1
|
Saleh MS, Landi V, Derks MFL, Centoducati G, Groenen MAM, De Palo P, Ciani E, Pugliese N, Circella E, Camarda A. Genomic scans for selection and runs of homozygosity in southern Italian turkey populations. Poult Sci 2024; 104:104750. [PMID: 39827693 DOI: 10.1016/j.psj.2024.104750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025] Open
Abstract
Basilicata and Apulian (BAS-APU) turkeys, a native population in the Basilicata and Puglia regions of southern Italy, are known for their high meat quality and tolerance to local conditions. Understanding the genomic patterns of BAS-APU turkeys is critical for effective breeding and preservation strategies. In this study, we characterized runs of homozygosity (ROH), and selection signatures using the integrated haplotype score (iHS) and ROH approaches. A total of 73 BAS-APU turkeys from five populations were sequenced (12X). The inbreeding coefficients based on ROH ranged from 0.177 to 0.405. A total of 120,956 ROH were detected in BAS-APU populations. We identified 27 genomic regions that harbor 61 candidate genes in ROH islands in which single nucleotide polymorphisms (SNPs) occur in more than 90 % of individuals. In addition, we detected 608 genomic regions under positive selection using the iHS method being 104, 98, 130, 102, and 174 for BAS, APU_C, APU_M, APU_PN, and APU_PS, respectively. For both methods, most of the genes within these regions are related to production performance, reproduction, immune responses, and adaptation. This study contributes significantly to our understanding of the genetic makeup of native turkey populations in southern Italy. The identified genes under selection can aid future breeding and conservations programs for southern Italian native turkeys. The results of inbreeding levels, especially in the absence of complete pedigrees or when only a few samples are available, which is often the case for local breeds, will help to avoid genetic relatedness in the mating plan in breeding and conservation plans for BAS-APU populations. Also, the detected genes in the selective sweep regions could be used as a marker-assisted selection to improve productive traits and adaptation of BAS-APU local populations.
Collapse
Affiliation(s)
- Medhat S Saleh
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, Wageningen, 6700 AH, the Netherlands; Department of Animal Production, Faculty of Agriculture, Benha University, Benha 13736, Egypt.
| | - Vincenzo Landi
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy.
| | - Martijn F L Derks
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, Wageningen, 6700 AH, the Netherlands.
| | - Gerardo Centoducati
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy.
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, Wageningen, 6700 AH, the Netherlands.
| | - Pasquale De Palo
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy.
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy.
| | - Nicola Pugliese
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy.
| | - Elena Circella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy.
| | - Antonio Camarda
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy.
| |
Collapse
|
2
|
Gaspa G, Cesarani A, Pauciullo A, Peana I, Macciotta NPP. Genomic Analysis of Sarda Sheep Raised at Diverse Temperatures Highlights Several Genes Involved in Adaptations to the Environment and Heat Stress Response. Animals (Basel) 2024; 14:3585. [PMID: 39765489 PMCID: PMC11672698 DOI: 10.3390/ani14243585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Livestock expresses complex traits influenced by several factors. The response of animals to variations in climatic factors, such as increases in temperature, may induce heat stress conditions. In this study, animals living at different temperatures were compared using the genome-wide Wright fixation index (FST). A total of 825 genotypes of Sarda breed ewes were divided into two groups based on the flocks' average temperature over a 20-year period to compute the FST: 395 and 430 sheep were represented in colder and hotter groups, respectively. After LOWESS regression and CONTROL CHART application, 623 significant markers and 97 selection signatures were found. A total of 280 positional candidate genes were retrieved from a public database. Among these genomic regions, we found 51 annotated genes previously associated with heat stress/tolerance in ruminants (FCGR1A, MDH1, UGP2, MYO1G, and HSPB3), as well as immune response and cellular mechanisms related to how animals cope with thermal stress (RIPK1, SERPINB1, SERPINB9, and PELI1). Moreover, other genes were associated with milk fat (SCD, HERC3, SCFD2, and CHUK), body weight, body fat, and intramuscular fat composition (AGPAT2, ABCD2, MFAP32, YTHDC1, SIRT3, SCD, and RNF121), which might suggest the influence of environmental conditions on the genome of Sarda sheep.
Collapse
Affiliation(s)
- Giustino Gaspa
- Department of Agricultural, Forest and Food Science, University of Torino, 10124 Torino, Italy;
| | - Alberto Cesarani
- Department of Agriculture, University of Sassari, 07100 Sassari, Italy; (A.C.); (N.P.P.M.)
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Alfredo Pauciullo
- Department of Agricultural, Forest and Food Science, University of Torino, 10124 Torino, Italy;
| | - Ilaria Peana
- Servizio Agrometeorologico Regionale per la Sardegna (ARPAS), 07100 Sassari, Italy;
| | - Nicolò P. P. Macciotta
- Department of Agriculture, University of Sassari, 07100 Sassari, Italy; (A.C.); (N.P.P.M.)
| |
Collapse
|
3
|
Peng W, Zhang Y, Gao L, Wang S, Liu M, Sun E, Lu K, Zhang Y, Li B, Li G, Cao J, Yang M. Examination of homozygosity runs and selection signatures in native goat breeds of Henan, China. BMC Genomics 2024; 25:1184. [PMID: 39643897 PMCID: PMC11624592 DOI: 10.1186/s12864-024-11098-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024] Open
Abstract
Understanding the genomic characteristics of livestock is crucial for improving breeding efficiency and conservation efforts. However, there is a relative lack of information on the genetic makeup of local goat breeds in Henan, China. In this study, we identified runs of homozygosity (ROH), genomic inbreeding coefficients (FROH), and selection signatures in four breeds including Funiu White (FNW), Huai (HG), Lushan Bullleg (LS), and Taihang black (THB). The genomic analysis utilized a dataset of 46,278 SNP markers and 102 animals. A total of 342, 567, 1285, and 180 ROH segments were detected in FNW, HG, LS, and THB, respectively, with an average of 15.55, 29.84, 32.95, and 8.18 segments per individual. The lengths of ROH segments varied from 69.36 Mb in THB to 417.06 Mb in LS, with the most common lengths being 2-4 Mb and 4-8 Mb. The highest number of longest ROH segments (> 16 Mb) were found in LS (328) and the highest average FROH value was observed in LS (0.173), followed by HG (0.128), while the lowest FROH values were in THB (0.029) and FNW (0.070). Furthermore, the analysis of ROH islands and Composite Likelihood Ratio (CLR) identified a total of 175 significant genes. Among these, 25 genes were found to overlap, detected by both methods. These genes were associated with a diverse range of traits including reproductive ability (GPRIN3), weight (CCSER1), immune response (HERC5 and TIGD2), embryo development (NAP1L5), environmental adaptation (KLHL3, TRHDE, and IFNGR1), and milk characteristics (FAM13A). Significant Gene Ontology (GO) terms related to embryo skeletal system morphogenesis, brain ventricle development, and growth were also identified. This study helps reveal the genetic architecture of Henan goat breeds and provides valuable insights for the effective conservation and breeding programs of local goat breeds in Henan.
Collapse
Affiliation(s)
- Weifeng Peng
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China.
| | - Yiyuan Zhang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Lei Gao
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Mengting Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Enrui Sun
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Kaixin Lu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Yunxia Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Bing Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Guoyin Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Jingya Cao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Mingsheng Yang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China.
- Field Observation and Research Station of Green Agriculture in Dancheng County, Zhoukou, China.
| |
Collapse
|
4
|
Congiu M, Cesarani A, Falchi L, Macciotta NPP, Dimauro C. Combined Use of Univariate and Multivariate Approaches to Detect Selection Signatures Associated with Milk or Meat Production in Cattle. Genes (Basel) 2024; 15:1516. [PMID: 39766784 PMCID: PMC11675734 DOI: 10.3390/genes15121516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVES The aim of this study was to investigate the genomic structure of the cattle breeds selected for meat and milk production and to identify selection signatures between them. METHODS A total of 391 animals genotyped at 41,258 SNPs and belonging to nine breeds were considered: Angus (N = 62), Charolais (46), Hereford (31), Limousin (44), and Piedmontese (24), clustered in the Meat group, and Brown Swiss (42), Holstein (63), Jersey (49), and Montbéliarde (30), clustered in the Milk group. The population stratification was analyzed by principal component analysis (PCA), whereas selection signatures were identified by univariate (Wright fixation index, FST) and multivariate (canonical discriminant analysis, CDA) approaches. Markers with FST values larger than three standard deviations from the chromosomal mean were considered interesting. Attention was focused on markers selected by both techniques. RESULTS A total of 10 SNPs located on seven different chromosomes (7, 10, 14, 16, 17, 18, and 24) were identified. Close to these SNPs (±250 kb), 165 QTL and 51 genes were found. The QTL were grouped in 45 different terms, of which three were significant (Bonferroni correction < 0.05): milk fat content, tenderness score, and length of productive life. Moreover, genes mainly associated with milk production, immunity and environmental adaptation, and reproduction were mapped close to the common SNPs. CONCLUSIONS The results of the present study suggest that the combined use of univariate and multivariate approaches can help to better identify selection signatures due to directional selection.
Collapse
Affiliation(s)
- Michele Congiu
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (M.C.); (L.F.); (N.P.P.M.); (C.D.)
| | - Alberto Cesarani
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (M.C.); (L.F.); (N.P.P.M.); (C.D.)
