1
|
Johnston R, Boulay C, Miller K, Sachs A. Mapping cognitive activity from electrocorticography field potentials in humans performing NBack task. Biomed Phys Eng Express 2024; 10:065029. [PMID: 39260393 DOI: 10.1088/2057-1976/ad795e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
Objective. Advancements in data science and assistive technologies have made invasive brain-computer interfaces (iBCIs) increasingly viable for enhancing the quality of life in physically disabled individuals. Intracortical microelectrode implants are a common choice for such a communication system due to their fine temporal and spatial resolution. The small size of these implants makes the implantation plan critical for the successful exfiltration of information, particularly when targeting representations of task goals that lack robust anatomical correlates.Approach. Working memory processes including encoding, retrieval, and maintenance are observed in many areas of the brain. Using human electrocorticography (ECoG) recordings during a working memory experiment, we provide proof that it is possible to localize cognitive activity associated with the task and to identify key locations involved with executive memory functions.Results.From the analysis, we could propose an optimal iBCI implant location with the desired features. The general approach is not limited to working memory but could also be used to map other goal-encoding factors such as movement intentions, decision-making, and visual-spatial attention.Significance. Deciphering the intended action of a BCI user is a complex challenge that involves the extraction and integration of cognitive factors such as movement planning, working memory, visual-spatial attention, and the decision state. Examining field potentials from ECoG electrodes while participants engaged in tailored cognitive tasks can pinpoint location with valuable information related to anticipated actions. This manuscript demonstrates the feasibility of identifying electrodes involved in cognitive activity related to working memory during user engagement in the NBack task. Devoting time in meticulous preparation to identify the optimal brain regions for BCI implant locations will increase the likelihood of rich signal outcomes, thereby improving the overall BCI user experience.
Collapse
Affiliation(s)
- Renée Johnston
- Ottawa Hospital Research Institute, 725 Parkdale Ave., Ottawa, ON, Canada
| | - Chadwick Boulay
- Ottawa Hospital Research Institute, 725 Parkdale Ave., Ottawa, ON, Canada
| | - Kai Miller
- Department of Neurologic Surgery, Mayo Clinic, 200 First St. Rochester, MN, 55902, United States of America
| | - Adam Sachs
- Ottawa Hospital Research Institute, 725 Parkdale Ave., Ottawa, ON, Canada
- Division of Neurosurgery, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
2
|
Li CY, Chang WC, Chen MH, Tu PC, Chen TL, Chen CC, Chang YT, Chen YY, Bai YM. Correlation of Disease Severity, Proinflammatory Cytokines, and Reduced Brain Gray Matter Volumes in Patients with Atopic Dermatitis. Dermatitis 2024; 35:489-497. [PMID: 38634841 DOI: 10.1089/derm.2023.0340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Background: Atopic dermatitis (AD) is a chronic inflammatory skin disease. However, few studies have investigated brain changes associated with chronic inflammation. We hypothesized that chronic inflammation might be related to brain structural alterations in patients with AD. Objectives: To investigate the association between disease severity (Eczema Area and Severity Index [EASI]), proinflammatory cytokines, and differences in brain gray matter (GM) volume in patients with AD. Methods: Nineteen patients with AD and 19 age- and sex-matched healthy subjects were enrolled. All participants underwent clinical assessment and brain magnetic resonance imaging. Voxel-based morphometry was performed to analyze GM volume differences. Results: Patients with AD exhibited significantly decreased GM volume in many brain regions, such as bilateral precentral gyrus, right frontal pole, and right middle temporal gyrus (P < 0.001), compared with healthy subjects. Notably, in patients with AD, the GM volume in right middle temporal gyrus was negatively associated with both EASI score and proinflammatory cytokines (sIL-2R [soluble interleukin 2 receptor] and TNF-α receptor-1), whereas the GM volume in left precentral gyrus was negatively associated with both EASI score and proinflammatory cytokines (sIL-2R and CRP). Conclusion: Patients with AD demonstrated significant brain GM volume reduction in many brain regions, which is related to disease severity and proinflammatory cytokines.
