1
|
Laurindo LF, Takeda LN, Mendes Machado N, Otoboni AMMB, Goulart RDA, Catharin VCS, Silva LR, Barbalho SM, Direito R. Health benefits of acerola (Malpighia spp) and its by-products: A comprehensive review of nutrient-rich composition, pharmacological potential, and industrial applications. FOOD BIOSCI 2024; 62:105422. [DOI: 10.1016/j.fbio.2024.105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Skowron E, Trojak M, Pacak I. Effects of UV-B and UV-C Spectrum Supplementation on the Antioxidant Properties and Photosynthetic Activity of Lettuce Cultivars. Int J Mol Sci 2024; 25:9298. [PMID: 39273249 PMCID: PMC11394776 DOI: 10.3390/ijms25179298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Indoor farming systems enable plant production in precisely controlled environments. However, implementing stable growth conditions and the absence of stress stimulants can weaken plants' defense responses and limit the accumulation of bioactive, health-beneficial phytochemicals. A potential solution is the controlled application of stressors, such as supplemental ultraviolet (UV) light. To this end, we analyzed the efficiency of short-term pre-harvest supplementation of the red-green-blue (RGB, LED) spectrum with ultraviolet B (UV-B) or C (UV-C) light to boost phytochemical synthesis. Additionally, given the biological harm of UV radiation due to high-energy photons, we monitored plants' photosynthetic activity during treatment and their morphology as well as sensory attributes after the treatment. Our analyses showed that UV-B radiation did not negatively impact photosynthetic activity while significantly increasing the overall antioxidant potential of lettuce through enhanced levels of secondary metabolites (total phenolics, flavonoids, anthocyanins), carotenoids, and ascorbic acid. On the contrary, UV-C radiation-induced anthocyanin accumulation in the green leaf cultivar significantly harmed the photosynthetic apparatus and limited plant growth. Taken together, we showed that short-term UV-B light supplementation is an efficient method for lettuce biofortification with healthy phytochemicals, while UV-C treatment is not recommended due to the negative impact on the quality (morphology, sensory properties) of the obtained leafy products. These results are crucial for understanding the potential of UV light supplementation for producing functional plants.
Collapse
Affiliation(s)
- Ernest Skowron
- Department of Environmental Biology, Jan Kochanowski University of Kielce, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Magdalena Trojak
- Department of Environmental Biology, Jan Kochanowski University of Kielce, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Ilona Pacak
- Institute of Chemistry, Jan Kochanowski University of Kielce, Uniwersytecka 7, 25-406 Kielce, Poland
| |
Collapse
|
3
|
Liu Y, Yue J, Ren Z, He M, Wang A, Xie J, Li T, Liu G, He X, Ge S, Yuan Y, Yang L. Vitamin C enhances the sensitivity of osteosarcoma to arsenic trioxide via inhibiting aerobic glycolysis. Toxicol Appl Pharmacol 2024; 482:116798. [PMID: 38160894 DOI: 10.1016/j.taap.2023.116798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Osteosarcoma (OS) is a common malignant tumor disease in the department of orthopedics, which is prone to the age of adolescents and children under 20 years old. Arsenic trioxide (ATO), an ancient poison, has been reported to play a critical role in a variety of tumor treatments, including OS. However, due to certain poisonous side effects such as cardiotoxicity and hepatotoxicity, clinical application of ATO has been greatly limited. Here we report that low doses of ATO (1 μM) observably reduced the half-effective inhibitory concentration (IC50) of vitamin C on OS cells. Compared with the treatment alone, the synthetic application of vitamin C (VitC, 800 μM) and ATO (1 μM) significantly further inhibited the proliferation, migration, and invasion of OS cells and promoted cell apoptosis in vitro. Meanwhile, we observed that the combined application of VitC and ATO directly suppresses the aerobic glycolysis of OS cells with the decreased production of pyruvate, lactate, and ATP via inhibiting the expression of the critical glycolytic genes (PGK1, PGM1, and LDHA). Moreover, the combination of VitC (200 mg/kg) and ATO (1 mg/kg) with tail vein injection significantly delayed OS growth and migration of nude mice by inhibiting aerobic glycolysis of OS. Thus, our results demonstrate that VitC effectively increases the sensitivity of OS to low concentrations of ATO via inhibiting aerobic glycolysis to alleviate the toxic side effects of high doses of arsenic trioxide, suggesting that synthetic application of VitC and ATO is a promising approach for the clinical treatment of human OS.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jinrui Yue
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zijing Ren
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Mingyu He
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ao Wang
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiajie Xie
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tao Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Guoxin Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xuting He
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shiyu Ge
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ye Yuan
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China; National key laboratory of frigid cardiovascular disease, Harbin, China.
