1
|
Sawamura R, Masuya-Suzuki A, Iki N. Study on cellular uptake of a hydrophobic near-infrared-absorbing diradical-platinum(II) complex solubilized by albumin using hyperspectral imaging, spectrophotometry, and spectrofluorimetry. ANAL SCI 2024; 40:1857-1865. [PMID: 38896386 PMCID: PMC11422251 DOI: 10.1007/s44211-024-00621-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Owing to its biopenetrability and minimal invasiveness, near-infrared (NIR) light in the region between 700-1100 nm has attracted attention in cancer diagnosis and therapy. Our group previously reported that the hydrophobic diradical-platinum(II) complex PtL2 is a promising agent for cancer photothermal therapy (L = 3,5-dibromo-1,2-diiminobenzosemiquinonate radical). Because PtL2 does not fluoresce, its intercellular uptake of PtL2 cannot be observed with a fluorescence microscope. In this study, we clarified the uptake and intracellular behavior of PtL2 solubilized by bovine serum albumin (BSA) using hyperspectral imaging enabling spectrophotometric analysis of the image. The spectral changes in the obtained images indicated that the internalization of PtL2 was followed by crystallization of the complex during the long incubation period (> 4 h). Additionally, the binding constant Kb = 5.91 × 104 M-1 could be estimated upon fluorescence quenching analysis of BSA upon binding of PtL2; Kb is two orders of magnitude smaller than that of albumin-common drugs. Considering the small Kb and low solubility of PtL2 in water, we ultimately proposed the internalization path and fate of PtL2 in the cell: release of PtL2 from BSA near cellular membranes and subsequent cellular uptake via membrane permeation followed by saturation, resulting in crystallization.
Collapse
Affiliation(s)
- Ryota Sawamura
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8579, Japan.
| | - Atsuko Masuya-Suzuki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Nobuhiko Iki
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8579, Japan.
| |
Collapse
|
2
|
Mao W, Yoo HS. Inorganic Nanoparticle Functionalization Strategies in Immunotherapeutic Applications. Biomater Res 2024; 28:0086. [PMID: 39323561 PMCID: PMC11423863 DOI: 10.34133/bmr.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024] Open
Abstract
Nanotechnology has been increasingly utilized in anticancer treatment owing to its ability of engineering functional nanocarriers that enhance therapeutic effectiveness while minimizing adverse effects. Inorganic nanoparticles (INPs) are prevalent nanocarriers to be customized for a wide range of anticancer applications, including theranostics, imaging, targeted drug delivery, and therapeutics, because they are advantageous for their superior biocompatibility, unique optical properties, and capacity of being modified via versatile surface functionalization strategies. In the past decades, the high adaptation of INPs in this emerging immunotherapeutic field makes them good carrier options for tumor immunotherapy and combination immunotherapy. Tumor immunotherapy requires targeted delivery of immunomodulating therapeutics to tumor locations or immunological organs to provoke immune cells and induce tumor-specific immune response while regulating immune homeostasis, particularly switching the tumor immunosuppressive microenvironment. This review explores various INP designs and formulations, and their employment in tumor immunotherapy and combination immunotherapy. We also introduce detailed demonstrations of utilizing surface engineering tactics to create multifunctional INPs. The generated INPs demonstrate the abilities of stimulating and enhancing the immune response, specific targeting, and regulating cancer cells, immune cells, and their resident microenvironment, sometimes along with imaging and tracking capabilities, implying their potential in multitasking immunotherapy. Furthermore, we discuss the promises of INP-based combination immunotherapy in tumor treatments.