- Animal and Dairy Science Department, University of Georgia, Athens, GA 30602, USA
| | - Laura Falchi
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (M.C.); (L.F.); (N.P.P.M.); (C.D.)
| | - Nicolò Pietro Paolo Macciotta
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (M.C.); (L.F.); (N.P.P.M.); (C.D.)
| | - Corrado Dimauro
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (M.C.); (L.F.); (N.P.P.M.); (C.D.)
| |
Collapse
|
5
|
Hervás-Rivero C, Mejuto-Vázquez N, López-Carbonell D, Altarriba J, Diaz C, Molina A, Rodríguez-Bermúdez R, Piedrafita J, Baro JA, Varona L. Runs of Homozygosity Islands in Autochthonous Spanish Cattle Breeds. Genes (Basel) 2024; 15:1477. [PMID: 39596677 PMCID: PMC11593383 DOI: 10.3390/genes15111477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Understanding the genetic architecture of autochthonous European cattle breeds is important for developing effective conservation strategies and sustainable breeding programs. Spanish beef cattle, which trace their origins to ancient migrations from the Near East with later admixture from African populations, exhibit a rich genetic diversity shaped by environmental adaptation and selective breeding. Runs of Homozygosity (ROH) are extended stretches of identical genetic material inherited from both parents. They serve as indicators of inbreeding and selection signatures within populations. ROH islands, or regions of the genome where ROH segments are highly concentrated across individuals within a breed, indicate genomic regions under selective pressure. METHODS This study explores the distribution of ROH islands across seven Spanish beef cattle breeds (Asturiana de los Valles, Avileña-Negra Ibérica, Bruna dels Pirineus, Morucha, Retinta, Pirenaica, and Rubia Gallega). By analyzing high-density SNP data, we characterized ROH patterns and identified genomic regions with high levels of homozygosity, which may indicate selection pressures or common ancestry. RESULTS Our findings revealed breed-specific ROH patterns as well as shared ROH islands, underscoring genetic relationships and differentiation among the breeds. Notably, Morucha displayed the highest number of ROH, while Asturiana de los Valles had the fewest. FROH values, which indicate genomic inbreeding, varied among the breeds, with Morucha and Retinta being associated with higher values. We identified 57 ROH islands, with shared regions among populations that suggest common ancestral selection pressures. Key genes within these regions, like MSTN, are associated with muscle growth, body weight, and fertility. CONCLUSIONS This study offers valuable insights for breeding strategies and conservation efforts, highlighting the genetic diversity and historical background of Spanish cattle breeds.
Collapse
Affiliation(s)
- C. Hervás-Rivero
- Instituto Agroalimentario de Aragón (IA2), Departamento de Anatomía, Embriología y Genética, Facultad de Veterinaria, Universidad de Zaragoza, C. Miguel Servet, 177, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.); (J.A.)
| | - N. Mejuto-Vázquez
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, Av. Carvallo Calero, 27002 Lugo, Spain; (N.M.-V.); (R.R.-B.)
| | - D. López-Carbonell
- Instituto Agroalimentario de Aragón (IA2), Departamento de Anatomía, Embriología y Genética, Facultad de Veterinaria, Universidad de Zaragoza, C. Miguel Servet, 177, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.); (J.A.)
| | - J. Altarriba
- Instituto Agroalimentario de Aragón (IA2), Departamento de Anatomía, Embriología y Genética, Facultad de Veterinaria, Universidad de Zaragoza, C. Miguel Servet, 177, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.); (J.A.)
| | - C. Diaz
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain
| | - A. Molina
- Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14071 Córdoba, Spain;
| | - R. Rodríguez-Bermúdez
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, Av. Carvallo Calero, 27002 Lugo, Spain; (N.M.-V.); (R.R.-B.)
| | - J. Piedrafita
- Departamento de Ciencia Animal y de los Alimentos, Facultat de Veterinaria, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
| | - J. A. Baro
- Departamento de Ciencias Agroforestales, ETS de Ingenierías Agrarias, Universidad de Valladolid, 34004 Palencia, Spain;
| | - L. Varona
- Instituto Agroalimentario de Aragón (IA2), Departamento de Anatomía, Embriología y Genética, Facultad de Veterinaria, Universidad de Zaragoza, C. Miguel Servet, 177, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.); (J.A.)
| |
Collapse
|
6
|
Ahmed Z, Xiang W, Wang F, Nawaz M, Kuthu ZH, Lei C, Xu D. Whole-genome resequencing deciphers patterns of genetic diversity, phylogeny, and evolutionary dynamics in Kashmir cattle. Anim Genet 2024; 55:511-526. [PMID: 38726735 DOI: 10.1111/age.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 07/04/2024]
Abstract
Kashmir cattle, which were kept by local pastoralists for centuries, are exceptionally resilient and adaptive to harsh environments. Despite its significance, the genomic characteristics of this cattle breed remain elusive. This study utilized whole genome sequences of Kashmir cattle (n = 20; newly sequenced) alongside published whole genomes of 32 distinct breeds and seven core cattle populations (n = 135). The analysis identified ~25.87 million biallelic single nucleotide polymorphisms in Kashmir cattle, predominantly in intergenic and intron regions. Population structure analyses revealed distinct clustering patterns of Kashmir cattle with proximity to the South Asian, African and Chinese indicine cattle populations. Genetic diversity analysis of Kashmir cattle demonstrated lower inbreeding and greater nucleotide diversity than analyzed global breeds. Homozygosity runs indicated less consanguineous mating in Kashmir cattle compared with European taurine breeds. Furthermore, six selection sweep detection methods were used within Kashmir cattle and other cattle populations to identify genes associated with vital traits, including immunity (BOLA-DQA5, BOLA-DQB, TNFAIP8L, FCRL4, AOAH, HIF1AN, FBXL3, MPEG1, CDC40, etc.), reproduction (GOLGA4, BRWD1, OSBP2, LEO1 ADCY5, etc.), growth (ADPRHL1, NRG2, TCF12, TMOD4, GBP4, IGF2, RSPO3, SCD, etc.), milk composition (MRPS30 and CSF1) and high-altitude adaptation (EDNRA, ITPR2, AGBL4 and SCG3). These findings provide essential genetic insights into the characteristics and establish the foundation for the scientific conservation and utilization of Kashmir cattle breed.
Collapse
Affiliation(s)
- Zulfiqar Ahmed
- College of Animal Science and Technology, Huazhong Agriculture University, Wuhan, China
- NCLBG&G, Department of Livestock and Poultry Production, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Weixuan Xiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Fuwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Mohsin Nawaz
- NCLBG&G, Department of Livestock and Poultry Production, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Zulfiqar Hussan Kuthu
- NCLBG&G, Department of Livestock and Poultry Production, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Dequan Xu
- College of Animal Science and Technology, Huazhong Agriculture University, Wuhan, China
| |
Collapse
|
7
|
Fonseca PAS, Suárez-Vega A, Arranz JJ, Gutiérrez-Gil B. Integration of selective sweeps across the sheep genome: understanding the relationship between production and adaptation traits. Genet Sel Evol 2024; 56:40. [PMID: 38773423 PMCID: PMC11106937 DOI: 10.1186/s12711-024-00910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Livestock populations are under constant selective pressure for higher productivity levels for different selective purposes. This pressure results in the selection of animals with unique adaptive and production traits. The study of genomic regions associated with these unique characteristics has the potential to improve biological knowledge regarding the adaptive process and how it is connected to production levels and resilience, which is the ability of an animal to adapt to stress or an imbalance in homeostasis. Sheep is a species that has been subjected to several natural and artificial selective pressures during its history, resulting in a highly specialized species for production and adaptation to challenging environments. Here, the data from multiple studies that aim at mapping selective sweeps across the sheep genome associated with production and adaptation traits were integrated to identify confirmed selective sweeps (CSS). RESULTS In total, 37 studies were used to identify 518 CSS across the sheep genome, which were classified as production (147 prodCSS) and adaptation (219 adapCSS) CSS based on the frequency of each type of associated study. The genes within the CSS were associated with relevant biological processes for adaptation and production. For example, for adapCSS, the associated genes were related to the control of seasonality, circadian rhythm, and thermoregulation. On the other hand, genes associated with prodCSS were related to the control of feeding behaviour, reproduction, and cellular differentiation. In addition, genes harbouring both prodCSS and adapCSS showed an interesting association with lipid metabolism, suggesting a potential role of this process in the regulation of pleiotropic effects between these classes of traits. CONCLUSIONS The findings of this study contribute to a deeper understanding of the genetic link between productivity and adaptability in sheep breeds. This information may provide insights into the genetic mechanisms that underlie undesirable genetic correlations between these two groups of traits and pave the way for a better understanding of resilience as a positive ability to respond to environmental stressors, where the negative effects on production level are minimized.
