coronavirus disease 2019 shows promise. However, nucleic acid vaccines have drawbacks, including rapid clearance and poor cellular uptake, that limit their therapeutic potential. Microrobots can be engineered to sustain vaccine release and further control the interactions with immune cells that are vital for robust vaccination. Here, the 3D fabrication of biocompatible and biodegradable microrobots via the two-photon polymerization of gelatin methacryloyl (GelMA) and their proof-of-concept application for DNA vaccine delivery is reported. Programmed degradation and drug release by varying the local exposure dose in 3D laser lithography and further functionalized the GelMA microspheres with polyethyleneimine for DNA vaccine delivery to dendritic cell and primary cells is demonstrated. In mice, the DNA vaccine delivered by functionalized microspheres elicited fast, enhanced, and durable antigen expression, which may lead to prolonged protection. Furthermore, we demonstrate the maneuverability of microrobots by fabricating GelMA microspheres on magnetic skeletons. In conclusion, GelMA microrobots may provide an efficient vaccination strategy by controlling the expression duration of DNA vaccines.
Collapse
Affiliation(s)
- Shuxun Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Zhiwu Tan
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Pan Liao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Yanfang Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Yun Qu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Qi Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Mingxuan Yang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Kannie Wai Yan Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Kwan Man
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
2
|
Liu N, Abd-Ul-Salam H, Joannette-Lafrance N, Li J, Menassa K, Murshed M. A novel use of a needle-free injection system for improved nucleic acid delivery and expression in vivo. Biotechniques 2023; 75:65-70. [PMID: 37498058 DOI: 10.2144/btn-2023-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Abstract
Transfection, a nonviral method of nucleic acid delivery, often exhibits poor efficiency in vivo. The needle-based in vivo delivery of transfection reagents can be invasive. Here, we report a noninvasive protocol for in vivo gene delivery via the needle-free MED-JET H4 MULTIJET (MJH4M) device using both "home-made" glucose-based and commercial transfection reagents. The objective of this study was to compare the relative transfection efficiencies of the needle-free system to that of the needle-based delivery method. We observed a 15-fold increase in transfection efficiency using the needle-free MJH4M device when compared to the needle-based delivery method. The highest transfection efficiency was achieved using a 5% glucose solution as the delivery vehicle.
Collapse
Affiliation(s)
- Nathan Liu
- Faculty of Medicine & Health Sciences, McGill University, Montreal, Quebec, H3G 2M1, Canada
- Shriners Hospital for Children, McGill University, Montreal, Quebec, H4A 0A9, Canada
| | - Hani Abd-Ul-Salam
- Shriners Hospital for Children, McGill University, Montreal, Quebec, H4A 0A9, Canada
- Faculty of Dental Medicine & Oral Health Sciences, McGill University, Montreal, Quebec, H3A 1G1, Canada
- College of Dentistry, Gulf Medical University, Ajman, Ajman, United Arab Emirates
| | - Noémie Joannette-Lafrance
- Faculty of Medicine & Health Sciences, McGill University, Montreal, Quebec, H3G 2M1, Canada
- Shriners Hospital for Children, McGill University, Montreal, Quebec, H4A 0A9, Canada
| | - Jingjing Li
- Faculty of Medicine & Health Sciences, McGill University, Montreal, Quebec, H3G 2M1, Canada
- Shriners Hospital for Children, McGill University, Montreal, Quebec, H4A 0A9, Canada
| | - Karim Menassa
- Medical International Technologies (MIT Canada) Inc., Montreal, Quebec, H4R 2E7, Canada
| | - Monzur Murshed
- Faculty of Medicine & Health Sciences, McGill University, Montreal, Quebec, H3G 2M1, Canada
- Shriners Hospital for Children, McGill University, Montreal, Quebec, H4A 0A9, Canada
- Faculty of Dental Medicine & Oral Health Sciences, McGill University, Montreal, Quebec, H3A 1G1, Canada
| |
Collapse
|
3
|
