1
|
Wang C, Zhang Y, Chong JS, Zhang W, Zhang X, McIntyre RS, Li Z, Ho RCM, Tang TB, Lim LG. Altered functional connectivity subserving expressed emotion environments in schizophrenia: An fNIRS study. Schizophr Res 2024; 270:178-187. [PMID: 38917555 DOI: 10.1016/j.schres.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
Living in high-expressed emotion (EE) environments, characterized by critical, hostile, or over-involved family attitudes, has been linked to increased relapse rates among individuals with schizophrenia (SZ). In our previous work (Wang et al., 2023), we conducted the first feasibility study of using functional near-infrared spectroscopy (fNIRS) with our developed EE stimuli to examine cortical hemodynamics in SZ. To better understand the neural mechanisms underlying EE environmental factors in SZ, we extended our investigation by employing functional connectivity (FC) analysis with a graph theory approach to fNIRS signals. Relative to healthy controls (N=40), individuals with SZ (N=37) exhibited altered connectivity across the medial prefrontal cortex (mPFC), left ventrolateral prefrontal cortex (vlPFC), and left superior temporal gyrus (STG) while exposed to EE environments. Notably, while individuals with SZ were exposed to high-EE environments, (i) reduced connectivity was observed in these brain regions and (ii) the left vlPFC-STG coupling was found to be associated with the negative symptom severity. Taken together, our FC findings suggest individuals with SZ experience a more extensive disruption in neural functioning and coordination, particularly indicating an increased susceptibility to high-EE environments. This further supports the potential utility of integrating fNIRS with the created EE stimuli for assessing EE environmental influences, paving the way for more targeted therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Jie Sheng Chong
- Centre for Intelligent Signal and Imaging Research (CISIR), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | | | - Xi Zhang
- Huaibei Mental Health Center, China
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Zhifei Li
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, 119077, Singapore
| | - Roger C M Ho
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, 119077, Singapore; Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Division of Life Science (LIFS), Hong Kong University of Science and Technology, Hong Kong
| | - Tong Boon Tang
- Centre for Intelligent Signal and Imaging Research (CISIR), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Lam Ghai Lim
- Department of Electrical and Robotics Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia; Medical Engineering & Technology Hub, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia.
| |
Collapse
|
2
|
Park KM, Heo CM, Lee DA, Lee YJ, Park S, Kim YW, Park BS. The effects of hemodialysis on the functional brain connectivity in patients with end-stage renal disease with functional near-infrared spectroscopy. Sci Rep 2023; 13:5691. [PMID: 37029163 PMCID: PMC10082020 DOI: 10.1038/s41598-023-32696-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
This study aimed to investigate functional brain connectivity in patients with end-stage renal disease (ESRD) undergoing hemodialysis using functional near-infrared spectroscopy (fNIRS) and to analyze the effect of hemodialysis on functional brain connectivity. We prospectively enrolled patients with ESRD undergoing hemodialysis for > 6 months without any history of neurological or psychiatric disorders. fNIRS data were acquired using a NIRSIT Lite device. Measurements were performed thrice in the resting state for each patient: before the start of hemodialysis (pre-HD), 1 h after the start of hemodialysis (mid-HD), and after the end of hemodialysis (post-HD). We processed and exported all data, and created a weighted connectivity matrix using Pearson correlation analysis. We obtained functional connectivity measures from the connectivity matrix by applying a graph theoretical analysis. We then compared differences in functional connectivity measures according to hemodialysis status in patients with ESRD. We included 34 patients with ESRD. There were significant changes in the mean clustering coefficient, transitivity, and assortative coefficient between the pre- and post-HD periods (0.353 vs. 0.399, p = 0.047; 0.523 vs. 0.600, p = 0.042; and 0.043 vs. - 0.012, p = 0.044, respectively). However, there were no changes in the mean clustering coefficient, transitivity, and assortative coefficient between the pre- and mid-HD periods, or between the mid- and post-HD periods. In addition, there were no significant differences in the average strength, global efficiency, and local efficiency among the pre-, mid-, and post-HD periods. We demonstrated a significant effect of hemodialysis on functional brain connectivity in patients with ESRD. Functional brain connectivity changes more efficiently during hemodialysis.
Collapse
Affiliation(s)
- Kang Min Park
- Department of Neurology, Inje University College of Medicine, Busan, Korea
| | - Chang Min Heo
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, Korea
| | - Dong Ah Lee
- Department of Neurology, Inje University College of Medicine, Busan, Korea
| | - Yoo Jin Lee
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, Korea
| | - Sihyung Park
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, Korea
| | - Yang Wook Kim
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, Korea
| | - Bong Soo Park
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, Korea.
