1
|
Olivera-Pasilio V, Dabrowska J. Fear-Conditioning to Unpredictable Threats Reveals Sex and Strain Differences in Rat Fear-Potentiated Startle (FPS). Neuroscience 2023; 530:108-132. [PMID: 37640137 PMCID: PMC10726736 DOI: 10.1016/j.neuroscience.2023.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Fear-potentiated startle (FPS) has been widely used to study fear processing in humans and rodents. Human studies showed higher startle amplitudes and exaggerated fear reactivity to unpredictable vs. predictable threats in individuals suffering from post-traumatic stress disorder (PTSD). Although human FPS studies use both sexes, a surprisingly limited number of rodent FPS studies use females. Here we investigate the effects of signal-threat contingency, signal-threat order and threat predictability on FPS in both sexes. We use a classic fear-conditioning protocol (100% contingency of cue and shock pairings, with forward conditioning such that the cue co-terminates with the shock) and compare it to modified fear-conditioning protocols (70% contingency; backward conditioning; or cue and shock un-paired). Although there are no sex differences in the startle amplitudes when corrected for body weight, females consistently demonstrate higher shock reactivity during fear-conditioning. Both sexes and strains demonstrate comparable levels of cued, non-cued, and contextual fear in the classic FPS and FPS following fear-conditioning with 70% contingency or backward order (cue co-starts with shock). However, in the classic FPS, Sprague-Dawley females show reduced proportion between cued fear and cue-elicited vigilant state than males. Lastly, a prominent sex difference is uncovered following unpredictable fear-conditioning (cue and shock un-paired), with Wistar, but not Sprague-Dawley, females showing significantly higher startle overall during the FPS recall, regardless of trial type, and higher contextual fear than males. This striking sex difference in processing unpredictable threats in rodent FPS might help to understand the mechanisms underlying higher incidence of PTSD in women.
Collapse
Affiliation(s)
- Valentina Olivera-Pasilio
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, USA
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, USA.
| |
Collapse
|
2
|
Olivera-Pasilio V, Dabrowska J. Fear-conditioning to unpredictable threats reveals sex differences in rat fear-potentiated startle (FPS). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531430. [PMID: 36945466 PMCID: PMC10028867 DOI: 10.1101/2023.03.06.531430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Fear-potentiated startle (FPS) has been widely used to study fear processing in humans and rodents. Human studies have shown higher startle amplitudes and exaggerated fear reactivity to unpredictable vs. predictable threats in individuals suffering from post-traumatic stress disorder (PTSD). Although human FPS studies often use both sexes, a surprisingly limited number of rodent FPS studies use females. Here we investigate the effects of signal-threat contingency, signal-threat order and threat predictability on FPS in both sexes. We use a classic fear-conditioning protocol (100% contingency of cue and shock pairings, with forward conditioning such that the cue co-terminates with the shock) and compare it to modified fear-conditioning protocols (70% contingency; backward conditioning; or cue and shock unpaired). Although there are no sex differences in the startle amplitudes when corrected for body weight, females demonstrate higher shock reactivity during fear-conditioning. Both sexes demonstrate comparable levels of cued, non-cued, and contextual fear in the classic FPS but females show reduced fear discrimination vs. males. Fear-conditioning with 70% contingency or backward order (cue co-starts with shock) induces similar levels of cued, non-cued, and contextual fear in both sexes but they differ in contextual fear extinction. Lastly, a prominent sex difference is uncovered following unpredictable fear-conditioning protocol (cue and shock un-paired), with females showing significantly higher startle overall during the FPS recall, regardless of trial type, and higher contextual fear than males. This striking sex difference in processing unpredictable threats in rodent FPS might help to understand the mechanisms underlying higher incidence of PTSD in women. Highlights Male and female rats have comparable startle amplitudes when corrected for body weightFemale rats show higher foot-shock reactivity than males during fear-conditioningFemale rats show reduced fear discrimination vs. males in the classic FPSReversed signal-threat order increases contextual fear in both sexesExposure to unpredictable threats increases startle in general and contextual fear only in females.
