1
|
Jordan MM, Amabebe E, Khanipov K, Taylor BD. Scoping Review of Microbiota Dysbiosis and Risk of Preeclampsia. Am J Reprod Immunol 2024; 92:e70003. [PMID: 39440917 PMCID: PMC11501047 DOI: 10.1111/aji.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/20/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Limited studies have investigated the role of the microbiota in hypertensive disorders of pregnancy (HDP), particularly preeclampsia, which often results in preterm birth. We evaluated 23 studies that explored the relationship between gut, vaginal, oral, or placental microbiotas and HDP. Scopus, ProQuest Health Research Premium Collection, ProQuest Nursing & Allied Health Database, EBSCO, and Ovid were searched for relevant literature. Majority (18) of studies focused on the gut microbiota, and far fewer examined the oral cavity (3), vagina (3), and placenta (1). One study examined the gut, oral, and vaginal microbiotas. The consensus highlights a potential role for microbiota dysbiosis in preeclampsia and HDP. Especially in the third trimester, preeclampsia is associated with gut dysbiosis-deficient in beneficial species of Akkermansia, Bifidobacterium, and Coprococcus but enriched with pathogenic Campylobacterota and Candidatus Saccharibacteria, with low community α-diversity. Similarly, the preeclamptic vaginal and oral microbiotas are enriched with bacterial vaginosis and periodontal disease-associated species, respectively. The trend is also observed in the placenta, which is colonized by gastrointestinal, respiratory tract, and periodontitis-related pathogens. Consequently, a chronic proinflammatory state that adversely impacts placentation is implicated. These observations however require more mechanistic studies to establish the timing of the preceding immune dysfunction and any causality.
Collapse
Affiliation(s)
- Madeleine M. Jordan
- Division of Basic Science and Translational Research, University of Texas Medical Branch, Galveston, TX, USA
| | - Emmanuel Amabebe
- Division of Basic Science and Translational Research, University of Texas Medical Branch, Galveston, TX, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Brandie DePaoli Taylor
- Division of Basic Science and Translational Research, University of Texas Medical Branch, Galveston, TX, USA
- Department of Population Health and Health Disparities, School of Public and Population Health, Galveston, TX, USA
| |
Collapse
|
2
|
Ingram K, Ngalame Eko E, Nunziato J, Ahrens M, Howell B. Impact of obesity on the perinatal vaginal environment and bacterial microbiome: effects on birth outcomes. J Med Microbiol 2024; 73. [PMID: 39171766 DOI: 10.1099/jmm.0.001874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Introduction. Lactobacillus species predominate the human vagina and are associated with positive vaginal health, including an acidic pH (<4.5). The prevalence of vaginal Lactobacilli increases with increased oestrogen due to increased glycogen production within the vagina. Lactobacilli produce lactic acid, thereby lowering vaginal pH, preventing growth of other bacteria, and lowering microbial diversity. Lower placental oestrogen levels in obese pregnant women could dampen the mechanism to initiate this process, which may be associated with vaginal dysbiosis and unfavourable pregnancy outcomes.Hypothesis. We hypothesize that oestrogen and glycogen levels will be lower, vaginal pH will be higher, and vaginal microbiome diversity will be greater during pregnancy in obese and overweight women compared to healthy weight women.Aim. Pregnancy complications (e.g. preterm birth) are more common in overweight and obese women. If vaginal dysbiosis plays a role, and quantifiable predictors of this increased risk can be determined, these measures could be used to prospectively identify women at risk for pregnancy complications early in pregnancy.Methodology. Vaginal samples were collected at 10-14, 18-24, 26-30, and 34-37 weeks gestation and at delivery from 67 pregnant participants (23 healthy weight, 22 overweight, 22 obese). A blood sample to quantify serum oestrogen was collected at 10-14 weeks. Vaginal samples were collected to test vaginal pH using pH paper, glycogen abundance using fluorometry, and the vaginal microbiome using 16S rRNA amplicon sequencing.Results. Vaginal pH was higher in obese participants compared to healthy weight participants (P=<0.001). Vaginal glycogen levels increased over time in obese participants (P=0.033). The vaginal bacterial alpha diversity was higher in obese participants compared to healthy weight participants (P=0.033). The relative abundances of Peptoniphilus and Anaerococcus were increased in overweight and obese participants, as well as in complicated pregnancies, at 10-14 weeks gestation.Conclusion. The relative abundance of specific vaginal bacteria, like Peptoniphilus and Anaerococcus, in early pregnancy could predict pregnancy outcomes. Our goal is to use the information gathered in this pilot study to further determine the feasibility of assessing the vaginal environment during pregnancy to identify women at risk for negative pregnancy and birth outcomes in the context of a larger study.
