1
|
Zhang S, Chen R, Kong D, Chen Y, Liu W, Jiang D, Zhao W, Chang C, Yang Y, Liu Y, Wei D. Photovoltaic nanocells for high-performance large-scale-integrated organic phototransistors. NATURE NANOTECHNOLOGY 2024; 19:1323-1332. [PMID: 38965348 DOI: 10.1038/s41565-024-01707-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
A high-performance large-scale-integrated organic phototransistor needs a semiconductor layer that maintains its photoelectric conversion ability well during high-resolution pixelization. However, lacking a precise design for the nanoscale structure, a trade-off between photoelectric performance and device miniaturization greatly limits the success in commercial application. Here we demonstrate a photovoltaic-nanocell enhancement strategy, which overcomes the trade-off and enables high-performance organic phototransistors at a level beyond large-scale integration. Embedding a core-shell photovoltaic nanocell based on perovskite quantum dots in a photocrosslinkable organic semiconductor, ultralarge-scale-integrated (>221 units) imaging chips are manufactured using photolithography. 27 million pixels are interconnected and the pixel density is 3.1 × 106 units cm-2, at least two orders of magnitude higher than in existing organic imaging chips and equivalent to the latest commercial full-frame complementary metal-oxide-semiconductor camera chips. The embedded photovoltaic nanocells induce an in situ photogating modulation and enable photoresponsivity and detectivity of 6.8 × 106 A W-1 and 1.1 × 1013 Jones (at 1 Hz), respectively, achieving the highest values of organic imaging chips at large-scale or higher integration. In addition, a very-large-scale-integrated (>216 units) stretchable biomimetic retina based on photovoltaic nanocells is manufactured for neuromorphic imaging recognition with not only resolution but also photoresponsivity and power consumption approaching those of the biological counterpart.
Collapse
Affiliation(s)
- Shen Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Renzhong Chen
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Yiheng Chen
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Wentao Liu
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Dingding Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Weiyu Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Cheng Chang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Yingguo Yang
- School of Microelectronics, Fudan University, Shanghai, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
- Institute of Chemistry, Chinese Academy of Science, Beijing, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China.
- Department of Macromolecular Science, Fudan University, Shanghai, China.
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Tsuruoka T, Terabe K. Solid polymer electrolyte-based atomic switches: from materials to mechanisms and applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2342772. [PMID: 38766515 PMCID: PMC11100443 DOI: 10.1080/14686996.2024.2342772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024]
Abstract
As miniaturization of semiconductor memory devices is reaching its physical and technological limits, there is a demand for memory technologies that operate on new principles. Atomic switches are nanoionic devices that show repeatable resistive switching between high-resistance and low-resistance states under bias voltage applications, based on the transport of metal ions and redox reactions in solids. Their essential structure consists of an ion conductor sandwiched between electrochemically active and inert electrodes. This review focuses on the resistive switching mechanism of atomic switches that utilize a solid polymer electrolyte (SPE) as the ion conductor. Owing to the superior properties of polymer materials such as mechanical flexibility, compatibility with various substrates, and low fabrication costs, SPE-based atomic switches are a promising candidate for the next-generation of volatile and nonvolatile memories. Herein, we describe their operating mechanisms and key factors for controlling the device performance with different polymer matrices. In particular, the effects of moisture absorption in the polymer matrix on the resistive switching behavior are addressed in detail. As potential applications, atomic switches with inkjet-printed SPE and quantum conductance behavior are described. SPE-based atomic switches also have great potential in use for neuromorphic devices. The development of these devices will be enhanced using nanoarchitectonics concepts, which integrate functional materials and devices.