| | - Lei Yang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery of Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China; NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Handa AP, Vian A, Singh HP, Kohli RK, Kaur S, Batish DR. Effect of 2850 MHz electromagnetic field radiation on the early growth, antioxidant activity, and secondary metabolite profile of red and green cabbage (Brassica oleracea L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7465-7480. [PMID: 38159189 DOI: 10.1007/s11356-023-31434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
The proliferation of wireless and other telecommunications equipment brought about by technological advances in the communication industry has substantially increased the radiofrequency radiation levels in the environment. The emphasis is, therefore, placed on investigating the potential impacts of radiofrequency radiation on biota. In this work, the impact of 2850 MHz electromagnetic field radiation (EMF-r) on early development, photosynthetic pigments, and the metabolic profile of two Brassica oleracea L. cultivars (red and green cabbage) was studied. On a daily basis for seven days, seedlings were exposed to homogeneous EMF-r for one, two, and four hours, and observations were carried out at 0-h, 1-h, and 24-h following the final dose. Irrespective of the duration of harvest, exposure to EMF-r resulted in a dose-dependent reduction in both root (from 6.3 cm to 4.0 cm in red; 6.1 cm to 3.8 cm in green) and shoot lengths (from 5.3 cm to ⁓3.1 cm in red; 5.1 cm to 3.1 cm in green), as well as a decrease in biomass (from 2.9 mg to ⁓1.1 mg in red; 2.5 to 0.9 mg in green) of the seedlings when compared to control samples. Likewise, the chlorophyll (from 6.09 to ⁓4.94 mg g-1 d.wt in red; 7.37 to 6.05 mg g-1 d.wt. in green) and carotenoid (from 1.49 to 1.19 mg g-1 d.wt. in red; 1.14 to 0.51 mg g-1 d.wt. in green) contents of both cultivars decreased significantly when compared to the control. Additionally, the contents of phenolic (28.99‒45.52 mg GAE g-1 in red; 25.49‒33.76 mg GAE g-1 in green), flavonoid (21.7‒31.8 mg QE g-1 in red; 12.1‒19.0 mg QE g-1 in green), and anthocyanin (28.8‒43.6 mg per 100 g d.wt. in red; 1.1‒2.6 mg per 100 g d.wt. in green) in both red and green cabbage increased with exposure duration. EMF-r produced oxidative stress in the exposed samples of both cabbage cultivars, as demonstrated by dose-dependent increases in the total antioxidant activity (1.33‒2.58 mM AAE in red; 1.29‒2.22 mM AAE in green), DPPH activity (12.96‒78.33% in red; 9.62‒67.73% in green), H2O2 content (20.0‒77.15 nM g-1 f.wt. in red; 14.28‒64.29 nM g-1 f.wt. in green), and MDA content (0.20‒0.61 nM g-1 f.wt. in red; 0.18‒0.51 nM g-1 f.wt. in green) compared to their control counterparts. The activity of antioxidant enzymes, i.e., superoxide dismutases (3.83‒8.10 EU mg-1 protein in red; 4.19‒7.35 EU mg-1 protein in green), catalases (1.81‒7.44 EU mg-1 protein in red; 1.04‒6.24 EU mg-1 protein in green), and guaiacol peroxidases (14.37‒47.85 EU mg-1 protein in red; 12.30‒42.79 EU mg-1 protein in green), increased significantly compared to their control counterparts. The number of polyphenols in unexposed and EMF-r exposed samples of red cabbage was significantly different. The study concludes that exposure to 2850 MHz EMF-r affects the early development of cabbage seedlings, modifies their photosynthetic pigments, alters polyphenol content, and impairs their oxidative metabolism.
Collapse
Affiliation(s)
- Amrit Pal Handa
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Alain Vian
- IRHS, Université d'Angers, Agrocampus-Ouest, INRA, SFR 4207 QuaSaV, 49071, 13, Beaucouzé, France
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| | - Ravinder Kumar Kohli
- Amity University, Sector 82A, IT City, International Airport Road, Mohali, 140 306, India
| | - Shalinder Kaur
- Department of Botany, Panjab University, Chandigarh, 160 014, India.
| | - Daizy R Batish
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| |
Collapse
|
5
|
Cisneros-Zevallos L, Maghoumi M, Lopez-Torres M, Beltran-Maldonado B. Transforming stressed plants into healthy foods. Curr Opin Biotechnol 2023; 83:102980. [PMID: 37536039 DOI: 10.1016/j.copbio.2023.102980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023]
Abstract
This paper presents the current status of transforming stressed plants into healthy foods and the future trends in this emerging field. Herein, we describe the three major key elements to advance this field, including a better understanding of the mode of action of oxidative stress on nutraceutical biosynthesis under pre- and postharvest scenarios either converting plants into biofactories of nutraceuticals or creating 'functional fresh produce' while preserving quality. We discuss the need of designing healthy products based on stressed fresh produce and by-products and present a pragmatic strategy to enhance nutraceuticals in plants, and finally we propose designing appropriate studies with stressed plants targeting immunomodulatory properties to determine preventive and therapeutic effects against chronic diseases and the appropriate recommended dose.