Collapse
Affiliation(s)
- Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Kangwon Radiation Convergence Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
3
|
Roscigno G, Affinito A, Quintavalle C, Cillari R, Condorelli G, Cavallaro G, Mauro N. Ultrasmall Carbon Nanodots as Theranostic Nanoheaters for Precision Breast Cancer Phototherapy: Establishing the Translational Potential in Tumor-in-a-Dish Models. ACS Biomater Sci Eng 2024; 10:4269-4278. [PMID: 38916153 DOI: 10.1021/acsbiomaterials.4c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
This study investigates the remarkable attributes of sulfur-doped carbon nanodots (CDs) synthesized in high yield and a narrow size distribution (4.8 nm). These CDs exhibit notable features, including potential bioelimination through renal clearance and efficient photothermal conversion in the near-infrared region with multicolor photoluminescence across the visible spectrum. Our research demonstrates high biocompatibility and effective near-infrared (NIR)-triggered photothermal toxicity when targeting mammospheres and patient-derived tumor organoids. Moreover, the study delves into the intricate cellular responses induced by CD-mediated hyperthermia. This involves efficient tumor mass death, activation of the p38-mitogen-activated protein kinase (MAPK) pathway, and upregulation of genes associated with apoptosis, hypoxia, and autophagy. The interaction of CDs with mammospheres reveals their ability to penetrate the complex microenvironment, impeded at 4 °C, indicating an energy-dependent endocytosis mechanism. This observation underscores the CDs' potential for targeted drug delivery, particularly in anticancer therapeutics. This investigation contributes to understanding the multifunctional properties of sulfur-doped CDs and highlights their promising applications in cancer therapeutics. Utilizing 3-D tumor-in-a-dish patients' organoids enhances translational potential, providing a clinically relevant platform for assessing therapeutic efficacy in a context mirroring the physiological conditions of cancerous tissues.
Collapse
Affiliation(s)
- Giuseppina Roscigno
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Pansini 5, Naples 80131, Italy
- Department of Biology, "Federico II" University of Naples, Via Cinthia 21, Napoli 80126, Italy
| | - Alessandra Affinito
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Pansini 5, Naples 80131, Italy
- Institute Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), CNR, Naples 80131, Italy
| | - Cristina Quintavalle
- Institute Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), CNR, Naples 80131, Italy
| | - Roberta Cillari
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32, Palermo 90123, Italy
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Pansini 5, Naples 80131, Italy
| | - Gennara Cavallaro
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32, Palermo 90123, Italy
| | - Nicolò Mauro
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32, Palermo 90123, Italy
| |
Collapse
|
4
|
Golubewa L, Timoshchenko I, Kulahava T. Specificity of carbon nanotube accumulation and distribution in cancer cells revealed by K-means clustering and principal component analysis of Raman spectra. Analyst 2024; 149:2680-2696. [PMID: 38497436 DOI: 10.1039/d3an02078a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) show great potential for their application as cancer therapeutic nanodrugs, but the efficiency and mechanism of their accumulation in the cell, the modulation of cell activity, and the strong dependence of the results on the type of capping molecule still hinder the transfer of SWCNTs to the clinic. In the present study, we determined the mechanism and sequence of accumulation, distribution and type discrimination of SWCNTs in glioma cells by applying K-means clustering and principal component analysis (PCA) of Raman spectra of cells exposed to SWCNTs capped with either DNA or oligonucleotides (ON). Based on the specific biochemical information uncovered by PCA and further applied to K-means, we show that the accumulation of SWCNT-DNA occurs in two phases. The first phase involves the transport of SWCNT-DNA through vesicles and its redistribution in the cytoplasm, which is reflected in two SWCNT-related clusters. The second phase begins after 18 hours of interaction between cells and SWCNT-DNA. PCA shows the appearance of two SWCNT-associated PC loadings, reflected by the addition of a new cluster of SWCNTs with a narrowed and shifted G-peak in the spectra. It is caused by the loss of DNA capping and clumping of SWCNTs and triggered by the acidic conditions in autolysosomes resulting from the fusion of transport vesicles with lysosomes. SWCNTs penetrate all cellular compartments after 42-66 hours and lead to cell death. The clumped SWCNTs are released to the outside. In contrast, SWCNT-ON is hardly accumulated in glioma cells and after 72 hours of exposure to SWCNT-ON, the accumulation of SWCNTs corresponds to the first stage without reaching the second. PCA made it possible to separate the characteristics of cellular components against the high-intensity Raman signal from nanotubes and, thus, to propose the mechanism of accumulation and metabolism of nanomaterials in living cells without the use of additional research approaches. Our results elucidate the time dependence of the accumulation of SWCNTs on the capping molecule. We expect that our results can make an important contribution to the use of these nanomaterials in the clinic.
