1
|
Hörberg J, Carlesso A, Reymer A. Mechanistic insights into ASO-RNA complexation: Advancing antisense oligonucleotide design strategies. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102351. [PMID: 39494149 PMCID: PMC11530825 DOI: 10.1016/j.omtn.2024.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024]
Abstract
Oligonucleotide drugs, an emerging modulator class, hold promise for targeting previously undruggable biomacromolecules. To date, only 18 oligonucleotide drugs, including sought-after antisense oligonucleotides (ASOs) and splice-switching oligonucleotides, have approval from the U.S. Food and Drug Administration. These agents effectively bind mRNA, inducing degradation or modulating splicing. Current oligonucleotide drug design strategies prioritize full Watson-Crick base pair (bp) complementarity, overlooking mRNA target three-dimensional shapes. Given that mRNA conformational diversity can impact hybridization, incorporating mRNA key structural properties into the design may expedite ASO lead discovery. Using atomistic molecular dynamics simulations inspired by experimental data, we demonstrate the advantages of incorporating common triple bps into the design of ASOs targeting RNA hairpin motifs, which are highly accessible regions for interactions. By using an RNA pseudoknot modified into an ASO-hairpin complex, we investigate the effects of ASO length and hairpin loop mutations. Our findings suggest that ASO-mRNA complex stability is influenced by ASO length, number of common triple bps, and the dynamic accessibility of bases in the hairpin loop. Our study offers new mechanistic insights into ASO-mRNA complexation and underscores the value of pseudoknots in constructing training datasets for machine learning models aimed at designing novel ASO leads.
Collapse
Affiliation(s)
- Johanna Hörberg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Antonio Carlesso
- Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Box 431, SE-405 30 Gothenburg, Sweden
| | - Anna Reymer
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
2
|
Zhang X, Blumenthal RM, Cheng X. Updated understanding of the protein-DNA recognition code used by C2H2 zinc finger proteins. Curr Opin Struct Biol 2024; 87:102836. [PMID: 38754172 DOI: 10.1016/j.sbi.2024.102836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
C2H2 zinc-finger (ZF) proteins form the largest family of DNA-binding transcription factors coded by mammalian genomes. In a typical DNA-binding ZF module, there are twelve residues (numbered from -1 to -12) between the last zinc-coordinating cysteine and the first zinc-coordinating histidine. The established C2H2-ZF "recognition code" suggests that residues at positions -1, -4, and -7 recognize the 5', central, and 3' bases of a DNA base-pair triplet, respectively. Structural studies have highlighted that additional residues at positions -5 and -8 also play roles in specific DNA recognition. The presence of bulky and either charged or polar residues at these five positions determines specificity for given DNA bases: guanine is recognized by arginine, lysine, or histidine; adenine by asparagine or glutamine; thymine or 5-methylcytosine by glutamate; and unmodified cytosine by aspartate. This review discusses recent structural characterizations of C2H2-ZFs that add to our understanding of the principles underlying the C2H2-ZF recognition code.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Zhang X, Xia F, Zhang X, Blumenthal RM, Cheng X. C2H2 Zinc Finger Transcription Factors Associated with Hemoglobinopathies. J Mol Biol 2024; 436:168343. [PMID: 37924864 PMCID: PMC11185177 DOI: 10.1016/j.jmb.2023.168343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
In humans, specific aberrations in β-globin results in sickle cell disease and β-thalassemia, symptoms of which can be ameliorated by increased expression of fetal globin (HbF). Two recent CRISPR-Cas9 screens, centered on ∼1500 annotated sequence-specific DNA binding proteins and performed in a human erythroid cell line that expresses adult hemoglobin, uncovered four groups of candidate regulators of HbF gene expression. They are (1) members of the nucleosome remodeling and deacetylase (NuRD) complex proteins that are already known for HbF control; (2) seven C2H2 zinc finger (ZF) proteins, including some (ZBTB7A and BCL11A) already known for directly silencing the fetal γ-globin genes in adult human erythroid cells; (3) a few other transcription factors of different structural classes that might indirectly influence HbF gene expression; and (4) DNA methyltransferase 1 (DNMT1) that maintains the DNA methylation marks that attract the MBD2-associated NuRD complex to DNA as well as associated histone H3 lysine 9 methylation. Here we briefly discuss the effects of these regulators, particularly C2H2 ZFs, in inducing HbF expression for treating β-hemoglobin disorders, together with recent advances in developing safe and effective small-molecule therapeutics for the regulation of this well-conserved hemoglobin switch.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Fangfang Xia
