1
|
Quek ZBR, Ng JY, Jain SS, Long JXS, Lim SC, Tun K, Huang D. Low genetic diversity and predation threaten a rediscovered marine sponge. Sci Rep 2022; 12:22499. [PMID: 36577798 PMCID: PMC9797562 DOI: 10.1038/s41598-022-26970-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Discovered in 1819 in the tropical waters off Singapore, the magnificent Neptune's cup sponge Cliona patera (Hardwicke, 1820) was harvested for museums and collectors until it was presumed extinct worldwide for over a century since 1907. Recently in 2011, seven living individuals were rediscovered in Singapore with six relocated to a marine protected area in an effort to better monitor and protect the population, as well as to enhance external fertilisation success. To determine genetic diversity within the population, we sequenced the complete mitochondrial genomes and nuclear ribosomal DNA of these six individuals and found extremely limited variability in their genes. The low genetic diversity of this rediscovered population is confirmed by comparisons with close relatives of C. patera and could compromise the population's ability to recover from environmental and anthropogenic pressures associated with the highly urbanised coastlines of Singapore. This lack of resilience is compounded by severe predation which has been shrinking sponge sizes by up to 5.6% every month. Recovery of this highly endangered population may require ex situ approaches and crossbreeding with other populations, which are also rare.
Collapse
Affiliation(s)
- Z. B. Randolph Quek
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Yale-NUS College, National University of Singapore, Singapore, Singapore
| | - Juat Ying Ng
- grid.4280.e0000 0001 2180 6431School of Design and Environment, National University of Singapore, Singapore, Singapore ,grid.467827.80000 0004 0620 8814National Biodiversity Centre, National Parks Board, Singapore, Singapore
| | - Sudhanshi S. Jain
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - J. X. Sean Long
- grid.462738.c0000 0000 9091 4551Republic Polytechnic, Singapore, Singapore
| | - Swee Cheng Lim
- grid.4280.e0000 0001 2180 6431Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
| | - Karenne Tun
- grid.467827.80000 0004 0620 8814National Biodiversity Centre, National Parks Board, Singapore, Singapore
| | - Danwei Huang
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Lee Kong Chian Natural History Museum, National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Centre for Nature-Based Climate Solutions, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Abstract
Covering: 2020This review covers the literature published in 2020 for marine natural products (MNPs), with 757 citations (747 for the period January to December 2020) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1407 in 420 papers for 2020), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. A meta analysis of bioactivity data relating to new MNPs reported over the last five years is also presented.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
3
|
Wu YC, Franzenburg S, Ribes M, Pita L. Wounding response in Porifera (sponges) activates ancestral signaling cascades involved in animal healing, regeneration, and cancer. Sci Rep 2022; 12:1307. [PMID: 35079031 PMCID: PMC8789774 DOI: 10.1038/s41598-022-05230-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022] Open
Abstract
Upon injury, the homeostatic balance that ensures tissue function is disrupted. Wound-induced signaling triggers the recovery of tissue integrity and offers a context to understand the molecular mechanisms for restoring tissue homeostasis upon disturbances. Marine sessile animals are particularly vulnerable to chronic wounds caused by grazers that can compromise prey's health. Yet, in comparison to other stressors like warming or acidification, we know little on how marine animals respond to grazing. Marine sponges (Phylum Porifera) are among the earliest-diverging animals and play key roles in the ecosystem; but they remain largely understudied. Here, we investigated the transcriptomic responses to injury caused by a specialist spongivorous opisthobranch (i.e., grazing treatment) or by clipping with a scalpel (i.e., mechanical damage treatment), in comparison to control sponges. We collected samples 3 h, 1 d, and 6 d post-treatment for differential gene expression analysis on RNA-seq data. Both grazing and mechanical damage activated a similar transcriptomic response, including a clotting-like cascade (e.g., with genes annotated as transglutaminases, metalloproteases, and integrins), calcium signaling, and Wnt and mitogen-activated protein kinase signaling pathways. Wound-induced gene expression signature in sponges resembles the initial steps of whole-body regeneration in other animals. Also, the set of genes responding to wounding in sponges included putative orthologs of cancer-related human genes. Further insights can be gained from taking sponge wound healing as an experimental system to understand how ancient genes and regulatory networks determine healthy animal tissues.
Collapse
Affiliation(s)
- Yu-Chen Wu
- Research Unit Marine Microbiology, Department Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- Christian-Albrechts University of Kiel, Kiel, Germany
| | - Soeren Franzenburg
- Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts University of Kiel, Kiel, Germany
| | - Marta Ribes
- Department Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Lucía Pita
- Research Unit Marine Microbiology, Department Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany.
- Department Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain.
| |
Collapse
|
4
|
Mohanty I, Tapadar S, Moore SG, Biggs JS, Freeman CJ, Gaul DA, Garg N, Agarwal V. Presence of Bromotyrosine Alkaloids in Marine Sponges Is Independent of Metabolomic and Microbiome Architectures. mSystems 2021; 6:e01387-20. [PMID: 33727403 PMCID: PMC8547014 DOI: 10.1128/msystems.01387-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
Marine sponge holobionts are prolific sources of natural products. One of the most geographically widespread classes of sponge-derived natural products is the bromotyrosine alkaloids. A distinguishing feature of bromotyrosine alkaloids is that they are present in phylogenetically disparate sponges. In this study, using sponge specimens collected from Guam, the Solomon Islands, the Florida Keys, and Puerto Rico, we queried whether the presence of bromotyrosine alkaloids potentiates metabolomic and microbiome conservation among geographically distant and phylogenetically different marine sponges. A multi-omic characterization of sponge holobionts revealed vastly different metabolomic and microbiome architectures among different bromotyrosine alkaloid-harboring sponges. However, we find statistically significant correlations between the microbiomes and metabolomes, signifying that the microbiome plays an important role in shaping the overall metabolome, even in low-microbial-abundance sponges. Molecules mined from the polar metabolomes of these sponges revealed conservation of biosynthetic logic between bromotyrosine alkaloids and brominated pyrrole-imidazole alkaloids, another class of marine sponge-derived natural products. In light of prior findings postulating the sponge host itself to be the biosynthetic source of bromotyrosine alkaloids, our data now set the stage for investigating the causal relationships that dictate the microbiome-metabolome interconnectedness for marine sponges in which the microbiome may not contribute to natural product biogenesis.IMPORTANCE Our work demonstrates that phylogenetically and geographically distant sponges with very different microbiomes can harbor natural product chemical classes that are united in their core chemical structures and biosynthetic logic. Furthermore, we show that independent of geographical dispersion, natural product chemistry, and microbial abundance, overall sponge metabolomes tightly correlate with their microbiomes.
Collapse
Affiliation(s)
- Ipsita Mohanty
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Subhasish Tapadar
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Samuel G Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jason S Biggs
- University of Guam Marine Laboratory, UOG Station, Mangilao, Guam
| | - Christopher J Freeman
- Department of Biology, College of Charleston, Charleston, South Carolina, USA
- Smithsonian Marine Station, Ft. Pierce, Florida, USA
| | - David A Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|