Collapse
Affiliation(s)
- Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, United States.
| | - Mahshad Maghoumi
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, United States
| | - Manuel Lopez-Torres
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, United States
| | - Belem Beltran-Maldonado
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, United States
| |
Collapse
|
6
|
Damdam A, Al-Zahrani A, Salah L, Salama KN. Effect of combining UV-C irradiation and vacuum sealing on the shelf life of fresh strawberries and tomatoes. J Food Sci 2023; 88:595-607. [PMID: 36624610 PMCID: PMC10108318 DOI: 10.1111/1750-3841.16444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/09/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023]
Abstract
This research presents the effect of combining UV-C irradiation and vacuum sealing on the shelf life of strawberries and quartered tomatoes and compares it with the effect of the sole use of UV-C irradiation or vacuum sealing. A constant UV-C dose of 360 J/m2 was used for the samples' irradiation, and all the vacuum-sealed samples were stored at a reduced pressure of 40 kPa. Organoleptic analysis, microbial population quantification of yeast and mold, Pseudomonas sp., weight loss, and pH measurements were obtained to identify the spoilage occurrence, monitor the samples' quality, and quantify the shelf life. Sensory evaluation was conducted by 12 consumer panelists to evaluate the aroma, taste, color, texture, and the overall acceptance of the samples. The results revealed that the combination of UV-C irradiation and vacuum sealing prolongs the shelf life of perishables more than the sole use of UV-C irradiation or vacuum sealing. The achieved shelf-life increase using this combination was 124.41% and 54.41% for strawberries and quartered tomatoes, respectively, while acceptable sensory characteristics were maintained throughout the storage period. Hence, this food preservation method can be further improved and integrated in the daily life of modern consumers and the operations of fresh produce retailers, as it could effectively reduce the spoilage rates of fresh produce and help achieve the UN SDG 12.3, which aims to reduce food loss and waste by 50% by 2030 at the consumer and retail levels. PRACTICAL APPLICATION: The system can be further developed and introduced to the market as a kitchen appliance for households or as a predistribution step for fresh produce distribution centers. The shelf-life extension capability of this system, which does not involve any use of chemical substances, would make it an attractive solution for households and food retailers.
Collapse
Affiliation(s)
- Asrar Damdam
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Research and Development Department, Uvera Inc., Thuwal, Saudi Arabia
| | - Ashwaq Al-Zahrani
- Research and Development Department, Uvera Inc., Thuwal, Saudi Arabia
| | - Lama Salah
- Research and Development Department, Uvera Inc., Thuwal, Saudi Arabia
| | - Khaled Nabil Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
7
|
Yu H, Song X, Yang F, Wang J, Sun M, Liu G, Ahmad N, Zhou Y, Zhang Y, Shi G, Zhang R, Liu J, Jiang X, Fu P, Chen G, Li J, Zhuang J, Sun M. Combined effects of vitamin C and cold atmospheric plasma-conditioned media against glioblastoma via hydrogen peroxide. Free Radic Biol Med 2023; 194:1-11. [PMID: 36436726 DOI: 10.1016/j.freeradbiomed.2022.11.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Glioblastoma is the most lethal intracranial malignant tumor, for which the five-year overall survival rate is approximately 5%. Here we explored the therapeutic combination of vitamin C and plasma-conditioned medium on glioblastoma cells in culture and as subcutaneous or intracranial xenografts in mice. The combination treatment reduced cell viability and proliferation while promoting apoptosis, and the effects were significantly stronger than with either treatment on its own. Similar results were obtained in the two xenograft models. Vitamin C appeared to upregulate aquaporin-3 and enhance the uptake of extracellular H2O2, while the combination treatment increased intracellular levels of reactive oxygen species including H2O2 and activated the JNK signaling pathway. The cytotoxic effects of the combination treatment were partially reversed by the specific JNK signaling inhibitor SP600125. Our results suggest that the combination of vitamin C and plasma-conditioned medium has therapeutic potential against glioblastoma, and they provide mechanistic insights that may help investigate this and other potential therapies in greater depth.