Collapse
Affiliation(s)
- Pablo A S Fonseca
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Juan J Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain.
| |
Collapse
|
8
|
Ward JA, Ng'ang'a SI, Randhawa IAS, McHugo GP, O'Grady JF, Flórez JM, Browne JA, Pérez O’Brien AM, Landaeta-Hernández AJ, Garcia JF, Sonstegard TS, Frantz LAF, Salter-Townshend M, MacHugh DE. Genomic insights into the population history and adaptive traits of Latin American Criollo cattle. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231388. [PMID: 38571912 PMCID: PMC10990470 DOI: 10.1098/rsos.231388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/04/2024] [Accepted: 01/31/2024] [Indexed: 04/05/2024]
Abstract
Criollo cattle, the descendants of animals brought by Iberian colonists to the Americas, have been the subject of natural and human-mediated selection in novel tropical agroecological zones for centuries. Consequently, these breeds have evolved distinct characteristics such as resistance to diseases and exceptional heat tolerance. In addition to European taurine (Bos taurus) ancestry, it has been proposed that gene flow from African taurine and Asian indicine (Bos indicus) cattle has shaped the ancestry of Criollo cattle. In this study, we analysed Criollo breeds from Colombia and Venezuela using whole-genome sequencing (WGS) and single-nucleotide polymorphism (SNP) array data to examine population structure and admixture at high resolution. Analysis of genetic structure and ancestry components provided evidence for African taurine and Asian indicine admixture in Criollo cattle. In addition, using WGS data, we detected selection signatures associated with a myriad of adaptive traits, revealing genes linked to thermotolerance, reproduction, fertility, immunity and distinct coat and skin coloration traits. This study underscores the remarkable adaptability of Criollo cattle and highlights the genetic richness and potential of these breeds in the face of climate change, habitat flux and disease challenges. Further research is warranted to leverage these findings for more effective and sustainable cattle breeding programmes.
Collapse
Affiliation(s)
- James A. Ward
- Animal Genomics Laboratory, School of Agriculture and Food Science, University College Dublin, DublinD04 V1W8, Ireland
| | - Said I. Ng'ang'a
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, MunichD-80539, Germany
- School of Biological and Chemical Sciences, Queen Mary University of London, LondonE1 4NS, UK
| | | | - Gillian P. McHugo
- Animal Genomics Laboratory, School of Agriculture and Food Science, University College Dublin, DublinD04 V1W8, Ireland
| | - John F. O'Grady
- Animal Genomics Laboratory, School of Agriculture and Food Science, University College Dublin, DublinD04 V1W8, Ireland
| | - Julio M. Flórez
- Acceligen, Eagan, MN55121, USA
- Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - John A. Browne
- Animal Genomics Laboratory, School of Agriculture and Food Science, University College Dublin, DublinD04 V1W8, Ireland
| | | | - Antonio J. Landaeta-Hernández
- Unidad de Investigaciones Zootécnicas, Facultad de Ciencias Veterinarias, Universidad del Zulia, Maracaibo, Venezuela
| | - Jóse F. Garcia
- Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | | | - Laurent A. F. Frantz
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, MunichD-80539, Germany
- School of Biological and Chemical Sciences, Queen Mary University of London, LondonE1 4NS, UK
| | | | - David E. MacHugh
- Animal Genomics Laboratory, School of Agriculture and Food Science, University College Dublin, DublinD04 V1W8, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, DublinD04 V1W8, Ireland
| |
Collapse
|
9
|
Illa SK, Mumtaz S, Nath S, Mukherjee S, Mukherjee A. Characterization of runs of Homozygosity revealed genomic inbreeding and patterns of selection in indigenous sahiwal cattle. J Appl Genet 2024; 65:167-180. [PMID: 38110827 DOI: 10.1007/s13353-023-00816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023]
Abstract
Runs of homozygosity (ROH) are contiguous genomic regions, homozygous across all sites which arise in an individual due to the parents transmitting identical haplotypes to their offspring. The genetic improvement program of Sahiwal cattle after decades of selection needs re-assessment of breeding strategy and population phenomena. Hence, the present study was carried out to optimize input parameters in PLINK for ROH estimates, to explore ROH islands and assessment of pedigree and genome-based inbreeding in Sahiwal cattle. The sliding window approach with parameters standardized to define ROH for the specific population under study was used for the identification of runs. The optimum maximum gap, density, window-snp and window-threshold were 250 Kb, 120 Kb/SNP, 10, 0.05 respectively and ROH patterns were also characterized. ROH islands were defined as the short homozygous genomic regions shared by a large proportion of individuals in a population, containing significantly higher occurrences of ROH than the population specific threshold level. These were identified using the -homozyg-group function of the PLINK v1.9 program. Our results indicated that the Islands of ROH harbor a few candidate genes, ACAD11, RFX4, BANP, UBA5 that are associated with major economic traits. The average FPED (Pedigree based inbreeding coefficient), FROH (Genomic inbreeding coefficient), FHOM (Inbreeding estimated as the ratio of observed and expected homozygous genotypes), FGRM (Inbreeding estimated on genomic relationship method) and FGRM0.5 (Inbreeding estimated from the diagonal of a GRM with allele frequencies near to 0.5) were 0.009, 0.091, 0.035, -0.104 and -0.009, respectively. Our study revealed the optimum parameter setting in PLINK viz. maximal gaps between two SNPs, minimal density of SNPs in a segment (in kb/SNP) and scanning window size to identify ROH segments, which will enable ROH estimation more efficient and comparable across various SNP genotyping-based studies. The result further emphasized the significant role of genomics in unraveling population diversity, selection signatures and inbreeding in the ongoing Sahiwal breed improvement programs.
Collapse
Affiliation(s)
- Satish Kumar Illa
- Livestock Research Station, Garividi, Sri Venkateswara Veterinary University, Tirupati, Andhra Pradesh State, India
| | - Shabahat Mumtaz
- Animal Husbandry Department, Kolkata, West Bengal State, India
| | - Sapna Nath
- College of Veterinary Science, Garividi, Sri Venkateswara Veterinary University, Tirupati, Andhra Pradesh State, India
| | - Sabyasachi Mukherjee
- Animal Genetics & Breeding Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute (NDRI), Karnal, Haryana State, India.
| | - Anupama Mukherjee
- Animal Genetics & Breeding Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute (NDRI), Karnal, Haryana State, India.
| |
Collapse
|
10
|
Ameri NF, Moradian H, Koshkoiyeh AE, Montazeri M, Madabi ER, Fozi MA. Genetic diversity and positive signatures of selection in indigenous cattle breeds of Iran. Genome 2024; 67:31-42. [PMID: 37962065 DOI: 10.1139/gen-2022-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Animal domestication, climate changes over time, and artificial selection have played significant roles in shaping the genome structure of various animal species, including cattle. These processes have led to the emergence of several indigenous cattle breeds with distinct genetic characteristics. This study focused on unraveling the genetic diversity and identifying candidate genomic regions in eight indigenous cattle breeds of Iran. The data consisted of ∼777 962 single nucleotide polymorphisms (SNPs) of 89 animals from Iranian indigenous cattle scattered throughout the country. We employed various methods, including integrated haplotype score, FST, and cross-population composite likelihood ratio, to conduct a genome scan for detecting selection signals within and between cattle populations. Average observed heterozygosity across the populations was 0.36, with a range of 0.32-0.40. In addition, negative and low rates of inbreeding (FIS) in the populations were observed. The genome-wide analysis revealed several genomic regions that harbored candidate genes associated with production traits (e.g., MFSD1, TYW5, ADRB2, BLK, and CRTC3), adaptation to local environmental constraints (CACNA2D1, CXCL3, and GRO1), and coat color (DYM). Finally, the study of the reported quantitative trait loci (QTL) regions in the cattle genome demonstrated that the identified regions were associated with QTL related to important traits such as milk composition, body weight, daily gain, feed conversion, and residual feed intake. Overall, this study contributes to a better understanding of the genetic diversity and potential candidate genes underlying important traits in Iranian indigenous cattle breeds, which can inform future breeding and conservation efforts.
Collapse
Affiliation(s)
- Nader Forough Ameri
- Department of Animal ScienceFaculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hasan Moradian
- Department of Animal ScienceFaculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Mahdiyeh Montazeri
- Department of Animal ScienceFaculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Elaheh Rostamzadeh Madabi
- Department of Animal ScienceFaculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Masood Asadi Fozi
- Department of Animal ScienceFaculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
11
|
Friedrich J, Bailey RI, Talenti A, Chaudhry U, Ali Q, Obishakin EF, Ezeasor C, Powell J, Hanotte O, Tijjani A, Marshall K, Prendergast J, Wiener P. Mapping restricted introgression across the genomes of admixed indigenous African cattle breeds. Genet Sel Evol 2023; 55:91. [PMID: 38097935 PMCID: PMC10722721 DOI: 10.1186/s12711-023-00861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The genomes of indigenous African cattle are composed of components with Middle Eastern (taurine) and South Asian (indicine) origins, providing a valuable model to study hybridization and to identify genetic barriers to gene flow. In this study, we analysed indigenous African cattle breeds as models of hybrid zones, considering taurine and indicine samples as ancestors. In a genomic cline analysis of whole-genome sequence data, we considered over 8 million variants from 144 animals, which allows for fine-mapping of potential genomic incompatibilities at high resolution across the genome. RESULTS We identified several thousand variants that had significantly steep clines ('SCV') across the whole genome, indicating restricted introgression. Some of the SCV were clustered into extended regions, with the longest on chromosome 7, spanning 725 kb and including 27 genes. We found that variants with a high phenotypic impact (e.g. indels, intra-genic and missense variants) likely represent greater genetic barriers to gene flow. Furthermore, our findings provide evidence that a large proportion of breed differentiation in African cattle could be linked to genomic incompatibilities and reproductive isolation. Functional evaluation of genes with SCV suggest that mitonuclear incompatibilities and genes associated with fitness (e.g. resistance to paratuberculosis) could account for restricted gene flow in indigenous African cattle. CONCLUSIONS To our knowledge, this is the first time genomic cline analysis has been applied to identify restricted introgression in the genomes of indigenous African cattle and the results provide extended insights into mechanisms (e.g. genomic incompatibilities) contributing to hybrid differentiation. These results have important implications for our understanding of genetic incompatibilities and reproductive isolation and provide important insights into the impact of cross-breeding cattle with the aim of producing offspring that are both hardy and productive.