Collapse
Affiliation(s)
- Kelly Ingram
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | | | - Jaclyn Nunziato
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- Carilion Clinic, Roanoke, Virginia, USA
| | - Monica Ahrens
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- Department of Statistics, Virginia Tech, Blacksburg, Virginia, USA
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
| | - Brittany Howell
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- Department of Human Development and Family Science, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
3
|
Gerede A, Nikolettos K, Vavoulidis E, Margioula-Siarkou C, Petousis S, Giourga M, Fotinopoulos P, Salagianni M, Stavros S, Dinas K, Nikolettos N, Domali E. Vaginal Microbiome and Pregnancy Complications: A Review. J Clin Med 2024; 13:3875. [PMID: 38999442 PMCID: PMC11242209 DOI: 10.3390/jcm13133875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/12/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
Background/Objectives: There are indications that the microbial composition of the maternal mucosal surfaces is associated with adverse events during pregnancy. The aim of this review is to investigate the link between vaginal microbiome alterations and gestational complication risk. Methods: This comprehensive literature review was performed using Medline and Scopus databases. The following search algorithm was used, "Pregnancy Complications" [Mesh] AND (Vagin*), and after the literature screening, 44 studies were included in the final review. Results: The studies that were included investigated the association between vaginal microbial composition and preterm birth, miscarriage, preeclampsia, ectopic pregnancy, gestational diabetes mellitus, chorioamnionitis, and preterm premature rupture of membranes. In most of the studies, it was well established that increased microbial diversity is associated with these conditions. Also, the depletion of Lactobacillus species is linked to most of the gestational complications, while the increased relative abundance and especially Lactobacillus crispatus may exert a protective effect in favor of the pregnant woman. Several pathogenic taxa including Gardnerella, Prevotella, Sneathia, Bacterial Vaginosis-Associated Bacteria-2, Atopobium, and Megasphera seem to be correlated to higher maternal morbidity. Conclusions: Vaginal microbiome aberrations seem to have an association with pregnancy-related adverse events, but more high-quality homogenous studies are necessary to reliably verify this link.
Collapse
Affiliation(s)
- Angeliki Gerede
- Unit of Maternal-Fetal-Medicine, Department of Obstetrics and Gynecology, Medical School, Democritus University of Thrake, GR-68100 Alexandroupolis, Greece
| | - Konstantinos Nikolettos
- Unit of Maternal-Fetal-Medicine, Department of Obstetrics and Gynecology, Medical School, Democritus University of Thrake, GR-68100 Alexandroupolis, Greece
| | - Eleftherios Vavoulidis
- Second Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, GR-54640 Thessaloniki, Greece
| | - Chrysoula Margioula-Siarkou
- Second Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, GR-54640 Thessaloniki, Greece
| | - Stamatios Petousis
- Second Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, GR-54640 Thessaloniki, Greece
| | - Maria Giourga
- First Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, GR-11528 Athens, Greece
| | - Panagiotis Fotinopoulos
- First Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, GR-11528 Athens, Greece
| | - Maria Salagianni
- First Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, GR-11528 Athens, Greece
| | - Sofoklis Stavros
- First Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, GR-11528 Athens, Greece
| | - Konstantinos Dinas
- Second Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, GR-54640 Thessaloniki, Greece
| | - Nikolaos Nikolettos
- Unit of Maternal-Fetal-Medicine, Department of Obstetrics and Gynecology, Medical School, Democritus University of Thrake, GR-68100 Alexandroupolis, Greece
| | - Ekaterini Domali
- First Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, GR-11528 Athens, Greece
| |
Collapse
|
4
|