Collapse
Affiliation(s)
- Huidan Yu
- School of Life Sciences, Changchun University of Science and Technology, Changchun, 130022, China; Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Xueyan Song
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Fan Yang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jun Wang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Mingjian Sun
- Measurement and Control Research Center Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Guangxin Liu
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Nafees Ahmad
- Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan
| | - Yuanshuai Zhou
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yina Zhang
- Neurological Department, Helios-Amper Clinic, Dachau, Germany
| | - Guohua Shi
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Ruobing Zhang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jianping Liu
- Integrated Cardio Metabolic Centre, Karolinska Institute, Huddinge, Sweden
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingmei Li
- School of Life Sciences, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Jie Zhuang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Minxuan Sun
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| |
Collapse
|
8
|
Villamil-Galindo E, Antunes-Ricardo M, Piagentini AM, Jacobo-Velázquez DA. Adding value to strawberry agro-industrial by-products through ultraviolet A-induced biofortification of antioxidant and anti-inflammatory phenolic compounds. Front Nutr 2022; 9:1080147. [PMID: 36570174 PMCID: PMC9769405 DOI: 10.3389/fnut.2022.1080147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Background The revalorization of agro-industrial by-products by applying ultraviolet A (UVA) radiation to biofortify with phenolic compounds has been studied in recent times, showing improvements in the individual and total phenolic content and their bioactivity. Therefore, the main aim of this work was to optimize the biofortification process of phenolic compounds by UVA radiation to strawberry agro-industrial by-products (RF). Moreover, the effect of UVA radiation on the potential biological activity of the phenolics accumulated in RF due to the treatment was also determined. Methods The assays followed a factorial design with three variables at three levels: UVA dose (LOW, MEDIUM, and HIGH), storage temperature (5, 10, and 15°C), and storage time (0, 24, 48, and 72 h). At each experimental condition, phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO) enzymatic activities, total phenolic compound content (TPC), phenolics profile (TPCHPLC), and agrimoniin content (AGN) were evaluated; and the optimal UVA dose, storage time, and temperature were determined. In vitro bioaccessibility of the accumulated phenolic compound was studied on RF tissue treated with UVA at optimal process conditions. The digested extracts were tested for antiproliferative activity in colorectal cancer cells, cellular antioxidant capacity, and anti-inflammatory activity. Results The results showed that applying UVA-HIGH (86.4 KJ/m2) treatment and storing the tissue for 46 h at 15°C increased PAL activity (260%), phenolic content (240%), and AGN (300%). The biofortification process improves the bioaccessibility of the main phenolic compound of RF by 9.8 to 25%. The digested optimum extract showed an IC50 for HT29 and Caco-2 cells of 2.73 and 5.43 μg/mL, respectively, and presented 60% cellular antioxidant capacity and 30% inhibition of NOX production. Conclusion The RF treated with UVA is an excellent source of phenolic compounds; specifically, ellagitannins and the UVA radiation proved to be efficient in biofortify RF, significantly improving the phenolic compounds content and their bioactive properties with adequate bioaccessibility, adding value to the strawberry agro-industrial by-products.
Collapse
Affiliation(s)
- Esteban Villamil-Galindo
- Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Marilena Antunes-Ricardo
- Tecnológico de Monterrey, The Institute for Obesity Research, Monterrey, Mexico
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Mexico
| | - Andrea Marcela Piagentini
- Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Daniel A. Jacobo-Velázquez
- Tecnológico de Monterrey, The Institute for Obesity Research, Zapopan, Mexico
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Zapopan, Mexico
| |
Collapse
|
9
|
Lu D, Wu Y, Pan Q, Zhang Y, Qi Y, Bao W. Identification of key genes controlling L-ascorbic acid during Jujube ( Ziziphus jujuba Mill.) fruit development by integrating transcriptome and metabolome analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:950103. [PMID: 35991405 PMCID: PMC9386341 DOI: 10.3389/fpls.2022.950103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Chinese jujube (Ziziphus jujuba) is a vital economic tree native to China. Jujube fruit with abundant L-Ascorbic Acid (AsA) is an ideal material for studying the mechanism of AsA biosynthesis and metabolism. However, the key transcription factors regulating AsA anabolism in jujube have not been reported. Here, we used jujube variety "Mazao" as the experimental material, conducted an integrative analysis of transcriptome and metabolome to investigate changes in differential genes and metabolites, and find the key genes regulating AsA during jujube fruit growth. The results showed that AsA was mostly synthesized in the young stage and enlargement stage, ZjMDHAR gene takes an important part in the AsA recycling. Three gene networks/modules were highly correlated with AsA, among them, three genes were identified as candidates controlling AsA, including ZjERF17 (LOC107404975), ZjbZIP9 (LOC107406320), and ZjGBF4 (LOC107421670). These results provide new directions and insights for further study on the regulation mechanism of AsA in jujube.