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaotian Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center Houston, McGovern Medical School, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Patra P, Gao YQ. Structural and dynamical aspect of DNA motif sequence specific binding of AP-1 transcription factor. J Chem Phys 2024; 160:115103. [PMID: 38506297 DOI: 10.1063/5.0196508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Activator protein-1 (AP-1) comprises one of the largest and most evolutionary conserved families of ubiquitous eukaryotic transcription factors that act as a pioneer factor. Diversity in DNA binding interaction of AP-1 through a conserved basic-zipper (bZIP) domain directs in-depth understanding of how AP-1 achieves its DNA binding selectivity and consequently gene regulation specificity. Here, we address the structural and dynamical aspects of the DNA target recognition process of AP-1 using microsecond-long atomistic simulations based on the structure of the human AP-1 FosB/JunD bZIP-DNA complex. Our results show the unique role of DNA shape features in selective base specific interactions, characteristic ion population, and solvation properties of DNA grooves to form the motif sequence specific AP-1-DNA complex. The TpG step at the two terminals of the AP-1 site plays an important role in the structural adjustment of DNA by modifying the helical twist in the AP-1 bound state. We addressed the role of intrinsic motion of the bZIP domain in terms of opening and closing gripper motions of DNA binding helices, in target site recognition and binding of AP-1 factors. Our observations suggest that binding to the cognate motif in DNA is mainly accompanied with the precise adjustment of closing gripper motion of DNA binding helices of the bZIP domain.
Collapse
Affiliation(s)
- Piya Patra
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, 518107 Shenzhen, China
| | - Yi Qin Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, 518107 Shenzhen, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
- Biomedical Pioneering Innovation Center, Peking University, 100871 Beijing, China
- Changping Laboratory, Beijing 102200, China
| |
Collapse
|
5
|
Chen Y, Zhang M, Sui D, Jiang J, Wang L. Role of bZIP Transcription Factors in Response to NaCl Stress in Tamarix ramosissima under Exogenous Potassium (K +). Genes (Basel) 2023; 14:2203. [PMID: 38137025 PMCID: PMC10743189 DOI: 10.3390/genes14122203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/19/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Salt stress is a significant environmental factor affecting plant growth and development, with NaCl stress being one of the most common types of salt stress. The halophyte, Tamarix ramosissima Ledeb (T. ramosissima), is frequently utilized for the afforestation of saline-alkali soils. Indeed, there has been limited research and reports by experts and scholars on the regulatory mechanisms of basic leucine zipper (bZIP) genes in T. ramosissima when treated with exogenous potassium (K+) to alleviate the effects of NaCl stress. This study focused on the bZIP genes in T. ramosissima roots under NaCl stress with additional KCl applied. We identified key candidate genes and metabolic pathways related to bZIP and validated them through quantitative real-time PCR (qRT-PCR). The results revealed that under NaCl stress with additional KCl applied treatments at 0 h, 48 h, and 168 h, based on Pfam protein domain prediction and physicochemical property analysis, we identified 20 related bZIP genes. Notably, four bZIP genes (bZIP_2, bZIP_6, bZIP_16, and bZIP_18) were labeled with the plant hormone signal transduction pathway, showing a predominant up-regulation in expression levels. The results suggest that these genes may mediate multiple physiological pathways under NaCl stress with additional KCl applied at 48 h and 168 h, enhancing signal transduction, reducing the accumulation of ROS, and decreasing oxidative damage, thereby enhancing the tolerance of T. ramosissima to NaCl stress. This study provides gene resources and a theoretical basis for further breeding of salt-tolerant Tamarix species and the involvement of bZIP transcription factors in mitigating NaCl toxicity.
Collapse
Affiliation(s)
- Yahui Chen
- Jiangsu Academy of Forestry, Nanjing 211153, China; (Y.C.); (M.Z.); (D.S.)