Collapse
Affiliation(s)
- Juliane Friedrich
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| | - Richard I Bailey
- Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland
| | - Andrea Talenti
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Umer Chaudhry
- School of Veterinary Medicine, St. George's University, St. George's, Caribbean, Grenada
| | - Qasim Ali
- Department of Parasitology, The University of Agriculture Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Emmanuel F Obishakin
- Biotechnology Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Chukwunonso Ezeasor
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Jessica Powell
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Midlothian, UK
| | | | - Karen Marshall
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, Nairobi, Kenya
| | - James Prendergast
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Pamela Wiener
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| |
Collapse
|
12
|
Sun L, Qu K, Liu Y, Ma X, Chen N, Zhang J, Huang B, Lei C. Assessing genomic diversity and selective pressures in Bashan cattle by whole-genome sequencing data. Anim Biotechnol 2023; 34:835-846. [PMID: 34762022 DOI: 10.1080/10495398.2021.1998094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Specific ecological environments and domestication have continuously influenced the physiological characteristics of Chinese indigenous cattle. Among them, Bashan cattle belongs to one of the indigenous breeds. However, the genomic diversity of Bashan cattle is still unknown. Published whole-genome sequencing (WGS) data of 13 Bashan cattle and 48 worldwide cattle were used to investigate the genetic composition and selection characteristics of Bashan cattle. The population structure analysis revealed that Bashan cattle harbored ancestries with East Asian taurine and Chinese indicine. Genetic diversity analysis implied the relatively high genomic diversity in Bashan cattle. Through the identification of containing >5 nsSNPs or frameshift mutations genes in Bashan cattle, a large number of pathways related to sensory perception were discovered. CLR, θπ ratio, FST, and XP-EHH methods were used to detect the candidate signatures of positive selection in Bashan cattle. Among the identified genes, most of the enriched signal pathways were related to environmental information processing, biological systems, and metabolism. We mainly reported genes related to the nervous system (HCN1, KATNA1, FSTL1, GRIK2, and CPLX2), immune (CD244, SLAMF1, LY9, and CD48), and reproduction (AKR1C1, AKR1C3, AKR1C4, and TUSC3). Our findings will be significant in understanding the molecular basis underlying phenotypic variation of breed-related traits and improving productivity in Bashan cattle.
Collapse
Affiliation(s)
- Luyang Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, China
| | - Yangkai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaohui Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ningbo Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Worku D, Hussen J, De Matteis G, Schusser B, Alhussien MN. Candidate genes associated with heat stress and breeding strategies to relieve its effects in dairy cattle: a deeper insight into the genetic architecture and immune response to heat stress. Front Vet Sci 2023; 10:1151241. [PMID: 37771947 PMCID: PMC10527375 DOI: 10.3389/fvets.2023.1151241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
The need for food products of animal origin is increasing worldwide. Satisfying these needs in a way that has minimal impact on the environment requires cutting-edge technologies and techniques to enhance the genetic quality of cattle. Heat stress (HS), in particular, is affecting dairy cattle with increasing frequency and severity. As future climatic challenges become more evident, identifying dairy cows that are more tolerant to HS will be important for breeding dairy herds that are better adapted to future environmental conditions and for supporting the sustainability of dairy farming. While research into the genetics of HS in the context of the effect of global warming on dairy cattle is gaining momentum, the specific genomic regions involved in heat tolerance are still not well documented. Advances in omics information, QTL mapping, transcriptome profiling and genome-wide association studies (GWAS) have identified genomic regions and variants associated with tolerance to HS. Such studies could provide deeper insights into the genetic basis for response to HS and make an important contribution to future breeding for heat tolerance, which will help to offset the adverse effects of HS in dairy cattle. Overall, there is a great interest in identifying candidate genes and the proportion of genetic variation associated with heat tolerance in dairy cattle, and this area of research is currently very active worldwide. This review provides comprehensive information pertaining to some of the notable recent studies on the genetic architecture of HS in dairy cattle, with particular emphasis on the identified candidate genes associated with heat tolerance in dairy cattle. Since effective breeding programs require optimal knowledge of the impaired immunity and associated health complications caused by HS, the underlying mechanisms by which HS modulates the immune response and renders animals susceptible to various health disorders are explained. In addition, future breeding strategies to relieve HS in dairy cattle and improve their welfare while maintaining milk production are discussed.
Collapse
Affiliation(s)
- Destaw Worku
- Department of Animal Science, College of Agriculture, Food and Climate Sciences, Injibara University, Injibara, Ethiopia
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Giovanna De Matteis
- Council for Agricultural Research and Economics, CREA Research Centre for Animal Production and Aquaculture, Monterotondo, Rome, Italy
| | - Benjamin Schusser
- Reproductive Biotechnology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mohanned Naif Alhussien
- Reproductive Biotechnology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
14
|
Persichilli C, Senczuk G, Mastrangelo S, Marusi M, van Kaam JT, Finocchiaro R, Di Civita M, Cassandro M, Pilla F. Exploring genome-wide differentiation and signatures of selection in Italian and North American Holstein populations. J Dairy Sci 2023; 106:5537-5553. [PMID: 37291034 DOI: 10.3168/jds.2022-22159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 02/07/2023] [Indexed: 06/10/2023]
Abstract
Among Italian dairy cattle, the Holstein is the most reared breed for the production of Parmigiano Reggiano protected designation of origin cheese, which represents one of the most renowned products in the entire Italian dairy industry. In this work, we used a medium-density genome-wide data set consisting of 79,464 imputed SNPs to study the genetic structure of Italian Holstein breed, including the population reared in the area of Parmigiano Reggiano cheese production, and assessing its distinctiveness from the North American population. Multidimensional scaling and ADMIXTURE approaches were used to explore the genetic structure among populations. We also investigated putative genomic regions under selection among these 3 populations by combining 4 different statistical methods based either on allele frequencies (single marker and window-based) or extended haplotype homozygosity (EHH; standardized log-ratio of integrated EHH and cross-population EHH). The genetic structure results allowed us to clearly distinguish the 3 Holstein populations; however, the most remarkable difference was observed between Italian and North American stock. Selection signature analyses identified several significant SNPs falling within or closer to genes with known roles in several traits such as milk quality, resistance to disease, and fertility. In particular, a total of 22 genes related to milk production have been identified using the 2 allele frequency approaches. Among these, a convergent signal has been found in the VPS8 gene which resulted to be involved in milk traits, whereas other genes (CYP7B1, KSR2, C4A, LIPE, DCDC1, GPR20, and ST3GAL1) resulted to be associated with quantitative trait loci related to milk yield and composition in terms of fat and protein percentage. In contrast, a total of 7 genomic regions were identified combining the results of standardized log-ratio of integrated EHH and cross-population EHH. In these regions candidate genes for milk traits were also identified. Moreover, this was also confirmed by the enrichment analyses in which we found that the majority of the significantly enriched quantitative trait loci were linked to milk traits, whereas the gene ontology and pathway enrichment analysis pointed to molecular functions and biological processes involved in AA transmembrane transport and methane metabolism pathway. This study provides information on the genetic structure of the examined populations, showing that they are distinguishable from each other. Furthermore, the selection signature analyses can be considered as a starting point for future studies in the identification of causal mutations and consequent implementation of more practical application.