Collapse
|
10
|
Cao J, Li X, Chen L, He M, Lan H. The Developmental Delay of Seedlings With Cotyledons Only Confers Stress Tolerance to Suaeda aralocaspica (Chenopodiaceae) by Unique Performance on Morphology, Physiology, and Gene Expression. FRONTIERS IN PLANT SCIENCE 2022; 13:844430. [PMID: 35734249 PMCID: PMC9208309 DOI: 10.3389/fpls.2022.844430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Cotyledons play an important role in seedling establishment, although they may just exist for a short time and become senescent upon the emergence of euphylla. So far, the detailed function of cotyledons has not been well understood. Suaeda aralocaspica is an annual halophyte distributed in cold deserts; its cotyledons could exist for a longer time, even last until maturity, and they must exert a unique function in seedling development. Therefore, in this study, we conducted a series of experiments to investigate the morphological and physiological performances of cotyledons under salt stress at different developmental stages. The results showed that the cotyledons kept growing slowly to maintain the normal physiological activities of seedlings by balancing phytohormone levels, accumulating osmoprotectants and antioxidants, and scavenging reactive oxygen species (ROS). Salt stress activated the expression of osmoprotectant-related genes and enhanced the accumulation of related primary metabolites. Furthermore, differentially expressed transcriptional profiles of the cotyledons were also analyzed by cDNA-AFLP to gain an understanding of cotyledons in response to development and salt stress, and the results revealed a progressive increase in the expression level of development-related genes, which accounted for a majority of the total tested TDFs. Meanwhile, key photosynthetic and important salt stress-related genes also actively responded. All these performances suggest that "big cotyledons" are experiencing a delayed but active developmental process, by which S. aralocaspica may survive the harsh condition of the seedling stage.
Collapse
|
11
|
Effect of Postharvest UV-C Radiation on Nutritional Quality, Oxidation and Enzymatic Browning of Stored Mature Date. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of three doses of UV-C radiation (1, 3 and 6 kJ m−2) on conservation potential after harvest of the Deglet-Nour date for five months of storage at 10 °C was studied. Contents of water, total sugar, carotenoids, proteins, total polyphenols, flavonoids and condensed tannins, as well as browning index, enzyme activities of polyphenoloxidase and peroxidase and antioxidant capacity of samples were monitored during storage using standard methods. Doses 1 and 6 kJ m−2 significantly slowed the water loss of samples until the second month of storage, with 17.68% and 16.02% of loss compared to control (31.45%). In the second month of storage, a significant increase in carotenoids was also observed for doses 1 and 6 kJ m−2, with values of 4.17 and 4.02 mg kg−1 versus the control (3.45 mg kg−1), which resulted in deceleration in carotenoid degradation. A gradual decrease in total sugar content was noted for all samples; it was slower within irradiated ones at the second month, where the slowing down of sugar consumption was significantly favored in the samples irradiated at 1 and 6 kJ m−2, which was marked by decreases of 4.98% and 4.57% versus 8.96% in the control. Protein content of irradiated samples (3 and 6 kJ m−2) increased at the third month, giving 1.70 and 2.41 g kg−1 compared to 1.29 g kg−1 for the control. An important decrease in enzymatic activity of polyphenoloxidase was detected, in addition to a fluctuation in peroxidase during storage. The browning index was lower in the irradiated sample until the fourth month of storage, where the result was more significant. An increase in the content of condensed tannins was detected, especially during the two first months, and while the significant increase in the content of flavonoids was read at the last month, it was detected from the first month for polyphenols. This was more significant for the highest dose, were the content reached 0.537 g kg−1 versus 0.288 g kg−1 in control at the first month. A dose-dependent increase in antiradical activity was noted during the last months of storage, while the increase in iron-reducing power was detected at the first month. UV-C delayed installation of Deglet-Nour browning and enriched it with antioxidants.