Liu X, Zeng X, Li X, Xin S, Zhang F, Liu F, Zeng Y, Wu J, Zou Y, Xiong X. Landscapes of gut bacterial and fecal metabolic signatures and their relationship in severe preeclampsia. J Transl Med 2024; 22:360. [PMID: 38632606 PMCID: PMC11022388 DOI: 10.1186/s12967-024-05143-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Preeclampsia is a pregnancy-specific disease leading to maternal and perinatal morbidity. Hypertension and inflammation are the main characteristics of preeclampsia. Many factors can lead to hypertension and inflammation, including gut microbiota which plays an important role in hypertension and inflammation in humans. However, alterations to the gut microbiome and fecal metabolome, and their relationships in severe preeclampsia are not well known. This study aims to identify biomarkers significantly associated with severe preeclampsia and provide a knowledge base for treatments regulating the gut microbiome. METHODS In this study, fecal samples were collected from individuals with severe preeclampsia and healthy controls for shotgun metagenomic sequencing to evaluate changes in gut microbiota composition. Quantitative polymerase chain reaction analysis was used to validate the reliability of our shotgun metagenomic sequencing results. Additionally, untargeted metabolomics analysis was performed to measure fecal metabolome concentrations. RESULTS We identified several Lactobacillaceae that were significantly enriched in the gut of healthy controls, including Limosilactobacillus fermentum, the key biomarker distinguishing severe preeclampsia from healthy controls. Limosilactobacillus fermentum was significantly associated with shifts in KEGG Orthology (KO) genes and KEGG pathways of the gut microbiome in severe preeclampsia, such as flagellar assembly. Untargeted fecal metabolome analysis found that severe preeclampsia had higher concentrations of Phenylpropanoate and Agmatine. Increased concentrations of Phenylpropanoate and Agmatine were associated with the abundance of Limosilactobacillus fermentum. Furthermore, all metabolites with higher abundances in healthy controls were enriched in the arginine and proline metabolism pathway. CONCLUSION Our research indicates that changes in metabolites, possibly due to the gut microbe Limosilactobacillus fermentum, can contribute to the development of severe preeclampsia. This study provides insights into the interaction between gut microbiome and fecal metabolites and offers a basis for improving severe preeclampsia by modulating the gut microbiome.
Collapse
Affiliation(s)
- Xianxian Liu
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Xiaoming Zeng
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Xing Li
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Siming Xin
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Feng Zhang
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Faying Liu
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Yang Zeng
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Jilin Wu
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Yang Zou
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China.
| | - Xinwei Xiong
- Institute of Biological Technology, Nanchang Normal University, Nanchang, Jiangxi, 330032, China.
| |
Collapse
|
5
|
Sakowicz A, Bralewska M, Rybak-Krzyszkowska M, Grzesiak M, Pietrucha T. New Ideas for the Prevention and Treatment of Preeclampsia and Their Molecular Inspirations. Int J Mol Sci 2023; 24:12100. [PMID: 37569476 PMCID: PMC10418829 DOI: 10.3390/ijms241512100] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Preeclampsia (PE) is a pregnancy-specific disorder affecting 4-10% of all expectant women. It greatly increases the risk of maternal and foetal death. Although the main symptoms generally appear after week 20 of gestation, scientific studies indicate that the mechanism underpinning PE is initiated at the beginning of gestation. It is known that the pathomechanism of preeclampsia is strongly related to inflammation and oxidative stress, which influence placentation and provoke endothelial dysfunction in the mother. However, as of yet, no "key players" regulating all these processes have been discovered. This might be why current therapeutic strategies intended for prevention or treatment are not fully effective, and the only effective method to stop the disease is the premature induction of delivery, mostly by caesarean section. Therefore, there is a need for further research into new pharmacological strategies for the treatment and prevention of preeclampsia. This review presents new preventive methods and therapies for PE not yet recommended by obstetrical and gynaecological societies. As many of these therapies are in preclinical studies or under evaluation in clinical trials, this paper reports the molecular targets of the tested agents or methods.