Müller WA, Sarkis JR, Marczak LDF, Muniz AR. Molecular dynamics insights on temperature and pressure effects on electroporation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184049. [PMID: 36113558 DOI: 10.1016/j.bbamem.2022.184049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Electroporation is a cell-level phenomenon caused by an ionic imbalance in the membrane, being of great relevance in various fields of knowledge. A dependence of the pore formation kinetics on the environmental conditions (temperature and pressure) of the cell membrane has already been reported, but further clarification regarding how these variables affect the pore formation/resealing dynamics and the transport of molecules through the membrane is still lacking. The objective of the present study was to investigate the temperature (288-348 K) and pressure (1-5000 atm) effects on the electroporation kinetics using coarse-grained molecular dynamics simulations. Results shown that the time for pore formation and resealing increased with pressure and decreased with temperature, whereas the maximum pore radius increased with temperature and decreased with pressure. This behavior influenced the ion migration through the bilayer, and the higher ionic mobility was obtained in the 288 K/1000 atm simulations, i.e., a combination of low temperature and (not excessively) high pressure. These results were used to discuss some experimental observations regarding the extraction of intracellular compounds applying this technique. This study contributes to a better understanding of electroporation under different thermodynamic conditions and to an optimal selection of processing parameters in practical applications which exploit this phenomenon.
Collapse
Affiliation(s)
- Wagner Augusto Müller
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Chemical Engineering, Porto Alegre, RS, Brazil
| | - Júlia Ribeiro Sarkis
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Chemical Engineering, Porto Alegre, RS, Brazil
| | | | - André Rodrigues Muniz
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Chemical Engineering, Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Hollevoet K, Thomas D, Compernolle G, Vermeire G, De Smidt E, De Vleeschauwer S, Smith TRF, Fisher PD, Dewilde M, Geukens N, Declerck P. Clinically relevant dosing and pharmacokinetics of DNA-encoded antibody therapeutics in a sheep model. Front Oncol 2022; 12:1017612. [PMID: 36263202 PMCID: PMC9574358 DOI: 10.3389/fonc.2022.1017612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
DNA-encoded delivery and in vivo expression of antibody therapeutics presents an innovative alternative to conventional protein production and administration, including for cancer treatment. To support clinical translation, we evaluated this approach in 18 40-45 kg sheep, using a clinical-matched intramuscular electroporation (IM EP) and hyaluronidase-plasmid DNA (pDNA) coformulation setup. Two cohorts of eight sheep received either 1 or 4 mg pDNA encoding an ovine anti-cancer embryonic antigen (CEA) monoclonal antibody (mAb; OVAC). Results showed a dose-response with average maximum serum concentrations of respectively 0.3 and 0.7 µg/ml OVAC, 4-6 weeks after IM EP. OVAC was detected in all 16 sheep throughout the 6-week follow-up, and no anti-OVAC antibodies were observed. Another, more exploratory, cohort of two sheep received a 12 mg pOVAC dose. Both animals displayed a similar dose-dependent mAb increase and expression profile in the first two weeks. However, in one animal, an anti-OVAC antibody response led to loss of mAb detection four weeks after IM EP. In the other animal, no anti-drug antibodies were observed. Serum OVAC concentrations peaked at 4.9 µg/ml 6 weeks after IM EP, after which levels gradually decreased but remained detectable around 0.2 to 0.3 µg/ml throughout a 13-month follow-up. In conclusion, using a delivery protocol that is currently employed in clinical Phase 1 studies of DNA-based antibodies, we achieved robust and prolonged in vivo production of anti-cancer DNA-encoded antibody therapeutics in sheep. The learnings from this large-animal model regarding the impact of pDNA dose and host immune response on the expressed mAb pharmacokinetics can contribute to advancing clinical translation.