Collapse
Affiliation(s)
- Cheng-Yuan Li
- From the Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Dermatology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wan-Chen Chang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Mu-Hong Chen
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Chi Tu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Philosophy of Mind and Cognition, National Yang-Ming University, Taipei, Taiwan
| | - Tai-Li Chen
- From the Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Dermatology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Chiang Chen
- From the Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Dermatology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yun-Ting Chang
- From the Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Dermatology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ya-Mei Bai
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
3
|
Castellucci GA, Kovach CK, Tabasi F, Christianson D, Greenlee JDW, Long MA. Stimulation of caudal inferior and middle frontal gyri disrupts planning during spoken interaction. Curr Biol 2024; 34:2719-2727.e5. [PMID: 38823382 PMCID: PMC11187660 DOI: 10.1016/j.cub.2024.04.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/06/2024] [Accepted: 04/30/2024] [Indexed: 06/03/2024]
Abstract
Turn-taking is a central feature of conversation across languages and cultures.1,2,3,4 This key social behavior requires numerous sensorimotor and cognitive operations1,5,6 that can be organized into three general phases: comprehension of a partner's turn, preparation of a speaker's own turn, and execution of that turn. Using intracranial electrocorticography, we recently demonstrated that neural activity related to these phases is functionally distinct during turn-taking.7 In particular, networks active during the perceptual and articulatory stages of turn-taking consisted of structures known to be important for speech-related sensory and motor processing,8,9,10,11,12,13,14,15,16,17 while putative planning dynamics were most regularly observed in the caudal inferior frontal gyrus (cIFG) and the middle frontal gyrus (cMFG). To test if these structures are necessary for planning during spoken interaction, we used direct electrical stimulation (DES) to transiently perturb cortical function in neurosurgical patient-volunteers performing a question-answer task.7,18,19 We found that stimulating the cIFG and cMFG led to various response errors9,13,20,21 but not gross articulatory deficits, which instead resulted from DES of structures involved in motor control8,13,20,22 (e.g., the precentral gyrus). Furthermore, perturbation of the cIFG and cMFG delayed inter-speaker timing-consistent with slowed planning-while faster responses could result from stimulation of sites located in other areas. Taken together, our findings suggest that the cIFG and cMFG contain critical preparatory circuits that are relevant for interactive language use.
Collapse
Affiliation(s)
- Gregg A Castellucci
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Christopher K Kovach
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Farhad Tabasi
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - David Christianson
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Jeremy D W Greenlee
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, Iowa City, IA 52242, USA
| | - Michael A Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
4
|
Li J, Shan Y, Zhao X, Shan G, Wei PH, Liu L, Wang C, Wu H, Song W, Tang Y, Zhao GG, Lu J. Structural and functional changes in the brain after chronic complete thoracic spinal cord injury. Brain Res 2024; 1823:148680. [PMID: 37977412 DOI: 10.1016/j.brainres.2023.148680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
This study aimed to investigate whether brain anatomical structures and functional network connectivity are altered after chronic complete thoracic spinal cord injury (cctSCI) and to determine how these changes impact clinical outcomes. Structural and resting-state functional MRI was performed for 19 cctSCI patients (18 for final statistics) and 19 healthy controls. Voxel-based morphometry (VBM) was used to assess gray matter volume (GMV) with differences between cctSCI patients and controls. VBM results were used as seeds for whole-brain functional connectivity (FC) analysis. The relationship between brain changes and clinical variables was investigated. Compared with those of the control group, the left triangular inferior frontal gyrus, middle frontal gyrus, orbital inferior frontal gyrus, precuneus and parietal superior gyrus volumes of SCI patients decreased, while the left superior frontal gyrus and supplementary motor area volumes increased. Additionally, when the regions with increased GMV were used as seeds, the FC of the parahippocampus and thalamus increased. Subsequent partial correlation analysis showed a positive correlation between FC and total sensorimotor score based on the ASIA criteria (p = 0.001, r = 0.746). Overall, the structural and functional changes in the brain after cctSCI occurred in some visual and cognitive areas and sensory or motor control areas. These findings aid in improving our understanding of the underlying brain injury mechanisms and the subsequent structural and functional reorganization to reveal potential therapeutic targets and track treatment outcomes.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China
| | - Yi Shan
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China
| | - Xiaojing Zhao
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China
| | - Guixiang Shan
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Peng-Hu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lin Liu
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Changming Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hang Wu
- Department of Medical Engineering, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Weiqun Song
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yi Tang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Guo-Guang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Clinical Research Center for Epilepsy Capital Medical University, Beijing 100053, China; Beijing Municipal Geriatric Medical Research Center, Beijing 100053, China.