Collapse
Affiliation(s)
- Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; (M.B.); (T.P.)
| | - Michalina Bralewska
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; (M.B.); (T.P.)
| | - Magda Rybak-Krzyszkowska
- Department of Obstetrics and Perinatology, University Hospital in Krakow, 31-501 Krakow, Poland;
| | - Mariusz Grzesiak
- Department of Perinatology, Obstetrics and Gynecology, Polish Mother’s Memorial Hospital-Research Institute in Lodz, 93-338 Lodz, Poland;
- Department of Gynecology and Obstetrics, Medical University of Lodz, 93-338 Lodz, Poland
| | - Tadeusz Pietrucha
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; (M.B.); (T.P.)
| |
Collapse
|
6
|
Zhao F, Hu X, Ying C. Advances in Research on the Relationship between Vaginal Microbiota and Adverse Pregnancy Outcomes and Gynecological Diseases. Microorganisms 2023; 11:microorganisms11040991. [PMID: 37110417 PMCID: PMC10146011 DOI: 10.3390/microorganisms11040991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The human microbiota inhabiting different parts of the body has been shown to have a significant impact on human health, with the gut microbiota being the most extensively studied in relation to disease. However, the vaginal microbiota is also an essential commensal microbiota in the female body that plays a crucial role in female health. Despite receiving less attention than gut microbiota, its importance in regulating reproductive immunity and its complex dynamic properties have been increasingly recognized in recent years. Advances in research on the relationship between vaginal microbiota and pregnancy outcomes & gynecological diseases in women have shed light on the importance of maintaining a healthy vaginal microbiota. In this review, we aim to compile recent developments in the study of the vaginal microbial ecosystem and its role in female health and reproductive outcomes. We provide a comprehensive account of the normal vaginal microbiota, the association between the vaginal microbiota and pregnancy outcomes, and the impact of the vaginal microbiota on gynecological diseases in women. By reviewing recent research, we hope to contribute to the advancement of academic medicine's understanding of the vaginal microbiota's importance in female health. We also aim to raise awareness among healthcare professionals and the general public of the significance of maintaining a healthy vaginal microbiota for better reproductive health and the prevention of gynecological diseases.
Collapse
Affiliation(s)
- Fuju Zhao
- Clinical Laboratory, Huadong Hospital, Fudan University, Shanghai 200031, China
- Clinical Laboratory, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Xianyang Hu
- Huadong Hospital, Fudan University, Shanghai 200031, China
| | - Chunmei Ying
- Clinical Laboratory, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| |
Collapse
|
7
|
Chao A, Chao AS, Lin CY, Weng C, Wu RC, Yeh YM, Huang SS, Lee YS, Lai CH, Huang HJ, Tang YH, Lin YS, Wang CJ, Wu KY. Analysis of endometrial lavage microbiota reveals an increased relative abundance of the plastic-degrading bacteria Bacillus pseudofirmus and Stenotrophomonas rhizophila in women with endometrial cancer/endometrial hyperplasia. Front Cell Infect Microbiol 2022; 12:1031967. [PMID: 36439209 PMCID: PMC9682088 DOI: 10.3389/fcimb.2022.1031967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
The pathogenic influences of uterine bacteria on endometrial carcinogenesis remain unclear. The aim of this pilot study was to compare the microbiota composition of endometrial lavage samples obtained from women with either endometrial hyperplasia (EH) or endometrial cancer (EC) versus those with benign uterine conditions. We hypothesized that specific microbiota signatures would distinguish between the two groups, possibly leading to the identification of bacterial species associated with endometrial tumorigenesis. A total of 35 endometrial lavage specimens (EH, n = 18; EC, n = 7; metastatic EC, n = 2; benign endometrial lesions, n = 8) were collected from 32 women who had undergone office hysteroscopy. Microbiota composition was determined by sequencing the V3−V4 region of 16S rRNA genes and results were validated by real-time qPCR in 46 patients with EC/EH and 13 control women. Surprisingly, we found that Bacillus pseudofirmus and Stenotrophomonas rhizophila – two plastic-degrading bacterial species – were over-represented in endometrial lavage specimens collected from patients with EC/EH. Using computational analysis, we found that the functional profile of endometrial microbiota in EC/EH was associated with fatty acid and amino acid metabolism. In summary, our hypothesis-generating data indicate that the plastic-degrading bacteria Bacillus pseudofirmus and Stenotrophomonas rhizophila are over-represented within the endometrial lavage microbiota of women with EC/EH living in Taiwan. Whether this may be related to plastic pollution deserves further investigation.