Collapse
Affiliation(s)
- Tohru Tsuruoka
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Kazuya Terabe
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
| |
Collapse
|
3
|
Luponosov YN, Solodukhin AN, Aseyev NA, Rokitskaya TI, Kolotova DE, Kotova EA, Kurkin TS, Poletavkina LA, Isaeva YA, Antonenko YN, Balaban PM, Ponomarenko SA. Nanoparticles of Push-Pull Triphenylamine-Based Molecules for Light-Controlled Stimulation of Neuronal Activity. ACS Biomater Sci Eng 2024; 10:1139-1152. [PMID: 38241460 DOI: 10.1021/acsbiomaterials.3c01562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Organic semiconductor materials with a unique set of properties are very attractive for interfacing biological objects and can be used for noninvasive therapy or detection of biological signals. Here, we describe the synthesis and investigation of a novel series of organic push-pull conjugated molecules with the star-shaped architecture, consisting of triphenylamine as a branching electron donor core linked through the thiophene π-spacer to electron-withdrawing alkyl-dicyanovinyl groups. The molecules could form stable aqueous dispersions of nanoparticles (NPs) without the addition of any surfactants or amphiphilic polymer matrixes with the average size distribution varying from 40 to 120 nm and absorption spectra very similar to those of human eye retina pigments such as rods and green cones. Variation of the terminal alkyl chain length of the molecules forming NPs from 1 to 12 carbon atoms was found to be an efficient tool to modulate their lipophilic and biological properties. Possibilities of using the NPs as light nanoactuators in biological systems or as artificial pigments for therapy of degenerative retinal diseases were studied both on the model planar bilayer lipid membranes and on the rat cortical neurons. In the planar bilayer system, the photodynamic activity of these NPs led to photoinactivation of ion channels formed by pentadecapeptide gramicidin A. Treatment of rat cortical neurons with the NPs caused depolarization of cell membranes upon light irradiation, which could also be due to the photodynamic activity of the NPs. The results of the work gave more insight into the mechanisms of light-controlled stimulation of neuronal activity and for the first time showed that fine-tuning of the lipophilic affinity of NPs based on organic conjugated molecules is of high importance for creating a bioelectronic interface for biomedical applications.
Collapse
Affiliation(s)
- Yuriy N Luponosov
- Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya st. 70, Moscow 117393, Russia
| | - Alexander N Solodukhin
- Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya st. 70, Moscow 117393, Russia
| | - Nikolay A Aseyev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Darya E Kolotova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Tikhon S Kurkin
- Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya st. 70, Moscow 117393, Russia
| | - Liya A Poletavkina
- Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya st. 70, Moscow 117393, Russia
| | - Yulia A Isaeva
- Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya st. 70, Moscow 117393, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Sergey A Ponomarenko
- Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya st. 70, Moscow 117393, Russia
| |
Collapse
|
4
|
Kaya L, Karatum O, Balamur R, Kaleli HN, Önal A, Vanalakar SA, Hasanreisoğlu M, Nizamoglu S. MnO 2 Nanoflower Integrated Optoelectronic Biointerfaces for Photostimulation of Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301854. [PMID: 37386797 PMCID: PMC10477844 DOI: 10.1002/advs.202301854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Indexed: 07/01/2023]
Abstract
Optoelectronic biointerfaces have gained significant interest for wireless and electrical control of neurons. Three-dimentional (3D) pseudocapacitive nanomaterials with large surface areas and interconnected porous structures have great potential for optoelectronic biointerfaces that can fulfill the requirement of high electrode-electrolyte capacitance to effectively transduce light into stimulating ionic currents. In this study, the integration of 3D manganese dioxide (MnO2 ) nanoflowers into flexible optoelectronic biointerfaces for safe and efficient photostimulation of neurons is demonstrated. MnO2 nanoflowers are grown via chemical bath deposition on the return electrode, which has a MnO2 seed layer deposited via cyclic voltammetry. They facilitate a high interfacial capacitance (larger than 10 mF cm-2 ) and photogenerated charge density (over 20 µC cm-2 ) under low light intensity (1 mW mm-2 ). MnO2 nanoflowers induce safe capacitive currents with reversible Faradaic reactions and do not cause any toxicity on hippocampal neurons in vitro, making them a promising material for biointerfacing with electrogenic cells. Patch-clamp electrophysiology is recorded in the whole-cell configuration of hippocampal neurons, and the optoelectronic biointerfaces trigger repetitive and rapid firing of action potentials in response to light pulse trains. This study points out the potential of electrochemically-deposited 3D pseudocapacitive nanomaterials as a robust building block for optoelectronic control of neurons.