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Min Zhang
- Jiangsu Academy of Forestry, Nanjing 211153, China; (Y.C.); (M.Z.); (D.S.)
| | - Dezong Sui
- Jiangsu Academy of Forestry, Nanjing 211153, China; (Y.C.); (M.Z.); (D.S.)
| | - Jiang Jiang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Wang
- Jiangsu Academy of Forestry, Nanjing 211153, China; (Y.C.); (M.Z.); (D.S.)
| |
Collapse
|
6
|
Hörberg J, Reymer A. Decoding the dual recognition mechanism of the glucocorticoid receptor for DNA and RNA: sequence versus shape. Sci Rep 2023; 13:16125. [PMID: 37752333 PMCID: PMC10522765 DOI: 10.1038/s41598-023-43244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023] Open
Abstract
Transcription factors (TFs) regulate eukaryotic transcription through selective DNA-binding, can also specifically interact with RNA, which may present another layer of transcriptional control. The mechanisms of the TFs-DNA recognition are often well-characterised, while the details of TFs-RNA complexation are less understood. Here we investigate the dual recognition mechanism of the glucocorticoid receptor (GR), which interacts with similar affinities with consensus DNA and diverse RNA hairpin motifs but discriminates against uniform dsRNA. Using atomic molecular dynamics simulations, we demonstrate that the GR binding to nucleic acids requires a wide and shallow groove pocket. The protein effectively moulds its binding site within DNA major groove, which enables base-specific interactions. Contrary, the GR binding has little effect on the grooves geometry of RNA systems, most notably in uniform dsRNA. Instead, a hairpin motif in RNA yields a wide and shallow major groove pocket, allowing the protein to anchor itself through nonspecific electrostatic contacts with RNA backbone. Addition of a bulge increases RNA hairpin flexibility, which leads to a greater number of GR-RNA contacts and, thus, higher affinity. Thus, the combination of structural motifs defines the GR-RNA selective binding: a recognition mechanism, which may be shared by other zinc finger TFs.
Collapse
Affiliation(s)
- Johanna Hörberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Göteborg, Sweden
| | - Anna Reymer
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Göteborg, Sweden.
| |
Collapse
|
7
|
Liebl K, Zacharias M. The development of nucleic acids force fields: From an unchallenged past to a competitive future. Biophys J 2023; 122:2841-2851. [PMID: 36540025 PMCID: PMC10398263 DOI: 10.1016/j.bpj.2022.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Molecular dynamics simulations have strongly matured as a method to study biomolecular processes. Their validity, however, is determined by the accuracy of the underlying force fields that describe the forces between all atoms. In this article, we review the development of nucleic acids force fields. We describe the early attempts in the 1990s and emphasize their strong influence on recent force fields. State-of-the-art force fields still use the same Lennard-Jones parameters derived 25 years ago in spite of the fact that these parameters were in general not fitted for nucleic acids. In addition, electrostatic parameters also are deprecated, which may explain some of the current force field deficiencies. We compare different force fields for various systems and discuss new tests of the recently developed Tumuc1 force field. The OL-force fields and Tumuc1 are arguably the best force fields to describe the DNA double helix. However, no force field is flawless. In particular, the description of sugar-puckering remains a problem for nucleic acids force fields. Future refinements are required, so we review methods for force field refinement and give an outlook to the future of force fields.
Collapse
Affiliation(s)
- Korbinian Liebl
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois.
| | - Martin Zacharias
- Physics Department and Center of Protein Assemblies, Technical University of Munich, Munich, Germany
| |
Collapse
|
8
|
Sherpa T, Jha DK, Kumari K, Chanwala J, Dey N. Synthetic sub-genomic transcript promoter from Horseradish Latent Virus (HRLV). PLANTA 2023; 257:40. [PMID: 36653682 DOI: 10.1007/s00425-023-04066-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
We characterized an efficient chimeric sub-genomic transcript promoter from Horseradish Latent Virus, FHS4, active in both dicot and monocot plants, and it could be a potential tool for plant biotechnology. Plant pararetroviruses are a rich source of novel plant promoters widely used for biotechnological applications. Here, we comprehensively characterized a unique sub-genomic transcript (Sgt) promoter of Horseradish Latent Virus (HRLV) and identified a fragment (HS4; - 340 to + 10; 351 bp) that showed the highest expression of reporter genes in both transient and transgenic assays as evidenced by biochemical, histochemical GUS reporter assay and transcript analysis of uidA gene by qRT-PCR. Phylogenetic analysis showed that the HSgt promoter was closely related to the sub-genomic promoter of the Cauliflower Mosaic Virus (CaMV19S). We found that the as-1 element and W-box played an important role in the transcriptional activity of the HS4 promoter. Furthermore, the HS4 promoter was also induced by salicylic acid. Alongside, we enhanced the activity of the HS4 promoter by coupling the enhancer region from Figwort Mosaic Virus (FMV) promoter to the upstream region of it. This hybrid promoter FHS4 was around 1.1 times stronger than the most commonly used promoter, 35S (Cauliflower Mosaic Virus full-length transcript promoter), and was efficient in driving reporter genes in both dicot and monocot plants. Subsequently, transgenic tobacco plants expressing an anti-microbial peptide BrLTP2.1 (Brassica rapa lipid transport protein 2.1), under the control of the FHS4 promoter, were developed. The in vitro anti-fungal assay revealed that the plant-derived BrLTP2.1 protein driven by an FHS4 promoter manifested increased resistance against an important plant fungal pathogen, Alternaria alternata. Finally, we concluded that the FHS4 promoter can be used as an alternative to the 35S promoter and has a high potential to become an efficient tool in plant biotechnology.