Collapse
Affiliation(s)
- Angel Chao
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - An-Shine Chao
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, New Taipei Municipal Tu Cheng Hospital, New Taipei City, Taiwan
| | - Chiao-Yun Lin
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cindy Hsuan Weng
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ren-Chin Wu
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, New Taipei Municipal Tu Cheng Hospital, New Taipei City, Taiwan
| | - Yuan-Ming Yeh
- Department of Pathology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Shih-Sin Huang
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yun-Shien Lee
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Biotechnology, Ming-Chuan University, Taoyuan, Taiwan
| | - Chyong-Huey Lai
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Huei-Jean Huang
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yun-Hsin Tang
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Shan Lin
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, New Taipei Municipal Tu Cheng Hospital, New Taipei City, Taiwan
| | - Chin-Jung Wang
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kai-Yun Wu
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- *Correspondence: Kai-Yun Wu,
| |
Collapse
|
8
|
Lin CY, Cheng HT, Kuo CJ, Lee YS, Sung CM, Keidan M, Rao K, Kao JY, Hsieh SY. Proton Pump Inhibitor-Induced Gut Dysbiosis Increases Mortality Rates for Patients with Clostridioides difficile Infection. Microbiol Spectr 2022; 10:e0048622. [PMID: 35863023 PMCID: PMC9430933 DOI: 10.1128/spectrum.00486-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
Clostridioides difficile infection (CDI) is associated with high mortality rates among patients with chronic illnesses. We aimed to identify avoidable risk factors to reduce the mortality rate in CDI patients. A total of 306 patients with diarrhea and clinical suspicion of CDI were enrolled, and fecal samples were gathered from 145 patients. CDI was diagnosed by fecal positivity for the C. difficile tcdB gene. Risk factors associated with death within 180 days were identified using Cox regression analysis. The fecal microbiota was determined through bacterial 16S rRNA gene sequencing. Of the patients with diarrhea, 240 (mean age, 69.1 years) were positive for CDI, and 91 died within 180 days. Multivariate analysis revealed that male sex, high Charlson Comorbidity Index and McCabe scores, high serum C-reactive protein levels, low hematocrit levels, low absolute eosinophil counts, high neutrophil/lymphocyte ratios, and daily use of proton pump inhibitors (PPIs) were independent risk factors for overall mortality. Cumulative analyses confirmed the association of duration-dependent PPI use with a high mortality rate. Fecal microbiota analyses showed associations of decreased relative abundance of Ruminococcus gnavus (P = 0.001) and Prevotella copri (P = 0.025) and increased relative abundance of Parabacteroides merdae (P = 0.001) and Clostridioides difficile (P = 0.040) with higher mortality rates in patients with CDI. Moreover, these microbiota changes were correlated with the duration of PPI use. IMPORTANCE This article demonstrates that daily PPI use was the only avoidable risk factor for death. With more extended PPI use, the mortality rate was higher in patients with CDI. Decreases in Prevotella copri and Ruminococcus gnavus and increases in Parabacteroides merdae and Clostridioides difficile in line with daily PPI use duration were significantly associated with the death of CDI patients. Our findings provide in-depth insights into the cautious use of PPIs in chronically ill patients with CDI.