Collapse
Affiliation(s)
- Lokman Kaya
- Department of Electrical and Electronics EngineeringKoc University34450IstanbulTurkey
| | - Onuralp Karatum
- Department of Electrical and Electronics EngineeringKoc University34450IstanbulTurkey
| | - Rıdvan Balamur
- Department of Electrical and Electronics EngineeringKoc University34450IstanbulTurkey
| | - Hümeyra Nur Kaleli
- Research Center for Translational MedicineKoc University34450IstanbulTurkey
| | - Asım Önal
- Department of Biomedical Science and EngineeringKoc University34450IstanbulTurkey
| | | | - Murat Hasanreisoğlu
- Research Center for Translational MedicineKoc University34450IstanbulTurkey
- Department of OphthalmologySchool of MedicineKoc University34450IstanbulTurkey
| | - Sedat Nizamoglu
- Department of Electrical and Electronics EngineeringKoc University34450IstanbulTurkey
- Department of Biomedical Science and EngineeringKoc University34450IstanbulTurkey
| |
Collapse
|
5
|
Seddiki I, N’Diaye BI, Skene WG. Survey of Recent Advances in Molecular Fluorophores, Unconjugated Polymers, and Emerging Functional Materials Designed for Electrofluorochromic Use. Molecules 2023; 28:molecules28073225. [PMID: 37049988 PMCID: PMC10096808 DOI: 10.3390/molecules28073225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 04/08/2023] Open
Abstract
In this review, recent advances that exploit the intrinsic emission of organic materials for reversibly modulating their intensity with applied potential are surveyed. Key design strategies that have been adopted during the past five years for developing such electrofluorochromic materials are presented, focusing on molecular fluorophores that are coupled with redox-active moieties, intrinsically electroactive molecular fluorophores, and unconjugated emissive organic polymers. The structural effects, main challenges, and strides toward addressing the limitations of emerging fluorescent materials that are electrochemically responsive are surveyed, along with how these can be adapted for their use in electrofluorochromic devices.
Collapse
Affiliation(s)
- Ilies Seddiki
- Laboratoire de Caractérisation Photophysique des Matériaux Conjugués Département de Chimie, Campus MIL, Université de Montréal, CP 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada
| | - Brelotte Idriss N’Diaye
- Laboratoire de Caractérisation Photophysique des Matériaux Conjugués Département de Chimie, Campus MIL, Université de Montréal, CP 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada
| | - W. G. Skene
- Laboratoire de Caractérisation Photophysique des Matériaux Conjugués Département de Chimie, Campus MIL, Université de Montréal, CP 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
6
|
Ciocca M, Marcozzi S, Mariani P, Lacconi V, Di Carlo A, Cinà L, Rosato-Siri MD, Zanon A, Cattelan G, Avancini E, Lugli P, Priya S, Camaioni A, Brown TM. A Polymer Bio–Photoelectrolytic Platform for Electrical Signal Measurement and for Light Modulation of Ion Fluxes and Proliferation in a Neuroblastoma Cell Line. ADVANCED NANOBIOMED RESEARCH 2023. [DOI: 10.1002/anbr.202200127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Manuela Ciocca
- Department of Electronic Engineering University of Rome Tor Vergata Via del Politecnico 1 00133 Rome Italy
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 1 39100 Bolzano Italy
| | - Serena Marcozzi
- Department of Biomedicine and Prevention University of Rome Tor Vergata Via Montpellier 1 00133 Rome Italy
| | - Paolo Mariani
- Department of Electronic Engineering University of Rome Tor Vergata Via del Politecnico 1 00133 Rome Italy
| | - Valentina Lacconi
- Department of Biomedicine and Prevention University of Rome Tor Vergata Via Montpellier 1 00133 Rome Italy
| | - Aldo Di Carlo
- Istituto di Struttura della Materia CNR-ISM via Fosso del Cavaliere 100 00133 Rome Italy
| | - Lucio Cinà
- Cicci Research srl., Via Giordania 227 58100 Grosseto Italy
| | - Marcelo D. Rosato-Siri
- Institute for Biomedicine, Eurac Research Affiliated Institute of the University of Lübeck 39100 Bolzano Italy
| | - Alessandra Zanon
- Institute for Biomedicine, Eurac Research Affiliated Institute of the University of Lübeck 39100 Bolzano Italy
| | - Giada Cattelan
- Institute for Biomedicine, Eurac Research Affiliated Institute of the University of Lübeck 39100 Bolzano Italy
| | - Enrico Avancini
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 1 39100 Bolzano Italy
| | - Paolo Lugli
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 1 39100 Bolzano Italy
| | - Shashank Priya
- Department of Materials Science and Engineering Pennsylvania State University University Park PA 16802 USA
| | - Antonella Camaioni
- Department of Biomedicine and Prevention University of Rome Tor Vergata Via Montpellier 1 00133 Rome Italy
| | - Thomas M. Brown
- Department of Electronic Engineering University of Rome Tor Vergata Via del Politecnico 1 00133 Rome Italy
| |
Collapse