Collapse
Affiliation(s)
- Lena Golubewa
- Department of Molecular Compounds Physics, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio av. 3, Vilnius, 10257, Lithuania.
| | - Igor Timoshchenko
- Department of Computer Modelling, Physics Faculty, Belarusian State University, Nezavisimosti av. 4, Minsk, 220030, Belarus
- Laboratory of Nanoelectromagnetics, Institute for Nuclear Problems of Belarusian State University, Bobruiskaya str. 11, Minsk, 220006, Belarus
| | - Tatsiana Kulahava
- Laboratory of Nanoelectromagnetics, Institute for Nuclear Problems of Belarusian State University, Bobruiskaya str. 11, Minsk, 220006, Belarus
| |
Collapse
|
5
|
Yang J, Tan Q, Li K, Liao J, Hao Y, Chen Y. Advances and Trends of Photoresponsive Hydrogels for Bone Tissue Engineering. ACS Biomater Sci Eng 2024; 10:1921-1945. [PMID: 38457377 DOI: 10.1021/acsbiomaterials.3c01485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
The development of static hydrogels as an optimal choice for bone tissue engineering (BTE) remains a difficult challenge primarily due to the intricate nature of bone healing processes, continuous physiological functions, and pathological changes. Hence, there is an urgent need to exploit smart hydrogels with programmable properties that can effectively enhance bone regeneration. Increasing evidence suggests that photoresponsive hydrogels are promising bioscaffolds for BTE due to their advantages such as controlled drug release, cell fate modulation, and the photothermal effect. Here, we review the current advances in photoresponsive hydrogels. The mechanism of photoresponsiveness and its advanced applications in bone repair are also elucidated. Future research would focus on the development of more efficient, safer, and smarter photoresponsive hydrogels for BTE. This review is aimed at offering comprehensive guidance on the trends of photoresponsive hydrogels and shedding light on their potential clinical application in BTE.
Collapse
Affiliation(s)
- Juan Yang
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610041, PR China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Qingqing Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Ka Li
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Ying Hao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yuwen Chen
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610041, PR China
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
6
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
7
|
Xie H, Bi Z, Yin J, Li Z, Hu L, Zhang C, Zhang J, Lam JWY, Zhang P, Kwok RTK, Li K, Tang BZ. Design of One-for-All Near-Infrared Aggregation-Induced Emission Nanoaggregates for Boosting Theranostic Efficacy. ACS NANO 2023; 17:4591-4600. [PMID: 36857475 DOI: 10.1021/acsnano.2c10661] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fluorescence-guided phototherapy, including photodynamic and photothermal therapy, is considered an emerging noninvasive strategy for cancer treatments. Organic molecules are promising theranostic agents because of their facile construction, simple modification, and good biocompatibility. Organic systems that integrated multifunctionalities in a single component and achieved high efficiency in both imaging and therapies are rarely reported as the inherently competitive energy relaxation pathways are hard to modulate, and fluorescence quenching occurs upon molecular aggregation. Herein, a versatile theranostic platform with near-infrared emission, high fluorescence quantum yield, robust reactive oxygen species production, and excellent photothermal conversion efficiency was developed based on an aggregation-induced emission luminogen, namely, TPA-TBT. In vivo studies revealed that the TPA-TBT nanoaggregates exhibit outstanding photodynamic and photothermal therapy efficacy to ablate tumors inoculated in a mouse model. This work offers a design strategy to develop one-for-all cancer theranostic agents by modulating and utilizing the relaxation energy of excitons in full.