| |
Collapse
|
3
|
Dimitriadis SI, Perry G, Lancaster TM, Tansey KE, Singh KD, Holmans P, Pocklington A, Davey Smith G, Zammit S, Hall J, O’Donovan MC, Owen MJ, Jones DK, Linden DE. Genetic risk for schizophrenia is associated with increased proportion of indirect connections in brain networks revealed by a semi-metric analysis: evidence from population sample stratified for polygenic risk. Cereb Cortex 2023; 33:2997-3011. [PMID: 35830871 PMCID: PMC10016061 DOI: 10.1093/cercor/bhac256] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/02/2023] Open
Abstract
Research studies based on tractography have revealed a prominent reduction of asymmetry in some key white-matter tracts in schizophrenia (SCZ). However, we know little about the influence of common genetic risk factors for SCZ on the efficiency of routing on structural brain networks (SBNs). Here, we use a novel recall-by-genotype approach, where we sample young adults from a population-based cohort (ALSPAC:N genotyped = 8,365) based on their burden of common SCZ risk alleles as defined by polygenic risk score (PRS). We compared 181 individuals at extremes of low (N = 91) or high (N = 90) SCZ-PRS under a robust diffusion MRI-based graph theoretical SBN framework. We applied a semi-metric analysis revealing higher SMR values for the high SCZ-PRS group compared with the low SCZ-PRS group in the left hemisphere. Furthermore, a hemispheric asymmetry index showed a higher leftward preponderance of indirect connections for the high SCZ-PRS group compared with the low SCZ-PRS group (PFDR < 0.05). These findings might indicate less efficient structural connectivity in the higher genetic risk group. This is the first study in a population-based sample that reveals differences in the efficiency of SBNs associated with common genetic risk variants for SCZ.
Collapse
Affiliation(s)
- S I Dimitriadis
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Neuroinformatics Group, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - G Perry
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - T M Lancaster
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Department of Psychology, Bath University, Claverton Down BA2 7AY, Bath, Wales, UK
| | - K E Tansey
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Queens Road BS8 1QU, Bristol, Wales, UK
| | - K D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - P Holmans
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - A Pocklington
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - G Davey Smith
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Queens Road BS8 1QU, Bristol, Wales, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, 1-5 Whiteladies Road BS8 1NU, Bristol, Wales, UK
| | - S Zammit
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, 1-5 Whiteladies Road BS8 1NU, Bristol, Wales, UK
| | - J Hall
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - M C O’Donovan
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - M J Owen
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - D K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - D E Linden
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, 1-5 Whiteladies Road BS8 1NU, Bristol, Wales, UK
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40 UNS40 6229 ER, Maastricht, The Netherlands
| |
Collapse
|
4
|
Al-Shargie F, Katmah R, Tariq U, Babiloni F, Al-Mughairbi F, Al-Nashash H. Stress management using fNIRS and binaural beats stimulation. BIOMEDICAL OPTICS EXPRESS 2022; 13:3552-3575. [PMID: 35781942 PMCID: PMC9208616 DOI: 10.1364/boe.455097] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/21/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
In this study, we investigate the effectiveness of binaural beats stimulation (BBs) in enhancing cognitive vigilance and mitigating mental stress level at the workplace. We developed an experimental protocol under four cognitive conditions: high vigilance (HV), vigilance enhancement (VE), mental stress (MS) and stress mitigation (SM). The VE and SM conditions were achieved by listening to 16 Hz of BBs. We assessed the four cognitive conditions using salivary alpha-amylase, behavioral responses, and Functional Near-Infrared Spectroscopy (fNIRS). We quantified the vigilance and stress levels using the reaction time (RT) to stimuli, accuracy of detection, and the functional connectivity metrics of the fNIRS estimated by Phase Locking Values (PLV). We propose using the orthogonal minimum spanning tree (OMST) to determine the true connectivity network patterns of the PLV. Our results show that listening to 16-Hz BBs has significantly reduced the level of alpha amylase by 44%, reduced the RT to stimuli by 20% and increased the accuracy of target detection by 25%, (p < 0.001). The analysis of the connectivity network across the four different cognitive conditions revealed several statistically significant trends. Specifically, a significant increase in connectivity between the right and left dorsolateral prefrontal cortex (DLPFC) areas and left orbitofrontal cortex was found during the vigilance enhancement condition compared to the high vigilance. Likewise, similar patterns were found between the right and left DLPFC, orbitofrontal cortex, right ventrolateral prefrontal cortex (VLPFC) and right frontopolar PFC (prefrontal cortex) area during stress mitigation compared to mental stress. Furthermore, the connectivity network under stress condition alone showed significant connectivity increase between the VLPFC and DLPFC compared to other areas. The laterality index demonstrated left frontal laterality under high vigilance and VE conditions, and right DLPFC and left frontopolar PFC while under mental stress. Overall, our results showed that BBs can be used for vigilance enhancement and stress mitigation.
Collapse
Affiliation(s)
- Fares Al-Shargie
- Department of Electrical Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Rateb Katmah
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Usman Tariq
- Department of Electrical Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Fabio Babiloni
- Department Molecular Medicine, University of Sapienza Rome, 00185 Rome, Italy
| | - Fadwa Al-Mughairbi
- Department of Clinical Psychology, College of Medicines and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Hasan Al-Nashash
- Department of Electrical Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| |
Collapse
|