1
|
Lin C, Zhang X, Ji Z, Fan B, Chen Y, Wu Y, Gan Y, Li Z, Shang Y, Duan L, Wang F. Metabolic engineering of Saccharomyces cerevisiae for high-level production of (+)-ambrein from glucose. Biotechnol Lett 2024; 46:615-626. [PMID: 38884886 DOI: 10.1007/s10529-024-03502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 06/18/2024]
Abstract
(+)-Ambrein is the primary component of ambergris, a rare product found in sperm whales (Physeter microcephalus). Microbial production using sustainable resources is a promising way to replace animal extraction and chemical synthesis. We constructed an engineered yeast strain to produce (+)-ambrein de novo. Squalene is a substrate for the biosynthesis of (+)-ambrein. Firstly, strain LQ2, with a squalene yield of 384.4 mg/L was obtained by optimizing the mevalonate pathway. Then we engineered a method for the de novo production of (+)-ambrein using glucose as a carbon source by overexpressing codon-optimized tetraprenyl-β-curcumene cyclase (BmeTC) and its double mutant enzyme (BmeTCY167A/D373C), evaluating different promoters, knocking out GAL80, and fusing the protein with BmeTC and squalene synthase (AtSQS2). Nevertheless, the synthesis of (+)-ambrein is still limited, causing low catalytic activity in BmeTC. We carried out a protein surface amino acid modification of BmeTC. The dominant mutant BmeTCK6A/Q9E/N454A for the first step was obtained to improve its catalytic activity. The yield of (+)-ambrein increased from 35.2 to 59.0 mg/L in the shake flask and finally reached 457.4 mg/L in the 2 L fermenter, the highest titer currently available for yeast. Efficiently engineered strains and inexpensive fermentation conditions for the industrial production of (+)-ambrein. The metabolic engineering tools provide directions for optimizing the biosynthesis of other high-value triterpenes.
Collapse
Affiliation(s)
- Chumin Lin
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaopeng Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116, China
| | - Zhongju Ji
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, And International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Baolian Fan
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, And International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yaman Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yuhong Wu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, And International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuhong Gan
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, And International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhengping Li
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, And International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yi Shang
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Lixin Duan
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, And International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Feng Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Ueda D, Matsuda N, Takaba Y, Hirai N, Inoue M, Kameya T, Abe T, Tagaya N, Isogai Y, Kakihara Y, Bartels F, Christmann M, Shinada T, Yasuda K, Sato T. Analysis of vitamin D receptor binding affinities of enzymatically synthesized triterpenes including ambrein and unnatural onoceroids. Sci Rep 2024; 14:1419. [PMID: 38228813 PMCID: PMC10792010 DOI: 10.1038/s41598-024-52013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024] Open
Abstract
Onoceroids are a rare family of triterpenes. One representative onoceroid is ambrein, which is the main component of ambergris used as a traditional medicine. We have previously identified the onoceroid synthase, BmeTC, in Bacillus megaterium and succeeded in creating ambrein synthase by introducing mutations into BmeTC. Owing to the structural similarity of ambrein to vitamin D, a molecule with diverse biological activities, we hypothesized that some of the activities of ambergris may be induced by the binding of ambrein to the vitamin D receptor (VDR). We demonstrated the VDR binding ability of ambrein. By comparing the structure-activity relationships of triterpenes with both the VDR affinity and osteoclastic differentiation-promoting activity, we observed that the activity of ambrein was not induced via the VDR. Therefore, some of the activities of ambergris, but not all, can be attributed to its VDR interaction. Additionally, six unnatural onoceroids were synthesized using the BmeTC reactions, and these compounds exhibited higher VDR affinity than that of ambrein. Enzymatic syntheses of onoceroid libraries will be valuable in creating a variety of bioactive compounds beyond ambergris.
Collapse
Affiliation(s)
- Daijiro Ueda
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Natsu Matsuda
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Yuka Takaba
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Nami Hirai
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Mao Inoue
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Taichi Kameya
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Tohru Abe
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Nao Tagaya
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Japan
| | - Yasuhiro Isogai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Japan
| | - Yoshito Kakihara
- Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Florian Bartels
- Institute of Chemistry and Biochemistry, Freie Unversität Berlin, Berlin, Germany
| | - Mathias Christmann
- Institute of Chemistry and Biochemistry, Freie Unversität Berlin, Berlin, Germany
| | - Tetsuro Shinada
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Japan.
| | - Tsutomu Sato
- Graduate School of Science and Technology, Niigata University, Niigata, Japan.
| |
Collapse
|
3
|
Eichhorn E, Schroeder F. From Ambergris to (-)-Ambrox: Chemistry Meets Biocatalysis for Sustainable (-)-Ambrox Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5042-5052. [PMID: 36961824 DOI: 10.1021/acs.jafc.2c09010] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
(-)-Ambrox, the most prominent olfactive component of ambergris is one of the most widely used biodegradable fragrance ingredients. Traditionally it is produced from the diterpene sclareol, modified and cyclized into (-)-ambrox by classical chemistry steps. The availability of the new feedstock (E)-β-farnesene produced by fermentation opened new pathways to (E,E)-homofarnesol as a precursor to (-)-ambrox. Combining chemical transformation of (E)-β-farnesene to (E,E)-homofarnesol and its enzymatic cyclization at the industrial scale to (-)-ambrox with an engineered squalene hopene cyclase illustrates the potential of biotechnology for a more sustainable process, thus meeting the increasing consumers' demand for sustainably produced high quality perfumery and consumer goods. This review traces back to the origin of ambergris and the search for the source of its mysterious odor, leading to the discovery of (-)-ambrox as its main olfactive principle. It discusses the plethora of ways explored for its synthesis from diverse starting materials and presents the development of a process with significantly improved carbon efficiency for the industrial production of (-)-ambrox as 100% renewable Ambrofix.
Collapse
Affiliation(s)
- Eric Eichhorn
- Fragrances S&T, Ingredients Research, Givaudan Schweiz AG, Kemptpark 50, CH-8310 Kemptthal, Switzerland
| | - Fridtjof Schroeder
- Fragrances S&T, Ingredients Research, Givaudan Schweiz AG, Kemptpark 50, CH-8310 Kemptthal, Switzerland
| |
Collapse
|