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China.
| |
Collapse
|
5
|
Wang Y, Zhao Q, Ji Q, Jin X, Zhou C, Lu Y. fMRI evidence of movement familiarization effects on recognition memory in professional dancers. Cereb Cortex 2024; 34:bhad490. [PMID: 38102949 DOI: 10.1093/cercor/bhad490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Dual-process theories propose that recognition memory involves recollection and familiarity; however, the impact of motor expertise on memory recognition, especially the interplay between familiarity and recollection, is relatively unexplored. This functional magnetic resonance imaging study used videos of a dancer performing International Latin Dance Styles as stimuli to investigate memory recognition in professional dancers and matched controls. Participants observed and then reported whether they recognized dance actions, recording the level of confidence in their recollections, whereas blood-oxygen-level-dependent signals measured encoding and recognition processes. Professional dancers showed higher accuracy and hit rates for high-confidence judgments, whereas matched controls exhibited the opposite trend for low-confidence judgments. The right putamen and precentral gyrus showed group-based moderation effects, especially for high-confidence (vs. low-confidence) action recognition in professional dancers. During action recognition, the right superior temporal gyrus and insula showed increased activation for accurate recognition and high-confidence retrieval, particularly in matched controls. These findings highlighting enhanced action memory of professional dancers-evident in their heightened recognition confidence-not only supports the dual-processing model but also underscores the crucial role of expertise-driven familiarity in bolstering successful recollection. Additionally, they emphasize the involvement of the action observation network and frontal brain regions in facilitating detailed encoding linked to intention processing.
Collapse
Affiliation(s)
- Yingying Wang
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China
- Key Laboratory of Motor Cognitive Assessment and Regulation, Shanghai University of Sport, Shanghai 200438, China
| | - Qi Zhao
- Physical Education Institute, Jimei University, Shanghai 200438, China
| | - Qingchun Ji
- Department of Physical Education, Shanghai University of Engineering Science, Shanghai 201620, China
- Sports Economic Management Research Center, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xinhong Jin
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China
- Key Laboratory of Motor Cognitive Assessment and Regulation, Shanghai University of Sport, Shanghai 200438, China
| | - Chenglin Zhou
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China
- Key Laboratory of Motor Cognitive Assessment and Regulation, Shanghai University of Sport, Shanghai 200438, China
| | - Yingzhi Lu
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China
- Key Laboratory of Motor Cognitive Assessment and Regulation, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
6
|
Castellucci GA, Kovach CK, Tabasi F, Christianson D, Greenlee JD, Long MA. A frontal cortical network is critical for language planning during spoken interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.26.554639. [PMID: 37693383 PMCID: PMC10491113 DOI: 10.1101/2023.08.26.554639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Many brain areas exhibit activity correlated with language planning, but the impact of these dynamics on spoken interaction remains unclear. Here we use direct electrical stimulation to transiently perturb cortical function in neurosurgical patient-volunteers performing a question-answer task. Stimulating structures involved in speech motor function evoked diverse articulatory deficits, while perturbations of caudal inferior and middle frontal gyri - which exhibit preparatory activity during conversational turn-taking - led to response errors. Perturbation of the same planning-related frontal regions slowed inter-speaker timing, while faster responses could result from stimulation of sites located in other areas. Taken together, these findings further indicate that caudal inferior and middle frontal gyri constitute a critical planning network essential for interactive language use.