Collapse
Affiliation(s)
- Cheng-Yu Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hao-Tsai Cheng
- Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Gastroenterology and Hepatology, Tu Cheng Hospital, New Taipei City, Taiwan
| | - Chia-Jung Kuo
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yun-Shien Lee
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| | - Chang-Mu Sung
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Micah Keidan
- Department of Internal Medicine, Division of Infectious Diseases, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Krishna Rao
- Department of Internal Medicine, Division of Infectious Diseases, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - John Y. Kao
- Department of Internal Medicine, Division of Gastroenterology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
9
|
Huang Y, Li D, Cai W, Zhu H, Shane MI, Liao C, Pan S. Distribution of Vaginal and Gut Microbiome in Advanced Maternal Age. Front Cell Infect Microbiol 2022; 12:819802. [PMID: 35694547 PMCID: PMC9186158 DOI: 10.3389/fcimb.2022.819802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
The distribution of the microbiome in women with advanced maternal age (AMA) is poorly understood. To gain insight into this, the vaginal and gut microbiota of 62 women were sampled and sequenced using the 16S rRNA technique. These women were divided into three groups, namely, the AMA (age ≥ 35 years, n = 13) group, the non-advanced maternal age (NMA) (age < 35 years, n = 38) group, and the control group (non-pregnant healthy women, age >35 years, n = 11). We found that the alpha diversity of vaginal microbiota in the AMA group significantly increased. However, the beta diversity significantly decreased in the AMA group compared with the control group. There was no significant difference in the diversity of gut microbiota among the three groups. The distributions of microbiota were significantly different among AMA, NMA, and control groups. In vaginal microbiota, the abundance of Lactobacillus was higher in the pregnant groups. Bifidobacterium was significantly enriched in the AMA group. In gut microbiota, Prevotella bivia was significantly enriched in the AMA group. Vaginal and gut microbiota in women with AMA were noticeably different from the NMA and non-pregnant women, and this phenomenon is probably related to the increased risk of complications in women with AMA.
Collapse
Affiliation(s)
- Yuxin Huang
- Department of Gynaecology and Obstetrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dianjie Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wei Cai
- Department of Gynaecology and Obstetrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Honglei Zhu
- Department of Gynaecology and Obstetrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mc Intyre Shane
- Department of Gynaecology and Obstetrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Can Liao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou, China
- *Correspondence: Can Liao, ; Shilei Pan,
| | - Shilei Pan
- Department of Gynaecology and Obstetrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Can Liao, ; Shilei Pan,
| |
Collapse
|
10
|
Yang H, Gao C, Wang X, Qiu F, Wei M, Xia F. Associations between vaginal flora, MIP-1α, IL-17A, and clinical pregnancy rate in AIH. Am J Reprod Immunol 2022; 88:e13543. [PMID: 35357057 DOI: 10.1111/aji.13543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
PROBLEM To investigate how asymptomatic bacterial imbalance affects the clinical pregnancy rate after artificial insemination with the husband's semen (AIH). METHODS This study included married heterosexual couples who underwent AIH. According to the follow-up results, participants were divided into the pregnancy and non-pregnancy groups. Based on the first 10 pair participants in each group with vaginal flora bacterial 16S rRNA sequencing results, six semen samples received bacterial-sperm mixed test. Moreover, 34 cytokines were detected in the peripheral blood sera of the first three pairs by high-throughput Luminex, which were verified in vaginal secretions, cervical mucus, and blood sera from the first 200 pairs by ELISA. RESULTS The results of the 16S sequencing of vaginal secretions showed that compared with the pregnant group, the non-pregnant group had a significantly increased bacterial species diversity, which was mainly manifested by a decrease in Lactobacillus crispatus and an increase in Prevotella bivia. When Prevotella bivia or Lactobacillus crispatus were mixed with sperms, the sperm motility was decreased (p < .05). The vaginal posterior fornix secretions, cervical mucus, and peripheral blood sera of the non-pregnant group showed decreased levels of MIP-1α and increased levels of IL-17A (p < .05). CONCLUSION The imbalance of vaginal flora leading to the increase of Prevotella bivia and the decrease of Lactobacillus crispatus may cause an imbalance of immune regulation. Low expression of MIP-1α and high expression of IL-17A were associated with reduced clinical pregnancy rate in AIH.
