1
|
Park S, Kim J, Lee J, Jung S, Pack SP, Lee JH, Yoon K, Woo SJ, Han JY, Seo M. RNA sequencing analysis of sexual dimorphism in Japanese quail. Front Vet Sci 2024; 11:1441021. [PMID: 39104546 PMCID: PMC11299063 DOI: 10.3389/fvets.2024.1441021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Japanese quail are of significant economic value, providing protein nutrition to humans through their reproductive activity; however, sexual dimorphism in this species remains relatively unexplored compared with other model species. Method A total of 114 RNA sequencing datasets (18 and 96 samples for quail and chicken, respectively) were collected from existing studies to gain a comprehensive understanding of sexual dimorphism in quail. Cross-species integrated analyses were performed with transcriptome data from evolutionarily close chickens to identify sex-biased genes in the embryonic, adult brain, and gonadal tissues. Results Our findings indicate that the expression patterns of genes involved in sex-determination mechanisms during embryonic development, as well as those of most sex-biased genes in the adult brain and gonads, are identical between quails and chickens. Similar to most birds with a ZW sex determination system, quails lacked global dosage compensation for the Z chromosome, resulting in directional outcomes that supported the hypothesis that sex is determined by the individual dosage of Z-chromosomal genes, including long non-coding RNAs located in the male hypermethylated region. Furthermore, genes, such as WNT4 and VIP, reversed their sex-biased patterns at different points in embryonic development and/or in different adult tissues, suggesting a potential hurdle in breeding and transgenic experiments involving avian sex-related traits. Discussion The findings of this study are expected to enhance our understanding of sexual dimorphism in birds and subsequently facilitate insights into the field of breeding and transgenesis of sex-related traits that economically benefit humans.
Collapse
Affiliation(s)
- Sinwoo Park
- Department of Computer and Information Science, Korea University, Sejong-si, Republic of Korea
| | - Jaeryeong Kim
- Department of Computer and Information Science, Korea University, Sejong-si, Republic of Korea
| | - Jinbaek Lee
- Department of Computer and Information Science, Korea University, Sejong-si, Republic of Korea
| | - Sungyoon Jung
- Department of Computer and Information Science, Korea University, Sejong-si, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-si, Republic of Korea
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong-si, Republic of Korea
| | - Kyungheon Yoon
- Division of Genome Science, Department of Precision Medicine, National Institue of Health, Cheongju-si, Republic of Korea
| | - Seung Je Woo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Minseok Seo
- Department of Computer and Information Science, Korea University, Sejong-si, Republic of Korea
| |
Collapse
|
2
|
Win-Shwe TT, Abe N, Sakiyama A, Suzuki M, Sano K, Kawashima T, Tsukahara S. In ovo o,p'-DDT exposure induces malformation of reproductive organs and alters the expression of genes controlling sexual differentiation in Japanese quail embryo. J Appl Toxicol 2024; 44:699-711. [PMID: 38102769 DOI: 10.1002/jat.4571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
In ovo exposure to o,p'-dichloro-diphenyl-trichloroethane (o,p'-DDT) impairs reproduction by inducing malformation of the reproductive organs in birds, although the mechanism remains unclear. Here, we examined the effects of o,p'-DDT on the development of the reproductive organs, the expression of genes controlling sexual differentiation, and the plasma concentrations of testosterone and estradiol in Japanese quail embryos. o,p'-DDT-containing sesame oil was injected into the yolk sac on Embryonic Day (E) 3 at a dose of 500, 2,000, or 8,000 μg per egg. On E15, the reproductive organs were observed; the gonads and Müllerian ducts (MDs) were sampled to measure the mRNA of steroidogenic enzymes, sex steroid receptors, anti-Müllerian hormone (AMH), and AMH receptor 2 (AMHR2); blood samples were collected to assay plasma testosterone and estradiol levels; and the gonads were used for histological analysis. o,p'-DDT dose-dependently increased the prevalence of hypertrophic MDs in females and residual MDs in males. In female MDs, o,p'-DDT dose-dependently decreased estrogen receptor (ER) α, ERβ, and AMHR2 mRNA expression. o,p'-DDT dose-dependently induced left-biased asymmetry of testis size, and ovary-like tissue was found in the left testis after exposure to 8,000 μg per egg o,p'-DDT, although asymmetric gene expression did not occur. o,p'-DDT did not affect ovarian tissue but did decrease 17α-hydroxylase/C17-20 lyase mRNA expression and dose-dependently increased ERβ mRNA expression. o,p'-DDT decreased plasma testosterone concentrations in females. These findings suggest that o,p'-DDT induces hypertrophy of the MDs and ovarian tissue formation in the left testis. Abnormal MD development may be linked to altered gene expression for sensing estrogens and AMH signals.