Collapse
Affiliation(s)
- Huilin Xie
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Zhenyu Bi
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Junli Yin
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Zeshun Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Lianrui Hu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Chen Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Jianquan Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Kai Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, Guangdong 510640, China
| |
Collapse
|
8
|
Tian F, Li F, Ren L, Wang Q, Jiang C, Zhang Y, Li M, Song X, Zhang S. Acoustic-Based Theranostic Probes Activated by Tumor Microenvironment for Accurate Tumor Diagnosis and Assisted Tumor Therapy. ACS Sens 2022; 7:3611-3633. [PMID: 36455009 DOI: 10.1021/acssensors.2c02129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Acoustic-based imaging techniques, including ultrasonography and photoacoustic imaging, are powerful noninvasive approaches for tumor imaging owing to sound transmission facilitation, deep tissue penetration, and high spatiotemporal resolution. Usually, imaging modes were classified into "always-on" mode and "activatable" mode. Conventional "always-on" acoustic-based probes often have difficulty distinguishing lesion regions of interest from surrounding healthy tissues due to poor target-to-background signal ratios. As compared, activatable probes have attracted attention with improved sensitivity, which can boost or amplify imaging signals only in response to specific biomolecular recognition or interactions. The tumor microenvironment (TME) exhibits abnormal physiological conditions that can be used to identify tumor sections from normal tissues. Various types of organic dyes and biomaterials can react with TME, leading to obvious changes in their optical properties. The TME also affects the self-assembly or aggregation state of nanoparticles, which can be used to design activatable imaging probes. Moreover, acoustic-based imaging probes and therapeutic agents can be coencapsulated into one nanocarrier to develop nanotheranostic probes, achieving tumor imaging and cooperative therapy. Satisfactorily, ultrasound waves not only accelerate the release of encapsulated therapeutic agents but also activate therapeutic agents to exert or enhance their therapeutic performance. Meanwhile, various photoacoustic probes can convert photon energy into heat under irradiation, achieving photoacoustic imaging and cooperative photothermal therapy. In this review, we focus on the recently developed TME-triggered ultrasound and photoacoustic theranostic probes for precise tumor imaging and targeted tumor therapy.
Collapse
Affiliation(s)
- Feng Tian
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Fengyan Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Linlin Ren
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Qi Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Chengfang Jiang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Yuqi Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Mengmeng Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Xinyue Song
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| |
Collapse
|
9
|
Diego M, Gandolfi M, Casto A, Bellussi FM, Vialla F, Crut A, Roddaro S, Fasano M, Vallée F, Del Fatti N, Maioli P, Banfi F. Ultrafast nano generation of acoustic waves in water via a single carbon nanotube. PHOTOACOUSTICS 2022; 28:100407. [PMID: 36263352 PMCID: PMC9574765 DOI: 10.1016/j.pacs.2022.100407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Generation of ultra high frequency acoustic waves in water is key to nano resolution sensing, acoustic imaging and theranostics. In this context water immersed carbon nanotubes (CNTs) may act as an ideal optoacoustic source, due to their nanometric radial dimensions, peculiar thermal properties and broad band optical absorption. The generation mechanism of acoustic waves in water, upon excitation of both a single-wall (SW) and a multi-wall (MW) CNT with laser pulses of temporal width ranging from 5 ns down to ps, is theoretically investigated via a multiscale approach. We show that, depending on the combination of CNT size and laser pulse duration, the CNT can act as a thermophone or a mechanophone. As a thermophone, the CNT acts as a nanoheater for the surrounding water, which, upon thermal expansion, launches the pressure wave. As a mechanophone, the CNT acts as a nanopiston, its thermal expansion directly triggering the pressure wave in water. Activation of the mechanophone effect is sought to trigger few nanometers wavelength sound waves in water, matching the CNT acoustic frequencies. This is at variance with respect to the commonly addressed case of water-immersed single metallic nano-objects excited with ns laser pulses, where only the thermophone effect significantly contributes. The present findings might be of impact in fields ranging from nanoscale non-destructive testing to water dynamics at the meso to nanoscale.