Collapse
Affiliation(s)
- Christian Persichilli
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via A. De sanctis, 86100 Campobasso (CB), Italy
| | - Gabriele Senczuk
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via A. De sanctis, 86100 Campobasso (CB), Italy.
| | - Salvatore Mastrangelo
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, 90128 Palermo (PA), Italy
| | - Maurizio Marusi
- National Association of Italian Holstein, Brown and Jersey Breeders, Via Bergamo, 292, 26100 Cremona (CR), Italy
| | - Jan-Thijs van Kaam
- National Association of Italian Holstein, Brown and Jersey Breeders, Via Bergamo, 292, 26100 Cremona (CR), Italy
| | - Raffaella Finocchiaro
- National Association of Italian Holstein, Brown and Jersey Breeders, Via Bergamo, 292, 26100 Cremona (CR), Italy
| | - Marika Di Civita
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via A. De sanctis, 86100 Campobasso (CB), Italy
| | - Martino Cassandro
- National Association of Italian Holstein, Brown and Jersey Breeders, Via Bergamo, 292, 26100 Cremona (CR), Italy; Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Fabio Pilla
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via A. De sanctis, 86100 Campobasso (CB), Italy
| |
Collapse
|
15
|
Zhong ZQ, Li R, Wang Z, Tian SS, Xie XF, Wang ZY, Na W, Wang QS, Pan YC, Xiao Q. Genome-wide scans for selection signatures in indigenous pigs revealed candidate genes relating to heat tolerance. Animal 2023; 17:100882. [PMID: 37406393 DOI: 10.1016/j.animal.2023.100882] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023] Open
Abstract
Heat stress is a major problem that constrains pig productivity. Understanding and identifying adaptation to heat stress has been the focus of recent studies, and the identification of genome-wide selection signatures can provide insights into the mechanisms of environmental adaptation. Here, we generated whole-genome re-sequencing data from six Chinese indigenous pig populations to identify genomic regions with selection signatures related to heat tolerance using multiple methods: three methods for intra-population analyses (Integrated Haplotype Score, Runs of Homozygosity and Nucleotide diversity Analysis) and three methods for inter-population analyses (Fixation index (FST), Cross-population Composite Likelihood Ratio and Cross-population Extended Haplotype Homozygosity). In total, 1 966 796 single nucleotide polymorphisms were identified in this study. Genetic structure analyses and FST indicated differentiation among these breeds. Based on information on the location environment, the six breeds were divided into heat and cold groups. By combining two or more approaches for selection signatures, outlier signals in overlapping regions were identified as candidate selection regions. A total of 163 candidate genes were identified, of which, 29 were associated with heat stress injury and anti-inflammatory effects. These candidate genes were further associated with 78 Gene Ontology functional terms and 30 Kyoto Encyclopedia of Genes and Genomes pathways in enrichment analysis (P < 0.05). Some of these have clear relevance to heat resistance, such as the AMPK signalling pathway and the mTOR signalling pathway. The results improve our understanding of the selection mechanisms responsible for heat resistance in pigs and provide new insights of introgression in heat adaptation.
Collapse
Affiliation(s)
- Z Q Zhong
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - R Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Z Wang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - S S Tian
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - X F Xie
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Z Y Wang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - W Na
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Q S Wang
- Hainan Yazhou Bay Seed Laboratory, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya 572025, China; Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Y C Pan
- Hainan Yazhou Bay Seed Laboratory, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya 572025, China; Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Q Xiao
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China.
| |
Collapse
|
16
|
Mastrangelo S, Ben-Jemaa S, Perini F, Cendron F, Biscarini F, Lasagna E, Penasa M, Cassandro M. Genome-wide mapping of signatures of selection using a high-density array identified candidate genes for growth traits and local adaptation in chickens. Genet Sel Evol 2023; 55:20. [PMID: 36959552 PMCID: PMC10035218 DOI: 10.1186/s12711-023-00790-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 02/21/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Availability of single nucleotide polymorphism (SNP) genotyping arrays and progress in statistical analyses have allowed the identification of genomic regions and genes under selection in chicken. In this study, SNP data from the 600 K Affymetrix chicken array were used to detect signatures of selection in 23 local Italian chicken populations. The populations were categorized into four groups for comparative analysis based on live weight (heavy vs light) and geographical area (Northern vs Southern Italy). Putative signatures of selection were investigated by combining three extended haplotype homozygosity (EHH) statistical approaches to quantify excess of haplotype homozygosity within (iHS) and between (Rsb and XP-EHH) groups. Presence of runs of homozygosity (ROH) islands was also analysed for each group. RESULTS After editing, 541 animals and 313,508 SNPs were available for statistical analyses. In total, 15 candidate genomic regions that are potentially under selection were detected among the four groups: eight within a group by iHS and seven by combining the results of Rsb and XP-EHH, which revealed divergent selection between the groups. The largest overlap between genomic regions identified to be under selection by the three approaches was on chicken chromosome 8. Twenty-one genomic regions were identified with the ROH approach but none of these overlapped with regions identified with the three EHH-derived statistics. Some of the identified regions under selection contained candidate genes with biological functions related to environmental stress, immune responses, and disease resistance, which indicate local adaptation of these chicken populations. CONCLUSIONS Compared to commercial lines, local populations are predominantly reared as backyard chickens, and thus, may have developed stronger resistance to environmental challenges. Our results indicate that selection can play an important role in shaping signatures of selection in local chicken populations and can be a starting point to identify gene mutations that could have a useful role with respect to climate change.
Collapse
Affiliation(s)
- Salvatore Mastrangelo
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128, Palermo, Italy
| | - Slim Ben-Jemaa
- Laboratoire des Productions Animales et Fourragères, Institut National de la Recherche Agronomique de Tunisie, Université de Carthage, 2049, Ariana, Tunisia
| | - Francesco Perini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020, Legnaro, Italy
| | - Filippo Cendron
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020, Legnaro, Italy.
| | - Filippo Biscarini
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), 20133, Milan, Italy
| | - Emiliano Lasagna
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Mauro Penasa
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020, Legnaro, Italy
| | - Martino Cassandro
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020, Legnaro, Italy
- Federazione delle Associazioni Nazionali di Razza e Specie, 00187, Rome, Italy
| |
Collapse
|
17
|
Machado PC, Brito LF, Martins R, Pinto LFB, Silva MR, Pedrosa VB. Genome-Wide Association Analysis Reveals Novel Loci Related with Visual Score Traits in Nellore Cattle Raised in Pasture-Based Systems. Animals (Basel) 2022; 12:ani12243526. [PMID: 36552446 PMCID: PMC9774243 DOI: 10.3390/ani12243526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Body conformation traits assessed based on visual scores are widely used in Zebu cattle breeding programs. The aim of this study was to identify genomic regions and biological pathways associated with body conformation (CONF), finishing precocity (PREC), and muscling (MUSC) in Nellore cattle. The measurements based on visual scores were collected in 20,807 animals raised in pasture-based systems in Brazil. In addition, 2775 animals were genotyped using a 35 K SNP chip, which contained 31,737 single nucleotide polymorphisms after quality control. Single-step GWAS was performed using the BLUPF90 software while candidate genes were identified based on the Ensembl Genes 69. PANTHER and REVIGO platforms were used to identify key biological pathways and STRING to create gene networks. Novel candidate genes were revealed associated with CONF, including ALDH9A1, RXRG, RAB2A, and CYP7A1, involved in lipid metabolism. The genes associated with PREC were ELOVL5, PID1, DNER, TRIP12, and PLCB4, which are related to the synthesis of long-chain fatty acids, lipid metabolism, and muscle differentiation. For MUSC, the most important genes associated with muscle development were SEMA6A, TIAM2, UNC5A, and UIMC1. The polymorphisms identified in this study can be incorporated in commercial genotyping panels to improve the accuracy of genomic evaluations for visual scores in beef cattle.
Collapse
Affiliation(s)
- Pamela C. Machado
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Rafaela Martins
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Luis Fernando B. Pinto
- Department of Animal Science, Federal University of Bahia, Av. Adhemar de Barros 500, Ondina, Salvador 40170-110, BA, Brazil
| | - Marcio R. Silva
- Melhore Animal and Katayama Agropecuaria Lda, Guararapes 16700-000, SP, Brazil
| | - Victor B. Pedrosa
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
18
|
Naji MM, Jiang Y, Utsunomiya YT, Rosen BD, Sölkner J, Wang C, Jiang L, Zhang Q, Zhang Y, Ding X, Mészáros G. Favored single nucleotide variants identified using whole genome Re-sequencing of Austrian and Chinese cattle breeds. Front Genet 2022; 13:974787. [PMID: 36238155 PMCID: PMC9552183 DOI: 10.3389/fgene.2022.974787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Cattle have been essential for the development of human civilization since their first domestication few thousand years ago. Since then, they have spread across vast geographic areas following human activities. Throughout generations, the cattle genome has been shaped with detectable signals induced by various evolutionary processes, such as natural and human selection processes and demographic events. Identifying such signals, called selection signatures, is one of the primary goals of population genetics. Previous studies used various selection signature methods and normalized the outputs score using specific windows, in kbp or based on the number of SNPs, to identify the candidate regions. The recent method of iSAFE claimed for high accuracy in pinpointing the candidate SNPs. In this study, we analyzed whole-genome resequencing (WGS) data of ten individuals from Austrian Fleckvieh (Bos taurus) and fifty individuals from 14 Chinese indigenous breeds (Bos taurus, Bos taurus indicus, and admixed). Individual WGS reads were aligned to the cattle reference genome of ARS. UCD1.2 and subsequently undergone single nucleotide variants (SNVs) calling pipeline using GATK. Using these SNVs, we examined the population structure using principal component and admixture analysis. Then we refined selection signature candidates using the iSAFE program and compared it with the classical iHS approach. Additionally, we run Fst population differentiation from these two cattle groups. We found gradual changes of taurine in north China to admixed and indicine to the south. Based on the population structure and the number of individuals, we grouped samples to Fleckvieh, three Chinese taurines (Kazakh, Mongolian, Yanbian), admixed individuals (CHBI_Med), indicine individuals (CHBI_Low), and a combination of admixed and indicine (CHBI) for performing iSAFE and iHS tests. There were more significant SNVs identified using iSAFE than the iHS for the candidate of positive selection and more detectable signals in taurine than in indicine individuals. However, combining admixed and indicine individuals decreased the iSAFE signals. From both within-population tests, significant SNVs are linked to the olfactory receptors, production, reproduction, and temperament traits in taurine cattle, while heat and parasites tolerance in the admixed individuals. Fst test suggests similar patterns of population differentiation between Fleckvieh and three Chinese taurine breeds against CHBI. Nevertheless, there are genes shared only among the Chinese taurine, such as PAX5, affecting coat color, which might drive the differences between these yellowish coated breeds, and those in the greater Far East region.