Collapse
Affiliation(s)
- Hui Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China.,Department of Gynecology and Obstetrics, Huaian Maternal and Child Health Care Hospital, Huai'an, Jiangsu, P.R. China
| | - Chengzhen Gao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Xia Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Fenglong Qiu
- Department of Gynecology and Obstetrics, Huaian Maternal and Child Health Care Hospital, Huai'an, Jiangsu, P.R. China
| | - Mian Wei
- Department of Gynecology and Obstetrics, Huaian Maternal and Child Health Care Hospital, Huai'an, Jiangsu, P.R. China
| | - Fei Xia
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
11
|
Liu Z, Bian L, Yeoman CJ, Clifton GD, Ellington JE, Ellington-Lawrence RD, Borgogna JLC, Star A. Bacterial Vaginosis Monitoring with Carbon Nanotube Field-Effect Transistors. Anal Chem 2022; 94:3849-3857. [PMID: 35191682 DOI: 10.1021/acs.analchem.1c04755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to rapidly and reliably screen for bacterial vaginosis (BV) during pregnancy is of great significance for maternal health and pregnancy outcomes. In this proof-of-concept study, we demonstrated the potential of carbon nanotube field-effect transistors (NTFET) in the rapid diagnostics of BV with the sensing of BV-related factors such as pH and biogenic amines. The fabricated sensors showed good linearity to pH changes with a linear correlation coefficient of 0.99. The pH sensing performance was stable after more than one month of sensor storage. In addition, the sensor was able to classify BV-related biogenic amine-negative/positive samples with machine learning, utilizing different test strategies and algorithms, including linear discriminant analysis (LDA), support vector machine (SVM), and principal component analysis (PCA). The biogenic amine sample status could be well classified using a soft-margin SVM model with a validation accuracy of 87.5%. The accuracy could be further improved using a gold gate electrode for measurement, with accuracy higher than 90% in both LDA and SVM models. We also explored the sensing mechanisms and found that the change in NTFET off current was crucial for classification. The fabricated sensors successfully detect BV-related factors, demonstrating the competitive advantage of NTFET for point-of-care diagnostics of BV.
Collapse
Affiliation(s)
- Zhengru Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Long Bian
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Carl J Yeoman
- Departments of Microbiology and Cell Biology, and Animal and Range Sciences, Montana State University, Bozeman, Montana 59718, United States
| | - G Dennis Clifton
- Glyciome, LLC, Valleyford, Washington 99036 and Post Falls, Idaho 83854, United States
| | - Joanna E Ellington
- Glyciome, LLC, Valleyford, Washington 99036 and Post Falls, Idaho 83854, United States
| | | | - Joanna-Lynn C Borgogna
- Departments of Microbiology and Cell Biology, and Animal and Range Sciences, Montana State University, Bozeman, Montana 59718, United States
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
12
|
Sakabe Y, Nishizawa H, Kato A, Yoshizawa H, Noda Y, Ohwaki A, Sekiya T, Fujii T, Kurahashi H. High serum concentrations of lipopolysaccharide binding protein in pregnancies with pre-eclampsia. HYPERTENSION RESEARCH IN PREGNANCY 2021. [DOI: 10.14390/jsshp.hrp2021-013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yoshiko Sakabe
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine
| | - Haruki Nishizawa
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine
| | - Asuka Kato
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University
| | - Hikari Yoshizawa
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine
| | - Yoshiteru Noda
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine
| | - Akiko Ohwaki
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine
| | - Takao Sekiya
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine
| | - Takuma Fujii
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University
| |
Collapse
|
13
|
Streptococcus vaginalis sp. nov., a novel bacterial species isolated from vaginal swabs of a pregnant woman with diabetes. Arch Microbiol 2021; 203:5475-5482. [PMID: 34417650 DOI: 10.1007/s00203-021-02532-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/29/2022]
Abstract