Collapse
|
12
|
Darré M, Vicente AR, Cisneros-Zevallos L, Artés-Hernández F. Postharvest Ultraviolet Radiation in Fruit and Vegetables: Applications and Factors Modulating Its Efficacy on Bioactive Compounds and Microbial Growth. Foods 2022; 11:653. [PMID: 35267286 PMCID: PMC8909097 DOI: 10.3390/foods11050653] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022] Open
Abstract
Ultraviolet (UV) radiation has been considered a deleterious agent that living organisms must avoid. However, many of the acclimation changes elicited by UV induce a wide range of positive effects in plant physiology through the elicitation of secondary antioxidant metabolites and natural defenses. Therefore, this fact has changed the original UV conception as a germicide and potentially damaging agent, leading to the concept that it is worthy of application in harvested commodities to take advantage of its beneficial responses. Four decades have already passed since postharvest UV radiation applications began to be studied. During this time, UV treatments have been successfully evaluated for different purposes, including the selection of raw materials, the control of postharvest diseases and human pathogens, the elicitation of nutraceutical compounds, the modulation of ripening and senescence, and the induction of cross-stress tolerance. Besides the microbicide use of UV radiation, the effect that has received most attention is the elicitation of bioactive compounds as a defense mechanism. UV treatments have been shown to induce the accumulation of phytochemicals, including ascorbic acid, carotenoids, glucosinolates, and, more frequently, phenolic compounds. The nature and extent of this elicitation have been reported to depend on several factors, including the product type, maturity, cultivar, UV spectral region, dose, intensity, and radiation exposure pattern. Even though in recent years we have greatly increased our understanding of UV technology, some major issues still need to be addressed. These include defining the operational conditions to maximize UV radiation efficacy, reducing treatment times, and ensuring even radiation exposure, especially under realistic processing conditions. This will make UV treatments move beyond their status as an emerging technology and boost their adoption by industry.
Collapse
Affiliation(s)
- Magalí Darré
- LIPA—Laboratorio de Investigación en Productos Agroindustriales, Universidad Nacional de La Plata, Calle 60 y 119 s/n, La Plata CP 1900, Argentina;
| | - Ariel Roberto Vicente
- LIPA—Laboratorio de Investigación en Productos Agroindustriales, Universidad Nacional de La Plata, Calle 60 y 119 s/n, La Plata CP 1900, Argentina;
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Murcia, Spain;
| |
Collapse
|
13
|
Artés-Hernández F, Castillejo N, Martínez-Zamora L. UV and Visible Spectrum LED Lighting as Abiotic Elicitors of Bioactive Compounds in Sprouts, Microgreens and Baby Leaves. A Comprehensive Review Including Their Mode of Action. Foods 2022; 11:foods11030265. [PMID: 35159417 PMCID: PMC8834035 DOI: 10.3390/foods11030265] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
According to social demands, the agri-food industry must elaborate convenient safe and healthy foods rich in phytochemicals while minimising processing inputs like energy consumption. Young plants in their first stages of development represent great potential. Objective: This review summarises the latest scientific findings concerning the use of UV and visible spectrum LED lighting as green, sustainable, and low-cost technologies to improve the quality of sprouts, microgreens, and baby leaves to enhance their health-promoting compounds, focusing on their mode of action while reducing costs and energy. Results: These technologies applied during growing and/or after harvesting were able to improve physiological and morphological development of sprouted seeds while increasing their bioactive compound content without compromising safety and other quality attributes. The novelty is to summarise the main findings published in a comprehensive review, including the mode of action, and remarking on the possibility of its postharvest application where the literature is still scarce. Conclusions: Illumination with UV and/or different regions of the visible spectrum during growing and shelf life are good abiotic elicitors of the production of phytochemicals in young plants, mainly through the activation of specific photoreceptors and ROS production. However, we still need to understand the mechanistic responses and their dependence on the illumination conditions.
Collapse
|
14
|
Santos Pizzo J, Cruz VHM, Rodrigues CA, Pelissari Manin L, Visentainer L, Oliveira Santos O, Maldaner L, Visentainer JV. Rapid determination of L-ascorbic acid content in vitamin C serums by ultra-high-performance liquid chromatography-tandem mass spectrometry. Int J Cosmet Sci 2022; 44:131-141. [PMID: 34986505 DOI: 10.1111/ics.12762] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This study aimed to develop and validate a rapid, simple, accurate, and precise analytical method for the quantification of L-AA in vitamin C serums. Moreover, the developed method was further applied to determine L-AA in eight different brands of vitamin C serums. A complementary study was also carried out to evaluate the stability of L-AA in the vitamin C serum samples after 15, 30, 45, and 60 days of storage at ambient temperature (15 ºC to 35 ºC). METHODS Ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was applied. RESULTS Quantitative analyses were performed with a total chromatographic run time of 1.5 min by matrix-matched calibration, and the analytical curve was linear over the range of 1-1700 μg L-1 with a correlation coefficient of 0.9998. The limits of detection (LOD) and quantification (LOQ) were 0.3 and 1.0 μg L-1 , respectively. Intra- and inter-assay precisions, expressed in terms of relative standard deviation (RSD), ranged from 0.3% and 2.2%, respectively, and recoveries in two concentration levels (1 and 5 µg L-1 ) were 103.9% and 101.2%, respectively. The proposed analytical method was successfully applied to determine de L-AA content of eight commercial vitamin C serum samples. The stability of the target analyte in samples stored at ambient temperature (15 ºC to 35 ºC) was evaluated throughout 60 days with a 15-day interval between analyses. At 0 days, L-AA content in samples ranged from 1.05 - 169.91 mg L-1 , decreasing over time. CONCLUSION The proposed method could be powerful in routine analyses to ensure the quality of L-AA vitamin C serums since it proved a simple, reliable, fast, precise, accurate, and sensitive analytical method.