Collapse
Affiliation(s)
- Maulana M. Naji
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Yifan Jiang
- China Agricultural University, Beijing, China
| | - Yuri T. Utsunomiya
- Department of Production and Animal Health, School of Veterinary Medicine, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Benjamin D. Rosen
- Animal Genomics and Improvement Laboratory, USDA‐ARS, Beltsville, MD, United States
| | - Johann Sölkner
- University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Li Jiang
- China Agricultural University, Beijing, China
| | - Qin Zhang
- China Agricultural University, Beijing, China
| | - Yi Zhang
- China Agricultural University, Beijing, China
| | - Xiangdong Ding
- China Agricultural University, Beijing, China
- *Correspondence: Xiangdong Ding, ; Gábor Mészáros,
| | - Gábor Mészáros
- University of Natural Resources and Life Sciences, Vienna, Austria
- *Correspondence: Xiangdong Ding, ; Gábor Mészáros,
| |
Collapse
|
19
|
Tijjani A, Salim B, da Silva MVB, Eltahir HA, Musa TH, Marshall K, Hanotte O, Musa HH. Genomic signatures for drylands adaptation at gene-rich regions in African zebu cattle. Genomics 2022; 114:110423. [PMID: 35803449 PMCID: PMC9388378 DOI: 10.1016/j.ygeno.2022.110423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022]
Abstract
Background Indigenous Sudanese cattle are mainly indicine/zebu (humped) type. They thrive in the harshest dryland environments characterised by high temperatures, long seasonal dry periods, nutritional shortages, and vector disease challenges. Here, we sequenced 60 indigenous Sudanese cattle from six indigenous breeds and analysed the data using three genomic scan approaches to unravel cattle adaptation to the African dryland region. Results We identified a set of gene-rich selective sweep regions, detected mostly on chromosomes 5, 7 and 19, shared across African and Gir zebu. These include genes involved in immune response, body size and conformation, and heat stress response. We also identified selective sweep regions unique to Sudanese zebu. Of these, a 250 kb selective sweep on chromosome 16 spans seven genes, including PLCH2, PEX10, PRKCZ, and SKI, which are involved in alternative adaptive metabolic strategies of insulin signalling, glucose homeostasis, and fat metabolism. Conclusions Our results suggest that environmental adaptation may involve recent and ancient selection at gene-rich regions, which might be under a common regulatory genetic control, in zebu cattle. Sudanese cattle thrive in the harshest environments of the African drylands. Bos indicus shared selected genes are involved in immune response, conformation, and heat stress response. Sudanese zebu-specific sweep includes genes involved in alternative adaptive metabolic strategies of insulin signalling, glucose homeostasis, and fat metabolism. Environmental adaptation in zebu cattle may involve recent and ancient selection at gene-rich regions, which might be under a common regulatory genetic control.
Collapse
Affiliation(s)
- Abdulfatai Tijjani
- International Livestock Research Institute (ILRI), PO 5689, Addis Ababa, Ethiopia; Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Ethiopia, PO Box 5689, Addis Ababa, Ethiopia; Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, United Kingdom.
| | - Bashir Salim
- Faculty of Veterinary Medicine, University of Khartoum, Sudan
| | | | | | - Taha H Musa
- Biomedical Research Institute, Darfur College, Sudan
| | - Karen Marshall
- International Livestock Research Institute (ILRI), PO Box 30709, Nairobi 00100, Kenya; Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi 00100, Kenya
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), PO 5689, Addis Ababa, Ethiopia; Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Ethiopia, PO Box 5689, Addis Ababa, Ethiopia; Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, United Kingdom.
| | - Hassan H Musa
- Institute of Molecular Biology, University of Nyala, Sudan; Faculty of Medical Laboratory Sciences, University of Khartoum, Sudan.
| |
Collapse
|
20
|
Kooverjee BB, Soma P, Van Der Nest MA, Scholtz MM, Neser FWC. Selection Signatures in South African Nguni and Bonsmara Cattle Populations Reveal Genes Relating to Environmental Adaptation. Front Genet 2022; 13:909012. [PMID: 35783284 PMCID: PMC9247466 DOI: 10.3389/fgene.2022.909012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Climate change is a major influencing factor in beef production. The greenhouse gases produced from livestock production systems contribute to the overall greenhouse gas emissions. The aim of this study was to identify selection signatures within and between Nguni and Bonsmara cattle in relation to production and adaptation. For this purpose, genomic 150 K single nucleotide polymorphism data from Nguni (n = 231) and Bonsmara (n = 252) cattle in South Africa were used. Extended haplotype homozygosity (EHH) based analysis was executed within each population using integrated haplotype score (iHS). The R package rehh was used for detecting selection signatures across the two populations with cross population EHH (XP-EHH). Total of 121 regions of selection signatures were detected (p < 0.0001) in the Bonsmara and Nguni populations. Several genes relating to DNA methylation, heat stress, feed efficiency and nitrogen metabolism were detected within and between each population. These regions also included QTLs associated with residual feed intake, residual gain, carcass weight, stature and body weight in the Bonsmara, while QTLs associated with conception rate, shear force, tenderness score, juiciness, temperament, heat tolerance, feed efficiency and age at puberty were identified in Nguni. Based on the results of the study it is recommended that the Nguni and Bonsmara be utilized in crossbreeding programs as they have beneficial traits that may allow them to perform better in the presence of climate change. Results of this study coincide with Nguni and Bonsmara breed characteristics and performance, and furthermore support informative crossbreeding programs to enhance livestock productivity in South Africa.
Collapse
Affiliation(s)
- Bhaveni B. Kooverjee
- Department of Animal Breeding and Genetics, Animal Production, Agricultural Research Council, Pretoria, South Africa
- Department of Animal, Wildlife and Grassland Sciences, University of the Free State, Bloemfontein, South Africa
- *Correspondence: Bhaveni B. Kooverjee, ; Pranisha Soma,
| | - Pranisha Soma
- Department of Animal Breeding and Genetics, Animal Production, Agricultural Research Council, Pretoria, South Africa
- *Correspondence: Bhaveni B. Kooverjee, ; Pranisha Soma,
| | | | - Michiel M. Scholtz
- Department of Animal Breeding and Genetics, Animal Production, Agricultural Research Council, Pretoria, South Africa
- Department of Animal, Wildlife and Grassland Sciences, University of the Free State, Bloemfontein, South Africa
| | - Frederick W. C. Neser
- Department of Animal, Wildlife and Grassland Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
21
|
Hall SJG. Genetic Differentiation among Livestock Breeds-Values for F st. Animals (Basel) 2022; 12:1115. [PMID: 35565543 PMCID: PMC9103131 DOI: 10.3390/ani12091115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
(1) Background: The Fst statistic is widely used to characterize between-breed relationships. Fst = 0.1 has frequently been taken as indicating genetic distinctiveness between breeds. This study investigates whether this is justified. (2) Methods: A database was created of 35,080 breed pairs and their corresponding Fst values, deduced from microsatellite and SNP studies covering cattle, sheep, goats, pigs, horses, and chickens. Overall, 6560 (19%) of breed pairs were between breeds located in the same country, 7395 (21%) between breeds of different countries within the same region, 20,563 (59%) between breeds located far apart, and 562 (1%) between a breed and the supposed wild ancestor of the species. (3) Results: General values for between-breed Fst were as follows, cattle: microsatellite 0.06-0.12, SNP 0.08-0.15; sheep: microsatellite 0.06-0.10, SNP 0.06-0.17; horses: microsatellite 0.04-0.11, SNP 0.08-0.12; goats: microsatellite 0.04-0.14, SNP 0.08-0.16; pigs: microsatellite 0.06-0.27, SNP 0.15-0.22; chickens: microsatellite 0.05-0.28, SNP 0.08-0.26. (4) Conclusions: (1) Large amounts of Fst data are available for a substantial proportion of the world's livestock breeds, (2) the value for between-breed Fst of 0.1 is not appropriate owing to its considerable variability, and (3) accumulated Fst data may have value for interdisciplinary research.
Collapse
Affiliation(s)
- Stephen J G Hall
- Department of Environmental Protection and Landscape, Estonian University of Life Sciences, Kreutzwaldi 5, 51014 Tartu, Estonia
| |
Collapse
|
22
|
Duarte INH, Bessa AFDO, Rola LD, Genuíno MVH, Rocha IM, Marcondes CR, Regitano LCDA, Munari DP, Berry DP, Buzanskas ME. Cross-population selection signatures in Canchim composite beef cattle. PLoS One 2022; 17:e0264279. [PMID: 35363779 PMCID: PMC8975110 DOI: 10.1371/journal.pone.0264279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Analyses of livestock genomes have been used to detect selection signatures, which are genomic regions associated with traits under selection leading to a change in allele frequency. The objective of the present study was to characterize selection signatures in Canchim composite beef cattle using cross-population analyses with the founder Nelore and Charolais breeds. High-density single nucleotide polymorphism genotypes were available on 395 Canchim representing the target population, along with genotypes from 809 Nelore and 897 Charolais animals representing the reference populations. Most of the selection signatures were co-located with genes whose functions agree with the expectations of the breeding programs; these genes have previously been reported to associate with meat quality, as well as reproductive traits. Identified genes were related to immunity, adaptation, morphology, as well as behavior, could give new perspectives for understanding the genetic architecture of Canchim. Some selection signatures identified genes that were recently introduced in Canchim, such as the loci related to the polled trait.