Collapse
|
7
|
Na X, Glasier CM, Andres A, Bellando J, Chen H, Gao W, Livingston LW, Badger TM, Ou X. Associations between mother's depressive symptoms during pregnancy and newborn's brain functional connectivity. Cereb Cortex 2023; 33:8980-8989. [PMID: 37218652 PMCID: PMC10350841 DOI: 10.1093/cercor/bhad176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Depression during pregnancy is common and the prevalence further increased during the COVID pandemic. Recent findings have shown potential impact of antenatal depression on children's neurodevelopment and behavior, but the underlying mechanisms are unclear. Nor is it clear whether mild depressive symptoms among pregnant women would impact the developing brain. In this study, 40 healthy pregnant women had their depressive symptoms evaluated by the Beck Depression Inventory-II at ~12, ~24, and ~36 weeks of pregnancy, and their healthy full-term newborns underwent a brain MRI without sedation including resting-state fMRI for evaluation of functional connectivity development. The relationships between functional connectivities and maternal Beck Depression Inventory-II scores were evaluated by Spearman's rank partial correlation tests using appropriate multiple comparison correction with newborn's gender and gestational age at birth controlled. Significant negative correlations were identified between neonatal brain functional connectivity and mother's Beck Depression Inventory-II scores in the third trimester, but not in the first or second trimester. Higher depressive symptoms during the third trimester of pregnancy were associated with lower neonatal brain functional connectivity in the frontal lobe and between frontal/temporal lobe and occipital lobe, indicating a potential impact of maternal depressive symptoms on offspring brain development, even in the absence of clinical depression.
Collapse
Affiliation(s)
- Xiaoxu Na
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Charles M Glasier
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Aline Andres
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
- Arkansas Children’s Nutrition Center, Little Rock 72202, AR, United States
- Arkansas Children’s Research Institute, Little Rock 72202, AR, United States
| | - Jayne Bellando
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Haitao Chen
- Department of Biomedical Sciences and Imaging, Cedars Sinai Medical Center, Los Angeles, CA 90048, United States
- Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, United States
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Wei Gao
- Department of Biomedical Sciences and Imaging, Cedars Sinai Medical Center, Los Angeles, CA 90048, United States
- Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Luke W Livingston
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Thomas M Badger
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
- Arkansas Children’s Nutrition Center, Little Rock 72202, AR, United States
- Arkansas Children’s Research Institute, Little Rock 72202, AR, United States
| | - Xiawei Ou
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
- Arkansas Children’s Nutrition Center, Little Rock 72202, AR, United States
- Arkansas Children’s Research Institute, Little Rock 72202, AR, United States
| |
Collapse
|
8
|
Olszewska AM, Droździel D, Gaca M, Kulesza A, Obrębski W, Kowalewski J, Widlarz A, Marchewka A, Herman AM. Unlocking the musical brain: A proof-of-concept study on playing the piano in MRI scanner with naturalistic stimuli. Heliyon 2023; 9:e17877. [PMID: 37501960 PMCID: PMC10368778 DOI: 10.1016/j.heliyon.2023.e17877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Music is a universal human phenomenon, and can be studied for itself or as a window into the understanding of the brain. Few neuroimaging studies investigate actual playing in the MRI scanner, likely because of the lack of available experimental hardware and analysis tools. Here, we offer an innovative paradigm that addresses this issue in neuromusicology using naturalistic, polyphonic musical stimuli, presents a commercially available MRI-compatible piano, and a flexible approach to quantify participant's performance. We show how making errors while playing can be investigated using an altered auditory feedback paradigm. In the spirit of open science, we make our experimental paradigms and analysis tools available to other researchers studying pianists in MRI. Altogether, we present a proof-of-concept study which shows the feasibility of playing the novel piano in MRI, and a step towards using more naturalistic stimuli.