Collapse
Affiliation(s)
- Michele Diego
- FemtoNanoOptics group, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, 10 Rue Ada Byron, Villeurbanne, F-69622, France
| | - Marco Gandolfi
- CNR-INO, via Branze 45, Brescia, 25123, Italy
- Department of Information Engineering, Università di Brescia, via Branze 38, Brescia, 25123, Italy
- Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP) and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, via della Garzetta 48, Brescia, I-25133, Italy
| | - Alessandro Casto
- FemtoNanoOptics group, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, 10 Rue Ada Byron, Villeurbanne, F-69622, France
- Politecnico di Torino, Department of Energy, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | | | - Fabien Vialla
- FemtoNanoOptics group, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, 10 Rue Ada Byron, Villeurbanne, F-69622, France
| | - Aurélien Crut
- FemtoNanoOptics group, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, 10 Rue Ada Byron, Villeurbanne, F-69622, France
| | - Stefano Roddaro
- Dipartimento di Fisica ”E. Fermi”, Università di Pisa, Largo B Pontecorvo 3, Pisa, I-56127, Italy
- NEST, CNR - Istituto Nanoscienze and Scuola Normale Superiore, piazza San Silvestro 12, Pisa, I-56127, Italy
| | - Matteo Fasano
- Politecnico di Torino, Department of Energy, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Fabrice Vallée
- FemtoNanoOptics group, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, 10 Rue Ada Byron, Villeurbanne, F-69622, France
| | - Natalia Del Fatti
- FemtoNanoOptics group, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, 10 Rue Ada Byron, Villeurbanne, F-69622, France
- Institut Universitaire de France (IUF), France
| | - Paolo Maioli
- FemtoNanoOptics group, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, 10 Rue Ada Byron, Villeurbanne, F-69622, France
| | - Francesco Banfi
- FemtoNanoOptics group, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, 10 Rue Ada Byron, Villeurbanne, F-69622, France
| |
Collapse
|
10
|
Lam FC, Tsedev U, Kasper EM, Belcher AM. Forging the Frontiers of Image-Guided Neurosurgery—The Emerging Uses of Theranostics in Neurosurgical Oncology. Front Bioeng Biotechnol 2022; 10:857093. [PMID: 35903794 PMCID: PMC9315239 DOI: 10.3389/fbioe.2022.857093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fred C. Lam
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Division of Neurosurgery, Saint Elizabeth’s Medical Center, Brighton, MA, United States
- *Correspondence: Fred C. Lam,
| | - Uyanga Tsedev
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ekkehard M. Kasper
- Division of Neurosurgery, Saint Elizabeth’s Medical Center, Brighton, MA, United States
| | - Angela M. Belcher
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
11
|
Wang Y, Lu S, He W, Gong S, Zhang Y, Zhao X, Fu Y, Zhu Z. Modeling and characterization of the electrical conductivity on metal nanoparticles/carbon nanotube/polymer composites. Sci Rep 2022; 12:10448. [PMID: 35729335 PMCID: PMC9213557 DOI: 10.1038/s41598-022-14596-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
Flexible conductive films have good deformability and conductivity, and are expected to be used in flexible electronic devices. In this paper, four kinds of flexible conductive films were successfully prepared by compounding nano-sized metal (Ni, Cu, Au or AuCu alloy) particles to CNT surface and then dispersing to polydimethylsiloxane matrix. Experiment results show that the conductivity of these prepared films are almost two orders of magnitude higher than that of CNT/polydimethylsiloxane films with the same CNT loadings. A simulation model based on percolation network theory and Monte Carlo technology is introduced to study the influence of nanoparticles on the composite conductivity. Results confirmed that the introduction of nanoparticles effectively reduces the effective resistance of CNT and the tunnelling resistance at CNT junctions. The intrinsic conductivity and the length diameter ratio of CNT, the intrinsic conductivity, the size and the coverage ratio of nanoparticles are the core parameters affecting the conductivity of composite. Compared with CNT/polydimethylsiloxane films, the optimized theoretical conductivity of these nano-sized particles enhanced composites can be further improved.
Collapse
Affiliation(s)
- Yang Wang
- School of Materials Science and Engineering, Central South University, Hunan, 410083, Changsha, China
| | - Sijian Lu
- School of Materials Science and Engineering, Central South University, Hunan, 410083, Changsha, China
| | - Wenke He
- School of Materials Science and Engineering, Central South University, Hunan, 410083, Changsha, China
| | - Shen Gong
- School of Materials Science and Engineering, Central South University, Hunan, 410083, Changsha, China. .,State Key Laboratory of Powder Metallurgy, Changsha, 410083, China.