Collapse
Affiliation(s)
- Valentina Olivera-Pasilio
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois, USA
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois, USA
| |
Collapse
|
3
|
Chen M, Jiao Y, Shi Y, Xu S, Tang D, Chen S, Gao P, Zhang X, Zhao X, Cai M, Yu W, Xie K. The Rostral Ventromedial and Lateral Medulla Are the Major Areas Responsive to Lung Cancer Progression among Brainstem Lung-Innervating Nuclei. Brain Sci 2022; 12:1486. [PMID: 36358412 PMCID: PMC9688822 DOI: 10.3390/brainsci12111486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/02/2023] Open
Abstract
In recent years, the information crosstalk between the central nervous system and the periphery has been a hot topic, such as the brain-gut axis, brain-lung axis, etc. Among them, some studies have shown that brainstem nuclei activity can significantly affect the progression of peripheral tumor; however, regarding lung cancer, our understanding of the basic characteristics of the lung-innervating brain nuclei responsive to lung cancer progression remains deficient. Therefore, we used the pseudorabies virus for retrograde labeling of nerves to study the neural circuits between the lung and brain. We then established a mouse orthotopic lung cancer model and used the expression of the c-Fos gene in brain regions to characterize activated brain circuits and compared these results with those of the control group. We focused on c-Fos activity in nuclei associated with retrograde tracing regions of the brainstem. We found over 16 nuclei in the whole brain with direct or indirect lung innervation through neural retrograde labeling with the pseudorabies virus. We further revealed that the neuronal activity of the rostral ventrolateral reticular nucleus (RVL), caudal nucleus of Raphe (raphe obscurus nucleus, ROb), Raphe pallidus nucleus (RPa), and ventral gigantocellular reticular nucleus (GiV) in the rostral ventromedial and lateral medulla were significantly changed in an orthotopic lung cancer mouse model by the immunostaining of c-Fos early responsive protein. Thus, the distinctive rostroventral medulla area, functionally closely related to the vagus nerve, likely plays a role in central neural interaction with peripheral lung tumors and deserves future investigation.
Collapse
Affiliation(s)
- Mo Chen
- Graduate School, Wannan Medical College, Wuhu 241000, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yumiao Shi
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Saihong Xu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Dan Tang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Sihan Chen
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Po Gao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xindi Zhang
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaojing Zhao
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengmeng Cai
- Department of Anesthesiology, Nantong First People’s Hospital, Nantong University, Nantong 226001, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Kangjie Xie
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Research Center for Neuro-Oncology Interaction, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
4
|
Luyck K, Bervoets C, Deblieck C, Nuttin B, Luyten L. Deep brain stimulation in the bed nucleus of the stria terminalis: A symptom provocation study in patients with obsessive-compulsive disorder. J Psychiatr Res 2022; 151:252-260. [PMID: 35512619 DOI: 10.1016/j.jpsychires.2022.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) is an emerging therapy for treatment-resistant obsessive-compulsive disorder (OCD), and several targets for electrode implantation and contact selection have been proposed, including the bed nucleus of the stria terminalis (BST). Selecting the active electrode contacts (patients typically have four to choose from in each hemisphere), and thus the main locus of stimulation, can be a taxing process. Here, we investigated whether contact selection based purely on their neuroanatomical position in the BST is a worthwhile approach. For the first time, we also compared the effects of uni- versus bilateral BST stimulation. METHODS Nine OCD patients currently receiving DBS participated in a double-blind, randomized symptom provocation study to compare no versus BST stimulation. Primary outcomes were anxiety and mood ratings in response to disorder-relevant trigger images, as well as ratings of obsessions, compulsions, tendency to avoid and overall wellbeing. Furthermore, we asked whether patients preferred the electrode contacts in the BST over their regular stimulation contacts as a new treatment setting after the end of the task. RESULTS We found no statistically significant group differences between the four conditions (no, left, right and bilateral BST stimulation). Exploratory analyses, as well as follow-up data, did indicate that (bilateral) bipolar stimulation in the BST was beneficial for some patients, particularly for those who had achieved unsatisfactory effects through the typical contact selection procedure. CONCLUSIONS Despite its limitations, this study suggests that selection of stimulation contacts in the BST is a viable option for DBS in treatment-resistant OCD patients.