Collapse
Affiliation(s)
| | | | - Luciana Diniz Rola
- Departamento de Zootecnia, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
| | | | - Iasmin Marques Rocha
- Departamento de Zootecnia, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
| | | | | | - Danísio Prado Munari
- Departamento de Engenharia e Ciências Exatas, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Donagh Pearse Berry
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy Co. Cork., Ireland
| | - Marcos Eli Buzanskas
- Departamento de Zootecnia, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
- * E-mail:
| |
Collapse
|
23
|
Chen X, Bai X, Liu H, Zhao B, Yan Z, Hou Y, Chu Q. Population Genomic Sequencing Delineates Global Landscape of Copy Number Variations that Drive Domestication and Breed Formation of in Chicken. Front Genet 2022; 13:830393. [PMID: 35391799 PMCID: PMC8980806 DOI: 10.3389/fgene.2022.830393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/14/2022] [Indexed: 12/31/2022] Open
Abstract
Copy number variation (CNV) is an important genetic mechanism that drives evolution and generates new phenotypic variations. To explore the impact of CNV on chicken domestication and breed shaping, the whole-genome CNVs were detected via multiple methods. Using the whole-genome sequencing data from 51 individuals, corresponding to six domestic breeds and wild red jungle fowl (RJF), we determined 19,329 duplications and 98,736 deletions, which covered 11,123 copy number variation regions (CNVRs) and 2,636 protein-coding genes. The principal component analysis (PCA) showed that these individuals could be divided into four populations according to their domestication and selection purpose. Seventy-two highly duplicated CNVRs were detected across all individuals, revealing pivotal roles of nervous system (NRG3, NCAM2), sensory (OR), and follicle development (VTG2) in chicken genome. When contrasting the CNVs of domestic breeds to those of RJFs, 235 CNVRs harboring 255 protein-coding genes, which were predominantly involved in pathways of nervous, immunity, and reproductive system development, were discovered. In breed-specific CNVRs, some valuable genes were identified, including HOXB7 for beard trait in Beijing You chicken; EDN3, SLMO2, TUBB1, and GFPT1 for melanin deposition in Silkie chicken; and SORCS2 for aggressiveness in Luxi Game fowl. Moreover, CSMD1 and NTRK3 with high duplications found exclusively in White Leghorn chicken, and POLR3H, MCM9, DOCK3, and AKR1B1L found in Recessive White Rock chicken may contribute to high egg production and fast-growing traits, respectively. The candidate genes of breed characteristics are valuable resources for further studies on phenotypic variation and the artificial breeding of chickens.
Collapse
Affiliation(s)
- Xia Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xue Bai
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Huagui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Binbin Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Zhixun Yan
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yali Hou
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qin Chu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
24
|
Sun L, Qu K, Ma X, Hanif Q, Zhang J, Liu J, Chen N, Suolang Q, Lei C, Huang B. Whole-Genome Analyses Reveal Genomic Characteristics and Selection Signatures of Lincang Humped Cattle at the China-Myanmar Border. Front Genet 2022; 13:833503. [PMID: 35391795 PMCID: PMC8981028 DOI: 10.3389/fgene.2022.833503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
The location on the Yunnan border with Myanmar and its unique cultural landscape has shaped Lincang humped cattle over time. In the current study, we investigated the genetic characteristics of 22 Lincang humped cattle using whole-genome resequencing data. We found that Lincang humped cattle derived from both Indian indicine and Chinese indicine cattle depicted higher levels of genomic diversity. Based on genome-wide scans, candidate genomic regions were identified that were potentially involved in local thermal and humid environmental adaptions, including genes associated with the body size (TCF12, SENP2, KIF1C, and PFN1), immunity (LIPH, IRAK3, GZMM, and ELANE), and heat tolerance (MED16, DNAJC8, HSPA4, FILIP1L, HELB, BCL2L1, and TPX2). Missense mutations were detected in candidate genes IRAK3, HSPA4, and HELB. Interestingly, eight missense mutations observed in the HELB gene were specific to the indicine cattle pedigree. These mutations may reveal differences between indicine and taurine cattle adapted to variable climatic conditions. Our research provides new insights into the genetic characteristics of Lincang humped cattle representing Lincang and Pu'er areas as an important channel for the migration of Indian indicine from domestication centers toward southwestern China.
Collapse
Affiliation(s)
- Luyang Sun
- Yunnan Academy of Grassland and Animal Science, Kunming, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, China
| | - Xiaohui Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Quratulain Hanif
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Quji Suolang
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| |
Collapse
|
25
|
Vanvanhossou SFU, Yin T, Scheper C, Fries R, Dossa LH, König S. Unraveling Admixture, Inbreeding, and Recent Selection Signatures in West African Indigenous Cattle Populations in Benin. Front Genet 2021; 12:657282. [PMID: 34956303 PMCID: PMC8694269 DOI: 10.3389/fgene.2021.657282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
The Dwarf Lagune and the Savannah Somba cattle in Benin are typical representatives of the endangered West African indigenous Shorthorn taurine. The Lagune was previously exported to African and European countries and bred as Dahomey cattle, whereas the Somba contributed to the formation of two indigenous hybrids known as Borgou and Pabli cattle. These breeds are affected by demographic, economic, and environmental pressures in local production systems. Considering current and historical genomic data, we applied a formal test of admixture, estimated admixture proportions, and computed genomic inbreeding coefficients to characterize the five breeds. Subsequently, we unraveled the most recent selection signatures using the cross-population extended haplotype homozygosity approach, based on the current and historical genotypes. Results from principal component analyses and high proportion of Lagune ancestry confirm the Lagune origin of the European Dahomey cattle. Moreover, the Dahomey cattle displayed neither indicine nor European taurine (EUT) background, but they shared on average 40% of autozygosity from common ancestors, dated approximately eight generations ago. The Lagune cattle presented inbreeding coefficients larger than 0.13; however, the Somba and the hybrids (Borgou and Pabli) were less inbred (≤0.08). We detected evidence of admixture in the Somba and Lagune cattle, but they exhibited a similar African taurine (AFT) ancestral proportion (≥96%) to historical populations, respectively. A moderate and stable AFT ancestral proportion (62%) was also inferred for less admixed hybrid cattle including the Pabli. In contrast, the current Borgou samples displayed a lower AFT ancestral proportion (47%) than historical samples (63%). Irrespective of the admixture proportions, the hybrid populations displayed more selection signatures related to economic traits (reproduction, growth, and milk) than the taurine. In contrast, the taurine, especially the Somba, presented several regions known to be associated with adaptive traits (immunity and feed efficiency). The identified subregion of bovine leukocyte antigen (BoLA) class IIb (including DSB and BOLA-DYA) in Somba cattle is interestingly uncommon in other African breeds, suggesting further investigations to understand its association with specific adaptation to endemic diseases in Benin. Overall, our study provides deeper insights into recent evolutionary processes in the Beninese indigenous cattle and their aptitude for conservation and genetic improvement.
Collapse
Affiliation(s)
| | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Carsten Scheper
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Ruedi Fries
- Chair of Animal Breeding, Technische Universität München, Freising-Weihenstephan, Germany
| | - Luc Hippolyte Dossa
- School of Science and Technics of Animal Production, Faculty of Agricultural Sciences, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| |
Collapse
|
26
|
Rafter P, Gormley IC, Purfield D, Parnell AC, Naderi S, Berry DP. Genome-wide association analyses of carcass traits using copy number variants and raw intensity values of single nucleotide polymorphisms in cattle. BMC Genomics 2021; 22:757. [PMID: 34688258 PMCID: PMC8542340 DOI: 10.1186/s12864-021-08075-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/07/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The carcass value of cattle is a function of carcass weight and quality. Given the economic importance of carcass merit to producers, it is routinely included in beef breeding objectives. A detailed understanding of the genetic variants that contribute to carcass merit is useful to maximize the efficiency of breeding for improved carcass merit. The objectives of the present study were two-fold: firstly, to perform genome-wide association analyses of carcass weight, carcass conformation, and carcass fat using copy number variant (CNV) data in a population of 923 Holstein-Friesian, 945 Charolais, and 974 Limousin bulls; and secondly to perform separate association analyses of carcass traits on the same population of cattle using the Log R ratio (LRR) values of 712,555 single nucleotide polymorphisms (SNPs). The LRR value of a SNP is a measure of the signal intensity of the SNP generated during the genotyping process. RESULTS A total of 13,969, 3,954, and 2,805 detected CNVs were tested for association with the three carcass traits for the Holstein-Friesian, Charolais, and Limousin, respectively. The copy number of 16 CNVs and the LRR of 34 SNPs were associated with at least one of the three carcass traits in at least one of the three cattle breeds. With the exception of three SNPs, none of the quantitative trait loci detected in the CNV association analyses or the SNP LRR association analyses were also detected using traditional association analyses based on SNP allele counts. Many of the CNVs and SNPs associated with the carcass traits were located near genes related to the structure and function of the spliceosome and the ribosome; in particular, U6 which encodes a spliceosomal subunit and 5S rRNA which encodes a ribosomal subunit. CONCLUSIONS The present study demonstrates that CNV data and SNP LRR data can be used to detect genomic regions associated with carcass traits in cattle providing information on quantitative trait loci over and above those detected using just SNP allele counts, as is the approach typically employed in genome-wide association analyses.