| | - Yunqian Zhang
- School of Life Science, Central South University, Hunan, 410083, Changsha, China
| | - Xinsi Zhao
- School of Materials Science and Engineering, Central South University, Hunan, 410083, Changsha, China
| | - Yuanyuan Fu
- School of Materials Science and Engineering, Central South University, Hunan, 410083, Changsha, China
| | - Zhenghong Zhu
- Department of Mechanical Engineering, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
12
|
Bura C, Mocan T, Grapa C, Mocan L. Carbon Nanotubes-Based Assays for Cancer Detection and Screening. Pharmaceutics 2022; 14:pharmaceutics14040781. [PMID: 35456615 PMCID: PMC9028434 DOI: 10.3390/pharmaceutics14040781] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023] Open
Abstract
Carbon nanotubes (CNTs) were considered a potential cargo for cancer therapy and diagnosis following researchers’ shared goal of finding a new delivery system to enhance the pharmacological performance of the administered drugs. To date, several excellent reviews have focused on the role of CNTs as drug delivery systems, although there is currently no existing study that gathers all the advances in research-connected carbon nanotubes-based assay development for the early detection of cancer. In this review article, we will focus on the emerging role of CNTs as anticancer detection agents.
Collapse
Affiliation(s)
- Cristina Bura
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology ‘’Octavian Fodor’’, 400008 Cluj-Napoca, Romania; (C.B.); (T.M.); (C.G.)
| | - Teodora Mocan
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology ‘’Octavian Fodor’’, 400008 Cluj-Napoca, Romania; (C.B.); (T.M.); (C.G.)
- Department of Physiology, University of Medicine and Pharmacy, “Iuliu Hatieganu”, 400008 Cluj-Napoca, Romania
| | - Cristiana Grapa
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology ‘’Octavian Fodor’’, 400008 Cluj-Napoca, Romania; (C.B.); (T.M.); (C.G.)
- Department of Physiology, University of Medicine and Pharmacy, “Iuliu Hatieganu”, 400008 Cluj-Napoca, Romania
| | - Lucian Mocan
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology ‘’Octavian Fodor’’, 400008 Cluj-Napoca, Romania; (C.B.); (T.M.); (C.G.)
- Department of Surgery, University of Medicine and Pharmacy, “Iuliu Hatieganu”, 400008 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
13
|
Lakshmi BA, Kim YJ. Modernistic and Emerging Developments of Nanotechnology in Glioblastoma-Targeted Theranostic Applications. Int J Mol Sci 2022; 23:ijms23031641. [PMID: 35163563 PMCID: PMC8836088 DOI: 10.3390/ijms23031641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Brain tumors such as glioblastoma are typically associated with an unstoppable cell proliferation with aggressive infiltration behavior and a shortened life span. Though treatment options such as chemotherapy and radiotherapy are available in combating glioblastoma, satisfactory therapeutics are still not available due to the high impermeability of the blood–brain barrier. To address these concerns, recently, multifarious theranostics based on nanotechnology have been developed, which can deal with diagnosis and therapy together. The multifunctional nanomaterials find a strategic path against glioblastoma by adjoining novel thermal and magnetic therapy approaches. Their convenient combination of specific features such as real-time tracking, in-depth tissue penetration, drug-loading capacity, and contrasting performance is of great demand in the clinical investigation of glioblastoma. The potential benefits of nanomaterials including specificity, surface tunability, biodegradability, non-toxicity, ligand functionalization, and near-infrared (NIR) and photoacoustic (PA) imaging are sufficient in developing effective theranostics. This review discusses the recent developments in nanotechnology toward the diagnosis, drug delivery, and therapy regarding glioblastoma.