Sequences targeted at the V3 and V4 16S rRNA hypervariable regions of a streptococcal strain (P1L01T) isolated from vaginal swabs of a pregnant woman with diabetes were 100% similar to those of Streptococcus anginosus subsp. whileyi. However, phylogenetic analysis based on 16S rRNA full-gene sequencing (1562 bp) revealed highest sequence similarity to Streptococcus periodonticum (98.7%), followed by Streptococcus anginosus subsp. whileyi (98.7%), and Streptococcus anginosus subsp. anginosus (98.4%). Phylogenies of housekeeping genes rpoB and groEL were compared to improve classification, and the results showed a clear separation between strain P1L01T and closely related Streptococcus type strains. The complete genome of strain P1L01T consisted of 2,108,769 bp with a G + C content of 38.5 mol%. Average nucleotide identity values, based on genome sequencing, between strain P1L01T and Streptococcus periodonticum KCOM 2412T, Streptococcus anginosus subsp. whileyi CCUG 39159T, and Streptococcus anginosus subsp. anginosus NCTC 10713T were 95.5%, 94.3%, and 95.3%, respectively. The highest in silico DNA-DNA hybridization value with respect to the closest species was 66.2%, i.e., below the species cutoff of 70% hybridization. The main cellular fatty acids of strain P1L01T were 16:0, 18:1ω7c, and 14:0. On the basis of phylogenetic, genotypic and phenotypic data, we propose to classify this isolate as representative of a novel species of the genus Streptococcus, Streptococcus vaginalis sp. nov., in reference to its isolation from vaginal swabs, with strain P1L01T (= NBRC 114754T = BCRC 81289T) as the type strain.
Collapse
|
14
|
Zhou Y, Qi H, Yin N. Adaptations and alterations of maternal microbiota: From physiology to pathology. MEDICINE IN MICROECOLOGY 2021. [DOI: 10.1016/j.medmic.2021.100045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
15
|
Crisci MA, Chen LX, Devoto AE, Borges AL, Bordin N, Sachdeva R, Tett A, Sharrar AM, Segata N, Debenedetti F, Bailey M, Burt R, Wood RM, Rowden LJ, Corsini PM, van Winden S, Holmes MA, Lei S, Banfield JF, Santini JM. Closely related Lak megaphages replicate in the microbiomes of diverse animals. iScience 2021; 24:102875. [PMID: 34386733 PMCID: PMC8346664 DOI: 10.1016/j.isci.2021.102875] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 07/14/2021] [Indexed: 02/01/2023] Open
Abstract
Lak phages with alternatively coded ∼540 kbp genomes were recently reported to replicate in Prevotella in microbiomes of humans that consume a non-Western diet, baboons, and pigs. Here, we explore Lak phage diversity and broader distribution using diagnostic polymerase chain reaction and genome-resolved metagenomics. Lak phages were detected in 13 animal types, including reptiles, and are particularly prevalent in pigs. Tracking Lak through the pig gastrointestinal tract revealed significant enrichment in the hindgut compared to the foregut. We reconstructed 34 new Lak genomes, including six curated complete genomes, all of which are alternatively coded. An anomalously large (∼660 kbp) complete genome reconstructed for the most deeply branched Lak from a horse microbiome is also alternatively coded. From the Lak genomes, we identified proteins associated with specific animal species; notably, most have no functional predictions. The presence of closely related Lak phages in diverse animals indicates facile distribution coupled to host-specific adaptation.
Collapse
Affiliation(s)
- Marco A. Crisci
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Lin-Xing Chen
- Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Audra E. Devoto
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Adair L. Borges
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Nicola Bordin
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Rohan Sachdeva
- Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Adrian Tett
- Department CIBIO, University of Trento, Trento, Italy
| | - Allison M. Sharrar
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | | | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Langford, Bristol, UK
| | - Rachel Burt
- Bristol Veterinary School, University of Bristol, Langford, Bristol, UK
| | - Rhiannon M. Wood
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Paula M. Corsini
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | - Mark A. Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Shufei Lei
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Jillian F. Banfield
- Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
- The University of Melbourne, Melbourne, VIC, Australia
| | - Joanne M. Santini
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| |
Collapse
|