|
7
|
Dagar J, Brown TM. Biological/metal oxide composite transport layers cast from green solvents for boosting light harvesting response of organic photovoltaic cells indoors. NANOTECHNOLOGY 2022; 33:405404. [PMID: 35700718 DOI: 10.1088/1361-6528/ac7883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Organic solar cells with biological/metal-oxide electron transport layers (ETLs), consisting of a ZnO compact layer covered by a thin DNA layer, both of which deposited with green solvents (water or water/alcohols mixtures) are presented for application under low intensity indoor lighting. Under white LED lamp (200, 400 lx), photovoltaic cells with P3HT:PC70BM polymer semiconductor blends delivered an average maximum power density (MPD) of 8.7μW cm-2, corresponding to a power conversion efficiency, PCE, of = 8.56% (PCE of best cell was 8.74%). The ZnO/DNA bilayer boosted efficiency by 68% and 13% in relative terms compared to cells made with DNA-only and ZnO-only ETLs at 400 lx. Photovoltaic cells with ZnO/DNA composite ETLs based on PTB7:PC70BM blends, that absorb a broader range of the indoor lighting spectrum, delivered MPDs of 16.2μW cm-2with an estimated average PCE of 14.3% (best cell efficiency of 15.8%) at 400 lx. The best efficiencies for cells fabricated on flexible plastic substrates were 11.9% at 400 lx. This is the first report in which polymer photovoltaics incorporating biological materials have shown to increment performance at these low light levels and work very efficiently under indoor artificial light illumination. The finding can be useful for the production of more bio-compatible photovoltaics as well as bio-sensing devices based on organic semiconductors.
Collapse
Affiliation(s)
- Janardan Dagar
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, I-00133 Rome, Italy
- Helmholtz-Zentrum Berlin, HySPRINT Innovation Lab, Kekuléstrasse 5, D-12489 Berlin, Germany
| | - Thomas M Brown
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, I-00133 Rome, Italy
| |
Collapse
|
8
|
Karatum O, Aria MM, Eren GO, Yildiz E, Melikov R, Srivastava SB, Surme S, Dogru IB, Bahmani Jalali H, Ulgut B, Sahin A, Kavakli IH, Nizamoglu S. Nanoengineering InP Quantum Dot-Based Photoactive Biointerfaces for Optical Control of Neurons. Front Neurosci 2021; 15:652608. [PMID: 34248476 PMCID: PMC8260855 DOI: 10.3389/fnins.2021.652608] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/21/2021] [Indexed: 11/15/2022] Open
Abstract
Light-activated biointerfaces provide a non-genetic route for effective control of neural activity. InP quantum dots (QDs) have a high potential for such biomedical applications due to their uniquely tunable electronic properties, photostability, toxic-heavy-metal-free content, heterostructuring, and solution-processing ability. However, the effect of QD nanostructure and biointerface architecture on the photoelectrical cellular interfacing remained unexplored. Here, we unravel the control of the photoelectrical response of InP QD-based biointerfaces via nanoengineering from QD to device-level. At QD level, thin ZnS shell growth (∼0.65 nm) enhances the current level of biointerfaces over an order of magnitude with respect to only InP core QDs. At device-level, band alignment engineering allows for the bidirectional photoelectrochemical current generation, which enables light-induced temporally precise and rapidly reversible action potential generation and hyperpolarization on primary hippocampal neurons. Our findings show that nanoengineering QD-based biointerfaces hold great promise for next-generation neurostimulation devices.
Collapse
Affiliation(s)
- Onuralp Karatum
- Department of Electrical and Electronics Engineering, Koc University, Istanbul, Turkey
| | | | - Guncem Ozgun Eren
- Department of Biomedical Science and Engineering, Koc University, Istanbul, Turkey
| | - Erdost Yildiz
- Research Center for Translational Medicine, Koc University, Istanbul, Turkey
| | - Rustamzhon Melikov
- Department of Electrical and Electronics Engineering, Koc University, Istanbul, Turkey
| | | | - Saliha Surme
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Itir Bakis Dogru
- Department of Biomedical Science and Engineering, Koc University, Istanbul, Turkey
| | | | - Burak Ulgut
- Department of Chemistry, Bilkent University, Ankara, Turkey
| | - Afsun Sahin
- Research Center for Translational Medicine, Koc University, Istanbul, Turkey
- Department of Ophthalmology, Medical School, Koc University, Istanbul, Turkey
| | | | - Sedat Nizamoglu
- Department of Electrical and Electronics Engineering, Koc University, Istanbul, Turkey
- Department of Biomedical Science and Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
9
|
Costa Angeli MA, Ciocca M, Petti L, Lugli P. Advances in printing technologies for soft robotics devices applications. Soft Robot 2021. [DOI: 10.1016/bs.ache.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|