Collapse
Affiliation(s)
- Tin-Tin Win-Shwe
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Natsuko Abe
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Akari Sakiyama
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Maho Suzuki
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Kazuhiro Sano
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Takaharu Kawashima
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
3
|
Reda GK, Ndunguru SF, Csernus B, Lugata JK, Knop R, Szabó C, Czeglédi L, Lendvai ÁZ. Sex-specific effects of dietary restriction on physiological variables in Japanese quails. Ecol Evol 2024; 14:e11405. [PMID: 38799393 PMCID: PMC11116846 DOI: 10.1002/ece3.11405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Nutritional limitation is a common phenomenon in nature that leads to trade-offs among processes competing for limited resources. These trade-offs are mediated by changes in physiological traits such as growth factors and circulating lipids. However, studies addressing the sex-specific effect of nutritional deficiency on these physiological variables are limited in birds. We used dietary restriction to mimic the depletion of resources to various degrees and investigated sex-specific effects on circulating levels of insulin-like growth factor 1 (IGF-1) and triglycerides in Japanese quails (Coturnix japonica) subjected to ad libitum, 20%, 30% or 40% restriction of their daily requirement, for 2 weeks. We also explored the association of both physiological variables with body mass and egg production. While dietary restriction showed no effects on circulating IGF-1, this hormone exhibited a marked sexual difference, with females having 64.7% higher IGF-1 levels than males. Dietary restriction significantly reduced plasma triglyceride levels in both sexes. Females showed more than six-fold higher triglyceride levels than males. Triglyceride levels were positively associated with body mass in females while showed not association in males. Overall, our findings revealed sex-specific expression of physiological variables under dietary restriction conditions, which coincide with body size.
Collapse
Affiliation(s)
- Gebrehaweria K. Reda
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
- Doctoral School of Animal ScienceUniversity of DebrecenDebrecenHungary
- Department of Evolutionary Zoology and Human Biology, Faculty of Life ScienceUniversity of DebrecenDebrecenHungary
| | - Sawadi F. Ndunguru
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
- Doctoral School of Animal ScienceUniversity of DebrecenDebrecenHungary
- Department of Evolutionary Zoology and Human Biology, Faculty of Life ScienceUniversity of DebrecenDebrecenHungary
| | - Brigitta Csernus
- Department of Evolutionary Zoology and Human Biology, Faculty of Life ScienceUniversity of DebrecenDebrecenHungary
| | - James K. Lugata
- Doctoral School of Animal ScienceUniversity of DebrecenDebrecenHungary
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Renáta Knop
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Csaba Szabó
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Levente Czeglédi
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Ádám Z. Lendvai
- Department of Evolutionary Zoology and Human Biology, Faculty of Life ScienceUniversity of DebrecenDebrecenHungary
| |
Collapse
|
4
|
Estermann MA, Mariette MM, Moreau JLM, Combes AN, Smith CA. PAX 2 + Mesenchymal Origin of Gonadal Supporting Cells Is Conserved in Birds. Front Cell Dev Biol 2021; 9:735203. [PMID: 34513849 PMCID: PMC8429852 DOI: 10.3389/fcell.2021.735203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/09/2021] [Indexed: 12/20/2022] Open
Abstract
During embryonic gonadal development, the supporting cell lineage is the first cell type to differentiate, giving rise to Sertoli cells in the testis and pre-granulosa cells in the ovary. These cells are thought to direct other gonadal cell lineages down the testis or ovarian pathways, including the germline. Recent research has shown that, in contrast to mouse, chicken gonadal supporting cells derive from a PAX2/OSR1/DMRT1/WNT4 positive mesenchymal cell population. These cells colonize the undifferentiated genital ridge during early gonadogenesis, around the time that germ cells migrate into the gonad. During the process of somatic gonadal sex differentiation, PAX2 expression is down-regulated in embryonic chicken gonads just prior to up-regulation of testis- and ovary-specific markers and prior to germ cell differentiation. Most research on avian gonadal development has focused on the chicken model, and related species from the Galloanserae clade. There is a lack of knowledge on gonadal sex differentiation in other avian lineages. Comparative analysis in birds is required to fully understand the mechanisms of avian sex determination and gonadal differentiation. Here we report the first comparative molecular characterization of gonadal supporting cell differentiation in birds from each of the three main clades, Galloanserae (chicken and quail), Neoaves (zebra finch) and Palaeognathe (emu). Our analysis reveals conservation of PAX2+ expression and a mesenchymal origin of supporting cells in each clade. Moreover, down-regulation of PAX2 expression precisely defines the onset of gonadal sex differentiation in each species. Altogether, these results indicate that gonadal morphogenesis is conserved among the major bird clades.
Collapse
Affiliation(s)
- Martin A. Estermann
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mylene M. Mariette
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Julie L. M. Moreau
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Alexander N. Combes
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Craig A. Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|