Collapse
Affiliation(s)
- Kevin Hollevoet
- PharmAbs, The KU Leuven Antibody Center – University of Leuven, Leuven, Belgium
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven – University of Leuven, Leuven, Belgium
- *Correspondence: Kevin Hollevoet,
| | - Debby Thomas
- PharmAbs, The KU Leuven Antibody Center – University of Leuven, Leuven, Belgium
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven – University of Leuven, Leuven, Belgium
| | - Griet Compernolle
- PharmAbs, The KU Leuven Antibody Center – University of Leuven, Leuven, Belgium
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven – University of Leuven, Leuven, Belgium
| | - Giles Vermeire
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven – University of Leuven, Leuven, Belgium
| | - Elien De Smidt
- PharmAbs, The KU Leuven Antibody Center – University of Leuven, Leuven, Belgium
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven – University of Leuven, Leuven, Belgium
| | | | | | | | - Maarten Dewilde
- PharmAbs, The KU Leuven Antibody Center – University of Leuven, Leuven, Belgium
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven – University of Leuven, Leuven, Belgium
| | - Nick Geukens
- PharmAbs, The KU Leuven Antibody Center – University of Leuven, Leuven, Belgium
| | - Paul Declerck
- PharmAbs, The KU Leuven Antibody Center – University of Leuven, Leuven, Belgium
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven – University of Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Jacobs L, Yshii L, Junius S, Geukens N, Liston A, Hollevoet K, Declerck P. Intratumoral DNA-based delivery of checkpoint-inhibiting antibodies and interleukin 12 triggers T cell infiltration and anti-tumor response. Cancer Gene Ther 2022; 29:984-992. [PMID: 34754076 DOI: 10.1038/s41417-021-00403-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/08/2021] [Accepted: 10/26/2021] [Indexed: 01/22/2023]
Abstract
To improve the anti-tumor efficacy of immune checkpoint inhibitors, numerous combination therapies are under clinical evaluation, including with IL-12 gene therapy. The current study evaluated the simultaneous delivery of the cytokine and checkpoint-inhibiting antibodies by intratumoral DNA electroporation in mice. In the MC38 tumor model, combined administration of plasmids encoding IL-12 and an anti-PD-1 antibody induced significant anti-tumor responses, yet similar to the monotherapies. When treatment was expanded with a DNA-based anti-CTLA-4 antibody, this triple combination significantly delayed tumor growth compared to IL-12 alone and the combination of anti-PD-1 and anti-CTLA-4 antibodies. Despite low drug plasma concentrations, the triple combination enabled significant abscopal effects in contralateral tumors, which was not the case for the other treatments. The DNA-based immunotherapies increased T cell infiltration in electroporated tumors, especially of CD8+ T cells, and upregulated the expression of CD8+ effector markers. No general immune activation was detected in spleens following either intratumoral treatment. In B16F10 tumors, evaluation of the triple combination was hampered by a high sensitivity to control plasmids. In conclusion, intratumoral gene electrotransfer allowed effective combined delivery of multiple immunotherapeutics. This approach induced responses in treated and contralateral tumors, while limiting systemic drug exposure and potentially detrimental systemic immunological effects.
Collapse
Affiliation(s)
- Liesl Jacobs
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, Leuven, Belgium
| | - Lidia Yshii
- Department of Microbiology, Immunology and Transplantation, KU Leuven - University of Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Steffie Junius
- Department of Microbiology, Immunology and Transplantation, KU Leuven - University of Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Nick Geukens
- PharmAbs - the KU Leuven Antibody Center, KU Leuven - University of Leuven, Leuven, Belgium
| | - Adrian Liston
- Department of Microbiology, Immunology and Transplantation, KU Leuven - University of Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, VIB, Leuven, Belgium.,Immunology Programme, Babraham Institute, Cambridge, United Kingdom
| | - Kevin Hollevoet
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, Leuven, Belgium. .,PharmAbs - the KU Leuven Antibody Center, KU Leuven - University of Leuven, Leuven, Belgium.