Collapse
Affiliation(s)
- Kelly Luyck
- KU Leuven, Experimental Neurosurgery and Neuroanatomy, Herestraat 49 PB 7003, 3000, Leuven, Belgium; Leuven Brain Institute, Herestraat 49 PB 1021, 3000, Leuven, Belgium
| | - Chris Bervoets
- Leuven Brain Institute, Herestraat 49 PB 1021, 3000, Leuven, Belgium; University Hospitals Leuven, Psychiatry, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium
| | - Choi Deblieck
- University Hospitals Leuven, Psychiatry, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium
| | - Bart Nuttin
- KU Leuven, Experimental Neurosurgery and Neuroanatomy, Herestraat 49 PB 7003, 3000, Leuven, Belgium; Leuven Brain Institute, Herestraat 49 PB 1021, 3000, Leuven, Belgium; University Hospitals Leuven, Neurosurgery, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium
| | - Laura Luyten
- KU Leuven, Experimental Neurosurgery and Neuroanatomy, Herestraat 49 PB 7003, 3000, Leuven, Belgium; Leuven Brain Institute, Herestraat 49 PB 1021, 3000, Leuven, Belgium; KU Leuven, Psychology of Learning and Experimental Psychopathology, Tiensestraat 102 PB 3712, 3000, Leuven, Belgium.
| |
Collapse
|
5
|
Frasnelli E. Evolution and function of neurocognitive systems in non-human animals. Sci Rep 2021; 11:23487. [PMID: 34880266 PMCID: PMC8654867 DOI: 10.1038/s41598-021-02736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Elisa Frasnelli
- CIMeC Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068, Rovereto, TN, Italy. .,School of Life Sciences, University of Lincoln, Lincoln, Lincolnshire, LN6 7DL, UK.
| |
Collapse
|
6
|
Li HD, Li DN, Yang L, Long C. Deficiency of the CYLD Impairs Fear Memory of Mice and Disrupts Neuronal Activity and Synaptic Transmission in the Basolateral Amygdala. Front Cell Neurosci 2021; 15:740165. [PMID: 34602983 PMCID: PMC8485066 DOI: 10.3389/fncel.2021.740165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Fear learning and memory are crucial for animal survival. Abnormal fear memory is a hallmark of many neuropsychiatric disorders. Appropriate neuronal activation and excitability in the basolateral amygdala (BLA) are necessary for the formation of fear memory. The gene cylindromatosis (Cyld), which encodes a lysine-63 deubiquitinase, is expressed in several brain regions including the amygdala. The functions of the cylindromatosis protein (CYLD) in the regulation of the neuronal activity, neural circuits and fear memory, remain largely unknown, however. Here, we report that Cyld knockout impairs amygdala-dependent tone-cued fear memory. The number of c-Fos+ neurons responding to the tone-cued fear test was reduced in the BLA of Cyld–/– mice, suggesting that the absence of CYLD causes aberrant neuronal activation. We found that this aberrant neuronal activation in the BLA of Cyld–/– mice may relate to the decreased excitability of principal neurons. Another possibility of aberrant neuronal activation could be the impaired excitatory synaptic transmission in the BLA of Cyld–/– mice. Specifically, both the frequency of spontaneous excitatory postsynaptic currents and the amplitude of miniature excitatory postsynaptic currents in BLA principal neurons were decreased. In addition, Cyld mutation caused an increase in both the frequency of miniature inhibitory postsynaptic currents in principal neurons and the number of parvalbumin+ interneurons, consistent with excessive local circuit inhibition in the BLA of Cyld–/– mice. Taken together, these results suggest that CYLD deficiency disrupts the neuronal activity and synaptic transmission in the BLA of mice which may contribute to the impaired fear memory observed in Cyld–/– mice.
Collapse
Affiliation(s)
- Hui-Dong Li
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Dan-Ni Li
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, China.,South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| |
Collapse
|