Collapse
Affiliation(s)
- Jessica Santos Pizzo
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87020-900, Maringá-PR, Brazil
| | | | | | - Luciana Pelissari Manin
- Programa de Pós-Graduação em Ciência de Alimentos, Universidade Estadual de Maringá (UEM), 87020-900, Maringá-PR, Brazil
| | - Lorena Visentainer
- Clinica Lion Derm, Avenida Carneiro Leão, 563, 87014-010, Maringá - PR, Brazil
| | - Oscar Oliveira Santos
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87020-900, Maringá-PR, Brazil.,Programa de Pós-Graduação em Ciência de Alimentos, Universidade Estadual de Maringá (UEM), 87020-900, Maringá-PR, Brazil
| | - Liane Maldaner
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87020-900, Maringá-PR, Brazil
| | - Jesuí Vergilio Visentainer
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87020-900, Maringá-PR, Brazil.,Programa de Pós-Graduação em Ciência de Alimentos, Universidade Estadual de Maringá (UEM), 87020-900, Maringá-PR, Brazil
| |
Collapse
|
15
|
Li Y, Wu L, Jiang H, He R, Song S, Su W, Liu H. Supplementary Far-Red and Blue Lights Influence the Biomass and Phytochemical Profiles of Two Lettuce Cultivars in Plant Factory. Molecules 2021; 26:7405. [PMID: 34885984 PMCID: PMC8658879 DOI: 10.3390/molecules26237405] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 12/04/2022] Open
Abstract
Three different LED spectra (W: White light; WFR: W + far-red light; WB: W + blue light) with similar photosynthetic photon flux density (PPFD) were designed to explore the effects of supplementary far-red and blue lights on leaf color, biomass and phytochemicals of two cultivars of red-leaf lettuce ("Yanzhi" and "Red Butter") in an artificial lighting plant factory. Lettuce plants under WB had redder leaf color and significantly higher contents of pigments, such as chlorophyll a, chlorophyll b, chlorophyll (a + b) and anthocyanins. The accumulation of health-promoting compounds, such as vitamin C, vitamin A, total phenolic compounds, total flavonoids and anthocyanins in the two lettuce cultivars were obviously enhanced by WB. Lettuce under WFR showed remarkable increase in fresh weight and dry weight; meanwhile, significant decreases of pigments, total phenolic compounds, total flavonoids and vitamin C were found. Thus, in the plant factory system, the application of WB can improve the coloration and quality of red leaf lettuce while WFR was encouraged for the purpose of elevating the yield of lettuce.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Houcheng Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (L.W.); (H.J.); (R.H.); (S.S.); (W.S.)
| |
Collapse
|
16
|
Ranjbaran E, Gholami M, Jensen M. Changes in phenolic compounds, enzymatic and non‐enzymatic antioxidant properties in “Thompson Seedless” grape after UV‐C irradiation. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ehsan Ranjbaran
- Department of Horticultural Science Faculty of Agriculture Bu‐Ali Sina University Hamedan Iran
- Department of Food Science Aarhus University Aarhus N Denmark
| | - Mansour Gholami
- Department of Horticultural Science Faculty of Agriculture Bu‐Ali Sina University Hamedan Iran
| | - Martin Jensen
- Department of Food Science Aarhus University Aarhus N Denmark
| |
Collapse
|
17
|
Artés-Hernández F, Castillejo N, Martínez-Zamora L, Martínez-Hernández GB. Phytochemical Fortification in Fruit and Vegetable Beverages with Green Technologies. Foods 2021; 10:2534. [PMID: 34828814 PMCID: PMC8624109 DOI: 10.3390/foods10112534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Phytochemical, bioactive and nutraceutical compounds are terms usually found in the scientific literature related to natural compounds found in plants linked to health-promoting properties. Fruit and vegetable beverages (mainly juice and smoothies) are a convenient strategy to enhance the consumption of horticultural commodities, with the possibility of being fortified with plant byproducts to enhance the content of bioactive compounds. OBJECTIVE This review aims to analyse the different green technologies applied in beverage processing with a fortification effect on their health promoting compounds. RESULTS Fortification can be performed by several strategies, including physical elicitors (e.g., processing technologies), plant/algae extract supplementation, and fermentation with probiotics, among others. Thermal processing technologies are conventionally used to ensure the preservation of food safety with a long shelf life, but this frequently reduces nutritional and sensory quality. However, green non-thermal technologies (e.g., UV, high-pressure processing, pulsed electric fields, ultrasounds, cold plasma, etc.) are being widely investigated in order to reduce costs and make possible more sustainable production processes without affecting the nutritional and sensory quality of beverages. CONCLUSIONS Such green processing technologies may enhance the content of phytochemical compounds through improvement of their extraction/bioaccessibility and/or different biosynthetic reactions that occurred during processing.