| | - Paul Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, Leuven, Belgium. .,PharmAbs - the KU Leuven Antibody Center, KU Leuven - University of Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Lederer CW, Koniali L, Buerki-Thurnherr T, Papasavva PL, La Grutta S, Licari A, Staud F, Bonifazi D, Kleanthous M. Catching Them Early: Framework Parameters and Progress for Prenatal and Childhood Application of Advanced Therapies. Pharmaceutics 2022; 14:pharmaceutics14040793. [PMID: 35456627 PMCID: PMC9031205 DOI: 10.3390/pharmaceutics14040793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 01/19/2023] Open
Abstract
Advanced therapy medicinal products (ATMPs) are medicines for human use based on genes, cells or tissue engineering. After clear successes in adults, the nascent technology now sees increasing pediatric application. For many still untreatable disorders with pre- or perinatal onset, timely intervention is simply indispensable; thus, prenatal and pediatric applications of ATMPs hold great promise for curative treatments. Moreover, for most inherited disorders, early ATMP application may substantially improve efficiency, economy and accessibility compared with application in adults. Vindicating this notion, initial data for cell-based ATMPs show better cell yields, success rates and corrections of disease parameters for younger patients, in addition to reduced overall cell and vector requirements, illustrating that early application may resolve key obstacles to the widespread application of ATMPs for inherited disorders. Here, we provide a selective review of the latest ATMP developments for prenatal, perinatal and pediatric use, with special emphasis on its comparison with ATMPs for adults. Taken together, we provide a perspective on the enormous potential and key framework parameters of clinical prenatal and pediatric ATMP application.
Collapse
Affiliation(s)
- Carsten W. Lederer
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
- Correspondence: ; Tel.: +357-22-392764
| | - Lola Koniali
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Tina Buerki-Thurnherr
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland;
| | - Panayiota L. Papasavva
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Stefania La Grutta
- Institute of Translational Pharmacology, IFT National Research Council, 90146 Palermo, Italy;
| | - Amelia Licari
- Pediatric Clinic, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy;
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic;
| | - Donato Bonifazi
- Consorzio per Valutazioni Biologiche e Farmacologiche (CVBF) and European Paediatric Translational Research Infrastructure (EPTRI), 70122 Bari, Italy;
| | - Marina Kleanthous
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| |
Collapse
|
7
|
Bozic T, Sersa G, Kranjc Brezar S, Cemazar M, Markelc B. Gene electrotransfer of proinflammatory chemokines CCL5 and CCL17 as a novel approach of modifying cytokine expression profile in the tumor microenvironment. Bioelectrochemistry 2021; 140:107795. [PMID: 33789177 DOI: 10.1016/j.bioelechem.2021.107795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/19/2022]
Abstract
The effectiveness of immunotherapy highly correlates with the degree and the type of infiltrated immune cells in the tumor tissue. Treatments based on modifying the immune cell infiltrate of the tumor microenvironment are thus gaining momentum. Therefore, the aim of our study was to investigate the effects of gene therapy with two proinflammatory chemokines CCL5 and CCL17 on inflammatory cytokine expression profile and immune cell infiltrate in two murine breast tumor models, 4T1 and E0771, and two murine colon tumor models, CT26 and MC38. In vitro, lipofection of plasmid DNA encoding CCL5 or CCL17 resulted in changes in the cytokine expression profile similar to control plasmid DNA, implying that the main driver of these changes was the entry of foreign DNA into the cell's cytosol. In vivo, gene electrotransfer resulted in high expression levels of both Ccl5 and Ccl17 transgenes in the 4T1 and CT26 tumor models. Besides a minor increase in the survival of the treated mice, the therapy also resulted in increased expression of Cxcl9 and Ifnγ, potent activators of the immune system, in CT26 tumors. However, this was not recapitulated in changes of TME, implying that a further refinement of the dosing schedule is needed.
Collapse
Affiliation(s)
- T Bozic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - G Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - S Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia
| | - M Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia.
| | - B Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|