Collapse
|
14
|
Light-guided tumor diagnosis and therapeutics: from nanoclusters to polyoxometalates. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Kemp JA, Kwon YJ. Cancer nanotechnology: current status and perspectives. NANO CONVERGENCE 2021; 8:34. [PMID: 34727233 PMCID: PMC8560887 DOI: 10.1186/s40580-021-00282-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/05/2021] [Indexed: 05/09/2023]
Abstract
Modern medicine has been waging a war on cancer for nearly a century with no tangible end in sight. Cancer treatments have significantly progressed, but the need to increase specificity and decrease systemic toxicities remains. Early diagnosis holds a key to improving prognostic outlook and patient quality of life, and diagnostic tools are on the cusp of a technological revolution. Nanotechnology has steadily expanded into the reaches of cancer chemotherapy, radiotherapy, diagnostics, and imaging, demonstrating the capacity to augment each and advance patient care. Nanomaterials provide an abundance of versatility, functionality, and applications to engineer specifically targeted cancer medicine, accurate early-detection devices, robust imaging modalities, and enhanced radiotherapy adjuvants. This review provides insights into the current clinical and pre-clinical nanotechnological applications for cancer drug therapy, diagnostics, imaging, and radiation therapy.
Collapse
Affiliation(s)
- Jessica A Kemp
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
16
|
Golubewa L, Kulahava T, Timoshchenko I, Shuba M, Svirko Y, Kuzhir P. Rapid and delayed effects of single-walled carbon nanotubes in glioma cells. NANOTECHNOLOGY 2021; 32:505103. [PMID: 34547739 DOI: 10.1088/1361-6528/ac28da] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) demonstrate a strong potential as an optically activated theranostic nano-agent. However, using SWCNTs in theranostics still requires revealing mechanisms of the SWCNT-mediated effects on cellular functions. Even though rapid and delayed cellular responses can differ significantly and may lead to undesirable consequences, understanding of these mechanisms is still incomplete. We demonstrate that introducing short (150-250 nm) SWCNTs into C6 rat glioma cells leads to SWCNT-driven effects that show pronounced time dependence. Accumulation of SWCNTs is carried out due to endocytosis with modification of the actin cytoskeleton but not accompanied with autophagy. Its initial stage launches a rapid cellular response via significantly heightened mitochondrial membrane potential and superoxide anion radical production, satisfying the cell demand of energy for SWCNT transfer inside the cytoplasm. In the long term, SWCNTs agglomerate to micron-sized structures surrounded by highly active mitochondria having parameters return to control values. SWCNTs postponed effects are also manifested themselves in the suppression of the cell proliferative activity with further restoration after five passages. These results demonstrate relative cellular inertness and safety of SWCNTs eliminating possible side effects caused by optically activated theranostic applications.
Collapse
Affiliation(s)
- Lena Golubewa
- Department of Molecular Compounds Physics, State Research Institute Center for Physical Sciences and Technology, Saulėtekio av. 3, Vilnius, 10257, Lithuania
- Laboratory of Nanoelectromagnetics, Institute for Nuclear Problems of Belarusian State University, Bobruiskaya str. 11, Minsk, 220006, Belarus
| | - Tatsiana Kulahava
- Laboratory of Nanoelectromagnetics, Institute for Nuclear Problems of Belarusian State University, Bobruiskaya str. 11, Minsk, 220006, Belarus
| | - Igor Timoshchenko
- Laboratory of Nanoelectromagnetics, Institute for Nuclear Problems of Belarusian State University, Bobruiskaya str. 11, Minsk, 220006, Belarus
- Department of Computer Modelling, Physics Faculty, Belarusian State University, Bobruiskaya str. 5, Minsk, 220030, Belarus
| | - Mikhail Shuba
- Laboratory of Nanoelectromagnetics, Institute for Nuclear Problems of Belarusian State University, Bobruiskaya str. 11, Minsk, 220006, Belarus
| | - Yuri Svirko
- Institute of Photonics, Department of Physics and Mathematics, University of Eastern Finland, Yliopistokatu 7, Joensuu, FI-80101, Finland
| | - Polina Kuzhir
- Laboratory of Nanoelectromagnetics, Institute for Nuclear Problems of Belarusian State University, Bobruiskaya str. 11, Minsk, 220006, Belarus
- Institute of Photonics, Department of Physics and Mathematics, University of Eastern Finland, Yliopistokatu 7, Joensuu, FI-80101, Finland
| |
Collapse
|
17
|
Ye T, Li F, Ma G, Wei W. Enhancing therapeutic performance of personalized cancer vaccine via delivery vectors. Adv Drug Deliv Rev 2021; 177:113927. [PMID: 34403752 DOI: 10.1016/j.addr.2021.113927] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022]
Abstract
In recent years, personalized cancer vaccines have gained increasing attention as emerging immunotherapies with the capability to overcome interindividual differences and show great benefits for individual patients in the clinic due to the highly tailored vaccine formulations. A large number of materials have been studied as delivery vectors to enhance the therapeutic performance of personalized cancer vaccines, including artificial materials, engineered microorganisms, cells and cell derivatives. These delivery vectors with distinct features are employed to change antigen biodistributions and to facilitate antigen uptake, processing and presentation, improving the strength, velocity, and duration of the immune response when delivered by different strategies. Here, we provide an overview of personalized cancer vaccine delivery vectors, describing their materials, physicochemical properties, delivery strategies and challenges for clinical transformation.