Collapse
Affiliation(s)
- Alicja M. Olszewska
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Dawid Droździel
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Maciej Gaca
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Agnieszka Kulesza
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Wojciech Obrębski
- Department of Nuclear and Medical Electronics, Faculty of Electronics and Information Technology, Warsaw University of Technology, 1 Politechniki Square, 00-661 Warsaw, Poland
- 10 Murarska Street, 08-110 Siedlce, Poland
| | | | - Agnieszka Widlarz
- Chair of Rhythmics and Piano Improvisation, Department of Choir Conducting and Singing, Music Education and Rhythmics, The Chopin University of Music, Okolnik 2 Street, 00–368 Warsaw, Poland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Aleksandra M. Herman
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| |
Collapse
|
9
|
Li D, Mao M, Zhang X, Hou D, Zhang S, Hao J, Cui X, Niu Y, Xiang J, Wang B. Gender effects on the controllability of hemispheric white matter networks. Cereb Cortex 2023; 33:1643-1658. [PMID: 35483707 DOI: 10.1093/cercor/bhac162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Male and female adults exhibited significant group differences in brain white matter (WM) asymmetry and WM network controllability. However, gender differences in controllability of hemispheric WM networks between males and females remain to be determined. Based on 1 principal atlas and 1 replication atlas, this work characterized the average controllability (AC) and modal controllability (MC) of hemispheric WM network based on 1 principal dataset and 2 replication datasets. All results showed that males had higher AC of left hemispheric networks than females. And significant hemispheric asymmetry was revealed in regional AC and MC. Furthermore, significant gender differences in the AC asymmetry were mainly found in regions lie in the frontoparietal network, and the MC asymmetry was found in regions involving auditory and emotion process. Finally, we found significant associations between regional controllability and cognitive features. Taken together, this work could provide a novel perspective for understanding gender differences in hemispheric WM asymmetry and cognitive function between males and females.
Collapse
Affiliation(s)
- Dandan Li
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| | - Min Mao
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| | - Xi Zhang
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| | - Dianni Hou
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| | - Shanshan Zhang
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| | - Jiangping Hao
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| | - Xiaohong Cui
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| | - Yan Niu
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| | - Jie Xiang
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| | - Bin Wang
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| |
Collapse
|
10
|
Structural brain abnormalities in schizophrenia patients with a history and presence of auditory verbal hallucination. Transl Psychiatry 2022; 12:511. [PMID: 36543775 PMCID: PMC9772175 DOI: 10.1038/s41398-022-02282-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Although many studies have demonstrated structural brain abnormalities associated with auditory verbal hallucinations (AVH) in schizophrenia, the results remain inconsistent because of the small sample sizes and the reliability of clinical interviews. We compared brain morphometries in 204 participants, including 58 schizophrenia patients with a history of AVH (AVH + ), 29 without a history of AVH (AVH-), and 117 healthy controls (HCs) based on a detailed inspection of medical records. We further divided the AVH+ group into 37 patients with and 21 patients without hallucinations at the time of the MRI scans (AVH++ and AVH+-, respectively) via clinical interviews to explore the morphological differences according to the persistence of AVH. The AVH + group had a smaller surface area in the left caudal middle frontal gyrus (F = 7.28, FDR-corrected p = 0.0008) and precentral gyrus (F = 7.68, FDR-corrected p = 0.0006) compared to the AVH- group. The AVH+ patients had a smaller surface area in the left insula (F = 7.06, FDR-corrected p = 0.001) and a smaller subcortical volume in the bilateral hippocampus (right: F = 13.34, FDR-corrected p = 0.00003; left: F = 6.80, FDR-corrected p = 0.001) compared to the HC group. Of these significantly altered areas, the AVH++ group showed significantly smaller bilateral hippocampal volumes compared to the AVH+- group, and a smaller surface area in the left precentral gyrus and caudal middle frontal gyrus compared to the AVH- group. Our findings highlighted the distinct pattern of structural alteration between the history and presence of AVH in schizophrenia, and the importance of integrating multiple criteria to elucidate the neuroanatomical mechanisms.