Collapse
Affiliation(s)
- Tsheten Sherpa
- Division of Plant Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Deepak Kumar Jha
- Division of Plant Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Khushbu Kumari
- Division of Plant Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Jeky Chanwala
- Division of Plant Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Nrisingha Dey
- Division of Plant Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.
| |
Collapse
|
9
|
Abstract
The compaction of linear DNA into micrometer-sized nuclear boundaries involves the establishment of specific three-dimensional (3D) DNA structures complexed with histone proteins that form chromatin. The resulting structures modulate essential nuclear processes such as transcription, replication, and repair to facilitate or impede their multi-step progression and these contribute to dynamic modification of the 3D-genome organization. It is generally accepted that protein–protein and protein–DNA interactions form the basis of 3D-genome organization. However, the constant generation of mechanical forces, torques, and other stresses produced by various proteins translocating along DNA could be playing a larger role in genome organization than currently appreciated. Clearly, a thorough understanding of the mechanical determinants imposed by DNA transactions on the 3D organization of the genome is required. We provide here an overview of our current knowledge and highlight the importance of DNA and chromatin mechanics in gene expression.
Collapse
Affiliation(s)
- Rajiv Kumar Jha
- Gene Regulation Section, Laboratory of Pathology, Nci/nih, Bethesda, MD USA
| | - David Levens
- Gene Regulation Section, Laboratory of Pathology, Nci/nih, Bethesda, MD USA
| | - Fedor Kouzine
- Gene Regulation Section, Laboratory of Pathology, Nci/nih, Bethesda, MD USA
| |
Collapse
|
10
|
Homologous basic helix–loop–helix transcription factors induce distinct deformations of torsionally-stressed DNA: a potential transcription regulation mechanism. QRB DISCOVERY 2022. [PMID: 37529292 PMCID: PMC10392670 DOI: 10.1017/qrd.2022.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Abstract
Changing torsional restraints on DNA is essential for the regulation of transcription. Torsional stress, introduced by RNA polymerase, can propagate along chromatin facilitating topological transitions and modulating the specific binding of transcription factors (TFs) to DNA. Despite the importance, the mechanistic details on how torsional stress impacts the TFs-DNA complexation remain scarce. Herein, we address the impact of torsional stress on DNA complexation with homologous human basic helix–loop–helix (BHLH) hetero- and homodimers: MycMax, MadMax and MaxMax. The three TF dimers exhibit specificity towards the same DNA consensus sequence, the E-box response element, while regulating different transcriptional pathways. Using microseconds-long atomistic molecular dynamics simulations together with the torsional restraint that controls DNA total helical twist, we gradually over- and underwind naked and complexed DNA to a maximum of ± 5°/bp step. We observe that the binding of the BHLH dimers results in a similar increase in DNA torsional rigidity. However, under torsional stress the BHLH dimers induce distinct DNA deformations, characterised by changes in DNA grooves geometry and a significant asymmetric DNA bending. Supported by bioinformatics analyses, our data suggest that torsional stress may contribute to the execution of differential transcriptional programs of the homologous TFs by modulating their collaborative interactions.