Collapse
Affiliation(s)
- Pierce Rafter
- Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Cork, Fermoy, Ireland
- School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland
| | - Isobel Claire Gormley
- School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland
| | - Deirdre Purfield
- Department of Biological Sciences, Munster Technological University Institute, Cork, Bishopstown, Ireland
| | - Andrew C Parnell
- Hamilton Institute, Insight Centre for Data Analytics, Maynooth University, Kildare, Ireland
| | - Saeid Naderi
- Irish Cattle Breeding Federation, Cork, Bandon, Ireland
| | - Donagh P Berry
- Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Cork, Fermoy, Ireland.
| |
Collapse
|
27
|
Liu D, Chen Z, Zhao W, Guo L, Sun H, Zhu K, Liu G, Shen X, Zhao X, Wang Q, Ma P, Pan Y. Genome-wide selection signatures detection in Shanghai Holstein cattle population identified genes related to adaption, health and reproduction traits. BMC Genomics 2021; 22:747. [PMID: 34654366 PMCID: PMC8520274 DOI: 10.1186/s12864-021-08042-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
Background Over several decades, a wide range of natural and artificial selection events in response to subtropical environments, intensive pasture and intensive feedlot systems have greatly changed the customary behaviour, appearance, and important economic traits of Shanghai Holstein cattle. In particular, the longevity of the Shanghai Holstein cattle population is generally short, approximately the 2nd to 3rd lactation. In this study, two complementary approaches, integrated haplotype score (iHS) and runs of homozygosity (ROH), were applied for the detection of selection signatures within the genome using genotyping by genome-reduced sequence data from 1092 cows. Results In total, 101 significant iHS genomic regions containing selection signatures encompassing a total of 256 candidate genes were detected. There were 27 significant |iHS| genomic regions with a mean |iHS| score > 2. The average number of ROH per individual was 42.15 ± 25.47, with an average size of 2.95 Mb. The length of 78 % of the detected ROH was within the range of 1–2 MB and 2–4 MB, and 99 % were shorter than 8 Mb. A total of 168 genes were detected in 18 ROH islands (top 1 %) across 16 autosomes, in which each SNP showed a percentage of occurrence > 30 %. There were 160 and 167 genes associated with the 52 candidate regions within health-related QTL intervals and 59 candidate regions within reproduction-related QTL intervals, respectively. Annotation of the regions harbouring clustered |iHS| signals and candidate regions for ROH revealed a panel of interesting candidate genes associated with adaptation and economic traits, such as IL22RA1, CALHM3, ITGA9, NDUFB3, RGS3, SOD2, SNRPA1, ST3GAL4, ALAD, EXOSC10, and MASP2. In a further step, a total of 1472 SNPs in 256 genes were matched with 352 cis-eQTLs in 21 tissues and 27 trans-eQTLs in 6 tissues. For SNPs located in candidate regions for ROH, a total of 108 cis-eQTLs in 13 tissues and 4 trans-eQTLs were found for 1092 SNPs. Eighty-one eGenes were significantly expressed in at least one tissue relevant to a trait (P value < 0.05) and matched the 256 genes detected by iHS. For the 168 significant genes detected by ROH, 47 gene-tissue pairs were significantly associated with at least one of the 37 traits. Conclusions We provide a comprehensive overview of selection signatures in Shanghai Holstein cattle genomes by combining iHS and ROH. Our study provides a list of genes associated with immunity, reproduction and adaptation. For functional annotation, the cGTEx resource was used to interpret SNP-trait associations. The results may facilitate the identification of genes relevant to important economic traits and can help us better understand the biological processes and mechanisms affected by strong ongoing natural or artificial selection in livestock populations. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08042-x.
Collapse
Affiliation(s)
- Dengying Liu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Zhenliang Chen
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Wei Zhao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Longyu Guo
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Hao Sun
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Kai Zhu
- Shanghai Dairy Cattle Breeding Centre Co., Ltd, 201901, Shanghai, P.R. China
| | - Guanglei Liu
- Shanghai Dairy Cattle Breeding Centre Co., Ltd, 201901, Shanghai, P.R. China
| | - Xiuping Shen
- Shanghai Agricultural Development Promotion Center, 200335, Shanghai, PR China
| | - Xiaoduo Zhao
- Shanghai Dairy Cattle Breeding Centre Co., Ltd, 201901, Shanghai, P.R. China
| | - Qishan Wang
- Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, 310058, Hangzhou, PR China
| | - Peipei Ma
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, PR China.
| | - Yuchun Pan
- Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, 310058, Hangzhou, PR China.
| |
Collapse
|
28
|
Dubon MAC, Pedrosa VB, Feitosa FLB, Costa RB, de Camargo GMF, Silva MR, Pinto LFB. Identification of novel candidate genes for age at first calving in Nellore cows using a SNP chip specifically developed for Bos taurus indicus cattle. Theriogenology 2021; 173:156-162. [PMID: 34392169 DOI: 10.1016/j.theriogenology.2021.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 01/08/2023]
Abstract
The age at first calving has a great economic impact on the beef cattle system and calving at 24 months is an objective of selection for a more efficient herd. However, an age at first calving around 36 months has been observed for Nellore cattle in Brazil. Thus, a genome-wide association study (GWAS) was carried out with 8376 records of age at first calving and 3239 animals genotyped with the GGP-Indicus 35K, which has been developed specifically for Bos taurus indicus. The weighted single-step genomic best linear unbiased prediction method was used, with adjacent SNPs (single nucleotide polymorphisms) in genomic windows of 1.0 Mb. After quality control, 3239 (2161 males and 1078 females) animals genotyped for 30,519 SNPs were used in GWAS analysis. The average and standard deviation of age at first calving were 1041.7 and 140.6 days, respectively. The heritability estimate was 0.10 ± 0.02. The GWAS analysis found seven genomic regions in BTA1, 2, 5, 12, 18, 21, and 24, which explained a total of 11.24% of the additive genetic variance of age at first calving. In these regions were found 62 protein coding genes, and the genes HSD17B2, SERPINA14, SERPINA1, SERPINA5, STAT1, NFATC1, ATP9B, CTDP1, THPO, ECE2, PSMD2, EIF4G1, EIF2B2, DVL3, POLR2H, TMTC2, and GPC6 are possible candidates for age at first birth due their function. Moreover, two molecular functions ("serine-type endopeptidase inhibitor activity" and "negative regulation of endopeptidase activity") were significant, which depend on several serpin genes. The use of a SNP chip developed especially for Bos taurus indicus allowed to find genomic regions for age at first calving, which are close to QTLs previously reported for other reproduction-related traits. Future studies can reveal the causal variants and their effects on reproductive precocity of Nellore cows.
Collapse
Affiliation(s)
| | - Victor Breno Pedrosa
- State University of Ponta Grossa, 4748, Av. General Carlos Cavalcanti, Ponta Grossa, PR, 84030900, Brazil.
| | | | - Raphael Bermal Costa
- Federal University of Bahia, 500, Av. Adhemar de Barros, Salvador, BA, 40170110, Brazil.
| | | | - Marcio Ribeiro Silva
- Melhore Animal and Katayama Agropecuaria Lda, Guararapes, SP, 16700-000, Brazil.
| | | |
Collapse
|
29
|
Chebii VJ, Mpolya EA, Muchadeyi FC, Domelevo Entfellner JB. Genomics of Adaptations in Ungulates. Animals (Basel) 2021; 11:1617. [PMID: 34072591 PMCID: PMC8230064 DOI: 10.3390/ani11061617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022] Open
Abstract
Ungulates are a group of hoofed animals that have long interacted with humans as essential sources of food, labor, clothing, and transportation. These consist of domesticated, feral, and wild species raised in a wide range of habitats and biomes. Given the diverse and extreme environments inhabited by ungulates, unique adaptive traits are fundamental for fitness. The documentation of genes that underlie their genomic signatures of selection is crucial in this regard. The increasing availability of advanced sequencing technologies has seen the rapid growth of ungulate genomic resources, which offers an exceptional opportunity to understand their adaptive evolution. Here, we summarize the current knowledge on evolutionary genetic signatures underlying the adaptations of ungulates to different habitats.
Collapse
Affiliation(s)
- Vivien J. Chebii
- School of Life Science and Bioengineering, Nelson Mandela Africa Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania;
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya;
| | - Emmanuel A. Mpolya
- School of Life Science and Bioengineering, Nelson Mandela Africa Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania;
| | - Farai C. Muchadeyi
- Agricultural Research Council Biotechnology Platform (ARC-BTP), Private Bag X5, Onderstepoort 0110, South Africa;
| | - Jean-Baka Domelevo Entfellner
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya;
| |
Collapse
|