Collapse
|
11
|
Chaudhary U, Vlachos I, Zimmermann JB, Espinosa A, Tonin A, Jaramillo-Gonzalez A, Khalili-Ardali M, Topka H, Lehmberg J, Friehs GM, Woodtli A, Donoghue JP, Birbaumer N. Spelling interface using intracortical signals in a completely locked-in patient enabled via auditory neurofeedback training. Nat Commun 2022; 13:1236. [PMID: 35318316 PMCID: PMC8941070 DOI: 10.1038/s41467-022-28859-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/11/2022] [Indexed: 12/14/2022] Open
Abstract
Patients with amyotrophic lateral sclerosis (ALS) can lose all muscle-based routes of communication as motor neuron degeneration progresses, and ultimately, they may be left without any means of communication. While others have evaluated communication in people with remaining muscle control, to the best of our knowledge, it is not known whether neural-based communication remains possible in a completely locked-in state. Here, we implanted two 64 microelectrode arrays in the supplementary and primary motor cortex of a patient in a completely locked-in state with ALS. The patient modulated neural firing rates based on auditory feedback and he used this strategy to select letters one at a time to form words and phrases to communicate his needs and experiences. This case study provides evidence that brain-based volitional communication is possible even in a completely locked-in state.
Collapse
Affiliation(s)
| | - Ioannis Vlachos
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | | | - Arnau Espinosa
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - Alessandro Tonin
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland.,Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Andres Jaramillo-Gonzalez
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Majid Khalili-Ardali
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Helge Topka
- Department of Neurology, Clinical Neurophysiology, Cognitive Neurology and Stroke Unit, München Klinik Bogenhausen, Munich, Germany
| | - Jens Lehmberg
- Department of Neurosurgery, München Klinik Bogenhausen, Munich, Germany
| | | | - Alain Woodtli
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - John P Donoghue
- Carney Brain Institute, Brown University, Providence, RI, USA
| | - Niels Birbaumer
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
12
|
Castellucci GA, Kovach CK, Howard MA, Greenlee JDW, Long MA. A speech planning network for interactive language use. Nature 2022; 602:117-122. [PMID: 34987226 PMCID: PMC9990513 DOI: 10.1038/s41586-021-04270-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/19/2021] [Indexed: 11/09/2022]
Abstract
During conversation, people take turns speaking by rapidly responding to their partners while simultaneously avoiding interruption1,2. Such interactions display a remarkable degree of coordination, as gaps between turns are typically about 200 milliseconds3-approximately the duration of an eyeblink4. These latencies are considerably shorter than those observed in simple word-production tasks, which indicates that speakers often plan their responses while listening to their partners2. Although a distributed network of brain regions has been implicated in speech planning5-9, the neural dynamics underlying the specific preparatory processes that enable rapid turn-taking are poorly understood. Here we use intracranial electrocorticography to precisely measure neural activity as participants perform interactive tasks, and we observe a functionally and anatomically distinct class of planning-related cortical dynamics. We localize these responses to a frontotemporal circuit centred on the language-critical caudal inferior frontal cortex10 (Broca's region) and the caudal middle frontal gyrus-a region not normally implicated in speech planning11-13. Using a series of motor tasks, we then show that this planning network is more active when preparing speech as opposed to non-linguistic actions. Finally, we delineate planning-related circuitry during natural conversation that is nearly identical to the network mapped with our interactive tasks, and we find this circuit to be most active before participant speech during unconstrained turn-taking. Therefore, we have identified a speech planning network that is central to natural language generation during social interaction.
Collapse
Affiliation(s)
- Gregg A Castellucci
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | | | - Matthew A Howard
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | | | - Michael A Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
13
|
Abstract
The impaired brain is often difficult to restore, owing to our limited knowledge of the complex nervous system. Accumulating knowledge in systems neuroscience, combined with the development of innovative technologies, may enable brain restoration in patients with nervous system disorders that are currently untreatable. The Neuroprosthetics in Systems Neuroscience and Medicine Collection provides a platform for interdisciplinary research in neuroprosthetics.
Collapse
Affiliation(s)
- Kenji Kansaku
- Department of Physiology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan. .,Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo, Japan.
| |
Collapse
|