Collapse
|
11
|
Dohnalová H, Lankaš F. Deciphering the mechanical properties of
B‐DNA
duplex. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hana Dohnalová
- Department of Informatics and Chemistry University of Chemistry and Technology Prague Praha 6 Czech Republic
| | - Filip Lankaš
- Department of Informatics and Chemistry University of Chemistry and Technology Prague Praha 6 Czech Republic
| |
Collapse
|
12
|
Kanapeckaitė A, Beaurivage C, Jančorienė L, Mažeikienė A. In silico drug discovery for a complex immunotherapeutic target - human c-Rel protein. Biophys Chem 2021; 276:106593. [PMID: 34087524 DOI: 10.1016/j.bpc.2021.106593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/28/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022]
Abstract
Target evaluation and rational drug design rely on identifying and characterising small-molecule binding sites on therapeutically relevant target proteins. Immunotherapeutics development is especially challenging because of complex disease etiology and heterogenous nature of targets. c-Rel protein, a promising target in many human inflammatory and cancer pathologies, was selected as a case study for an effective in silico screening platform development since this transcription factor currently has no successful therapeutic inhibitors or modulators. This study introduces a novel in silico screening approach to probe binding sites using structural validation sets, molecular modelling and describes a method of a computer-aided drug design when a crystal structure is not available for the target of interest. In addition, we showed that binding sites can be analysed with the machine learning as well as molecular simulation approaches to help assess and systematically analyse how drug candidates can exert their mode of action. Finally, this cutting-edge approach was subjected to a high through-put virtual screen of selected 34 M drug-like compounds filtered from a library of 659 M compounds by identifying the most promising structures and proposing potential action mechanisms for the future development of highly selective human c-Rel inhibitors and/or modulators.
Collapse
Affiliation(s)
| | | | - Ligita Jančorienė
- Vilnius University Medical Faculty InsTtute of Clinical Medicine, Clinic of InfecTous Diseases and Dermatovenerology, Santariškių str. 14, 08406 Vilnius, Lithuania
| | - Asta Mažeikienė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, M. K. Čiurlionio g. 21, LT-03101, Vilnius, Lithuania
| |
Collapse
|
13
|
Hörberg J, Moreau K, Tamás MJ, Reymer A. Sequence-specific dynamics of DNA response elements and their flanking sites regulate the recognition by AP-1 transcription factors. Nucleic Acids Res 2021; 49:9280-9293. [PMID: 34387667 PMCID: PMC8450079 DOI: 10.1093/nar/gkab691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 11/28/2022] Open
Abstract
Activator proteins 1 (AP-1) comprise one of the largest families of eukaryotic basic leucine zipper transcription factors. Despite advances in the characterization of AP-1 DNA-binding sites, our ability to predict new binding sites and explain how the proteins achieve different gene expression levels remains limited. Here we address the role of sequence-specific DNA flexibility for stability and specific binding of AP-1 factors, using microsecond-long molecular dynamics simulations. As a model system, we employ yeast AP-1 factor Yap1 binding to three different response elements from two genetic environments. Our data show that Yap1 actively exploits the sequence-specific flexibility of DNA within the response element to form stable protein–DNA complexes. The stability also depends on the four to six flanking nucleotides, adjacent to the response elements. The flanking sequences modulate the conformational adaptability of the response element, making it more shape-efficient to form specific contacts with the protein. Bioinformatics analysis of differential expression of the studied genes supports our conclusions: the stability of Yap1–DNA complexes, modulated by the flanking environment, influences the gene expression levels. Our results provide new insights into mechanisms of protein–DNA recognition and the biological regulation of gene expression levels in eukaryotes.
Collapse
Affiliation(s)
- Johanna Hörberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Kevin Moreau
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Anna Reymer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
| |
Collapse
|
14
|
Cai YM, Kallam K, Tidd H, Gendarini G, Salzman A, Patron N. Rational design of minimal synthetic promoters for plants. Nucleic Acids Res 2020; 48:11845-11856. [PMID: 32856047 PMCID: PMC7708054 DOI: 10.1093/nar/gkaa682] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/03/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
Promoters serve a critical role in establishing baseline transcriptional capacity through the recruitment of proteins, including transcription factors. Previously, a paucity of data for cis-regulatory elements in plants meant that it was challenging to determine which sequence elements in plant promoter sequences contributed to transcriptional function. In this study, we have identified functional elements in the promoters of plant genes and plant pathogens that utilize plant transcriptional machinery for gene expression. We have established a quantitative experimental system to investigate transcriptional function, investigating how identity, density and position contribute to regulatory function. We then identified permissive architectures for minimal synthetic plant promoters enabling the computational design of a suite of synthetic promoters of different strengths. These have been used to regulate the relative expression of output genes in simple genetic devices.
Collapse
Affiliation(s)
- Yao-Min Cai
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| | - Kalyani Kallam
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| | - Henry Tidd
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| | - Giovanni Gendarini
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| | - Amanda Salzman
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| | - Nicola J Patron
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| |
Collapse
|