Collapse
|
18
|
Abbasi Kajani A, Haghjooy Javanmard S, Asadnia M, Razmjou A. Recent Advances in Nanomaterials Development for Nanomedicine and Cancer. ACS APPLIED BIO MATERIALS 2021; 4:5908-5925. [PMID: 35006909 DOI: 10.1021/acsabm.1c00591] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is considered one of the leading causes of death, with a growing number of cases worldwide. However, the early diagnosis and efficient therapy of cancer have remained a critical challenge. The emergence of nanomedicine has opened up a promising window to address the drawbacks of cancer detection and treatment. A wide range of engineered nanomaterials and nanoplatforms with different shapes, sizes, and composition has been developed for various biomedical applications. Nanomaterials have been increasingly used in various applications in bioimaging, diagnosis, and therapy of cancers. Recently, numerous multifunctional and smart nanoparticles with the ability of simultaneous diagnosis and targeted cancer therapy have been reported. The multidisciplinary attempts led to the development of several exciting clinically approved nanotherapeutics. The nanobased materials and devices have also been used extensively to develop point-of-care and highly sensitive methods of cancer detection. In this review article, the most significant achievements and latest advances in the nanomaterials development for cancer nanomedicine are critically discussed. In addition, the future perspectives of this field are evaluated.
Collapse
Affiliation(s)
- Abolghasem Abbasi Kajani
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mohsen Asadnia
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 73441-81746, Iran
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| |
Collapse
|
19
|
Mauro N, Utzeri MA, Varvarà P, Cavallaro G. Functionalization of Metal and Carbon Nanoparticles with Potential in Cancer Theranostics. Molecules 2021; 26:3085. [PMID: 34064173 PMCID: PMC8196792 DOI: 10.3390/molecules26113085] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/19/2023] Open
Abstract
Cancer theranostics is a new concept of medical approach that attempts to combine in a unique nanoplatform diagnosis, monitoring and therapy so as to provide eradication of a solid tumor in a non-invasive fashion. There are many available solutions to tackle cancer using theranostic agents such as photothermal therapy (PTT) and photodynamic therapy (PDT) under the guidance of imaging techniques (e.g., magnetic resonance-MRI, photoacoustic-PA or computed tomography-CT imaging). Additionally, there are several potential theranostic nanoplatforms able to combine diagnosis and therapy at once, such as gold nanoparticles (GNPs), graphene oxide (GO), superparamagnetic iron oxide nanoparticles (SPIONs) and carbon nanodots (CDs). Currently, surface functionalization of these nanoplatforms is an extremely useful protocol for effectively tuning their structures, interface features and physicochemical properties. This approach is much more reliable and amenable to fine adjustment, reaching both physicochemical and regulatory requirements as a function of the specific field of application. Here, we summarize and compare the most promising metal- and carbon-based theranostic tools reported as potential candidates in precision cancer theranostics. We focused our review on the latest developments in surface functionalization strategies for these nanosystems, or hybrid nanocomposites consisting of their combination, and discuss their main characteristics and potential applications in precision cancer medicine.
Collapse
Affiliation(s)
- Nicolò Mauro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
| | - Mara Andrea Utzeri
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
| | - Paola Varvarà
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
| | - Gennara Cavallaro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
- Advanced Technologies Network Center, University of Palermo, Viale delle Scienze, Ed. 18, 90128 Palermo, Italy
| |
Collapse
|