Collapse
Affiliation(s)
- Francisco Artés-Hernández
- Department of Agronomical Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain; (N.C.); (L.M.-Z.); (G.B.M.-H.)
| | | | | | | |
Collapse
|
18
|
Jin S, Ding Z, Xie J. Study of Postharvest Quality and Antioxidant Capacity of Freshly Cut Amaranth after Blue LED Light Treatment. PLANTS (BASEL, SWITZERLAND) 2021; 10:1614. [PMID: 34451660 PMCID: PMC8400882 DOI: 10.3390/plants10081614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022]
Abstract
Freshly cut vegetables are susceptible to microbial contamination and oxidation during handling and storage. Hence, light-emitting diode technology can effectively inhibit microbial growth and improve antioxidant enzyme activity. In this paper, the freshly cut amaranth was treated with different intensities of blue light-emitting diode (LED460nm) over 12 days. Chlorophyll content, ascorbic acid content, antioxidant capacity, antioxidant enzymes activity, the changes in microbial count, and sensorial evaluation were measured to analyze the effects of LED treatment on the amaranth. Blue LED460nm light irradiation improved the vital signs of the samples and extended the shelf life by 2-3 days. The AsA-GSH cycle was effectively activated with the irradiation of 30 μmol/(m2·s) blue LED460nm light. According to the results, the LED460nm light could retard the growth of colonies and the main spoilage bacteria, Pseudomonas aeruginosa, of freshly cut amaranth.
Collapse
Affiliation(s)
- Siyuan Jin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.J.); (Z.D.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.J.); (Z.D.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.J.); (Z.D.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| |
Collapse
|
19
|
Li J, Liu B, Li X, Li D, Han J, Zhang Y, Ma C, Xu W, Wang L, Jiu S, Zhang C, Wang S. Exogenous Abscisic Acid Mediates Berry Quality Improvement by Altered Endogenous Plant Hormones Level in "Ruiduhongyu" Grapevine. FRONTIERS IN PLANT SCIENCE 2021; 12:739964. [PMID: 34659307 PMCID: PMC8519001 DOI: 10.3389/fpls.2021.739964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/31/2021] [Indexed: 05/22/2023]
Abstract
Abscisic acid (ABA) plays a key role in fruit development and ripening in non-climacteric fruit. A variety of metabolites such as sugars, anthocyanins, fatty acids, and several antioxidants, which are regulated by various phytohormones, are important components of fruit quality in grape. Here, grape cultivar "Ruiduhongyu" was used to investigate the relationship between endogenous phytohormones and metabolites associated to grape berry quality under exogenous ABA treatment. 500 mg/L ABA significantly improved the appearance parameters and the content of many metabolites including sugar, anthocyanin, and other compounds. Exogenous ABA also increased the contents of ABA, auxin (IAA), and cytokinins (CTKs), and transcription level of ABA biosynthesis and signaling related genes in fruit. Furthermore, a series of genes involved in biosynthesis and the metabolite pathway of sugars, anthocyanins, and fatty acids were shown to be significantly up-regulated under 500 mg/L ABA treatment. In addition, Pearson correlation analysis demonstrated that there existed relatively strong cooperativities in the ABA/kinetin (KT)-appearance parameters, ABA/IAA/KT-sugars, ABA/indolepopionic acid (IPA)/zeatin riboside (ZR)-anthocyanins, and gibberellin 3 (GA3)/methyl jasmonate (MeJA)-fatty acids, indicating that 13 kinds of endogenous phytohormones induced by ABA had different contributions to the accumulation of quality-related metabolites, while all of them were involved in regulating the overall improvement of grape fruit quality. These results laid a primary foundation for better understanding that exogenous ABA improves fruit quality by mediating the endogenous phytohormones level in grape.
Collapse
Affiliation(s)
- Jiajia Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Boyang Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyi Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xiangyi Li,
| | - Dongmei Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayu Han
- Grape and Wine Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Ying Zhang
- Grape and Wine Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenping Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Lei Wang,
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|