1
|
de Hoog S, Tang C, Zhou X, Jacomel B, Lustosa B, Song Y, Kandemir H, A Ahmed S, Zhou S, Belmonte-Lopes R, Quan Y, Feng P, A Vicente V, Kang Y. Fungal primary and opportunistic pathogens: an ecological perspective. FEMS Microbiol Rev 2024; 48:fuae022. [PMID: 39118380 PMCID: PMC11409879 DOI: 10.1093/femsre/fuae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 06/02/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024] Open
Abstract
Fungal primary pathogenicity on vertebrates is here described as a deliberate strategy where the host plays a role in increasing the species' fitness. Opportunism is defined as the coincidental survival of an individual strain in host tissue using properties that are designed for life in an entirely different habitat. In that case, the host's infection control is largely based on innate immunity, and the etiologic agent is not transmitted after infection, and thus fungal evolution is not possible. Primary pathogens encompass two types, depending on their mode of transmission. Environmental pathogens have a double life cycle, and tend to become enzootic, adapted to a preferred host in a particular habitat. In contrast, pathogens that have a host-to-host transmission pattern are prone to shift to a neighboring, immunologically naive host, potentially leading to epidemics. Beyond these prototypical life cycles, some environmental fungi are able to make large leaps between dissimilar hosts/habitats, probably due to the similarity of key factors enabling survival in an entirely different niche, and thus allowing a change from opportunistic to primary pathogenicity. Mostly, such factors seem to be associated with extremotolerance.
Collapse
Affiliation(s)
- Sybren de Hoog
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Foundation Atlas of Clinical Fungi, 1214GP Hilversum, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, 561113 Guiyang, China
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, 81531-980 Curitiba, Brazil
- Department of Medical Microbiology, Radboud University of Nijmegen, 6525AJ Nijmegen, The Netherlands
| | - Chao Tang
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, 561113 Guiyang, China
| | - Xin Zhou
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Third Affiliated Hospital of Sun Yat-sen University, 510630 Guangzhou, China
| | - Bruna Jacomel
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, 81531-980 Curitiba, Brazil
- Canisius Wilhelmina Hospital, 6532SZ Nijmegen, The Netherlands
| | - Bruno Lustosa
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Postgraduate Program in Engineering Bioprocess and Biotechnology, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, 81531-980 Curitiba, Brazil
| | - Yinggai Song
- Department of Dermatology and Venerology, Peking University First Hospital,100034 Beijing, China
| | - Hazal Kandemir
- Westerdijk Fungal Biodiversity Center, 3584CT Utrecht, The Netherlands
| | - Sarah A Ahmed
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Foundation Atlas of Clinical Fungi, 1214GP Hilversum, The Netherlands
| | - Shaoqin Zhou
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, 561113 Guiyang, China
| | - Ricardo Belmonte-Lopes
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, 81531-980 Curitiba, Brazil
| | - Yu Quan
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Foundation Atlas of Clinical Fungi, 1214GP Hilversum, The Netherlands
| | - Peiying Feng
- Third Affiliated Hospital of Sun Yat-sen University, 510630 Guangzhou, China
| | - Vania A Vicente
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, 81531-980 Curitiba, Brazil
- Postgraduate Program in Engineering Bioprocess and Biotechnology, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, 81531-980 Curitiba, Brazil
| | - Yingqian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, 561113 Guiyang, China
| |
Collapse
|
2
|
Passive epidemiological surveillance in wildlife in Costa Rica identifies pathogens of zoonotic and conservation importance. PLoS One 2022; 17:e0262063. [PMID: 36155648 PMCID: PMC9512195 DOI: 10.1371/journal.pone.0262063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 09/11/2022] [Indexed: 12/27/2022] Open
Abstract
Epidemiological surveillance systems for pathogens in wild species have been proposed as a preventive measure for epidemic events. These systems can minimize the detrimental effects of an outbreak, but most importantly, passive surveillance systems are the best adapted to countries with limited resources. Therefore, this research aimed to evaluate the technical and infrastructural feasibility of establishing this type of scheme in Costa Rica by implementing a pilot program targeting the detection of pathogens of zoonotic and conservation importance in wildlife. Between 2018 and 2020, 85 carcasses of free-ranging vertebrates were admitted for post-mortem and microbiology analysis. However, we encountered obstacles mainly related to the initial identification of cases and limited local logistics capacity. Nevertheless, this epidemiological surveillance scheme allowed us to estimate the general state of health of the country’s wildlife by establishing the causes of death according to pathological findings. For instance, 60% (51/85) of the deaths were not directly associated with an infectious agent. Though in 37.6% (32/85) of these cases an infectious agent associated or not with disease was detected. In 27.1% (23/85) of the cases, death was directly related to infectious agents. Furthermore, 12.9% (11/85), the cause of death was not determined. Likewise, this wildlife health monitoring program allowed the detection of relevant pathogens such as Canine Distemper Virus, Klebsiella pneumoniae, Angiostrongylus spp., Baylisascaris spp., among others. Our research demonstrated that this passive surveillance scheme is cost-effective and feasible in countries with limited resources. This passive surveillance can be adapted to the infrastructure dedicated to monitoring diseases in productive animals according to the scope and objectives of monitoring wildlife specific to each region. The information generated from the experience of the initial establishment of a WHMP is critical to meeting the challenges involved in developing this type of scheme in regions with limited resources and established as hotspots for emerging infectious diseases.
Collapse
|
3
|
Winck GR, Raimundo RLG, Fernandes-Ferreira H, Bueno MG, D’Andrea PS, Rocha FL, Cruz GLT, Vilar EM, Brandão M, Cordeiro JLP, Andreazzi CS. Socioecological vulnerability and the risk of zoonotic disease emergence in Brazil. SCIENCE ADVANCES 2022; 8:eabo5774. [PMID: 35767624 PMCID: PMC9242594 DOI: 10.1126/sciadv.abo5774] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/13/2022] [Indexed: 05/25/2023]
Abstract
In developing countries, outbreaks of zoonotic diseases (ZDs) result from intertwined ecological, socioeconomic, and demographic processes that shape conditions for (i) increased contact between vulnerable human population and wildlife in areas undergoing environmental degradation and (ii) the rapid geographic spread of infections across socially vulnerable regions. In Brazil, recent increases in environmental and social vulnerabilities, amplified by economic and political crises, are potential triggers for outbreaks. We discuss Brazilian features that favor outbreaks and show a novel quantitative method for zoonotic risk assessment. Using data on nine ZDs from 2001 to 2019, we found that the most significant causal variables were vegetation cover and city remoteness. Furthermore, 8 of 27 states presented low-level risk of ZD outbreaks. Given the ZD-bushmeat connection, we identified central hunted mammals that should be surveilled to prevent spillover events. The current challenge is to coordinate intersectoral collaboration for effective One Health management in megadiverse countries with high social vulnerability and growing environmental degradation like Brazil.
Collapse
Affiliation(s)
- Gisele R. Winck
- Laboratory of Biology and Parasitology of Wild Reservoir Mammals (LABPMR), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Rafael L. G. Raimundo
- Graduate Program in Biological Sciences, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil
- Graduate Program in Ecology and Environmental Monitoring, Federal University of Paraíba (UFPB), Rio Tinto, PB, Brazil
| | - Hugo Fernandes-Ferreira
- Terrestrial Vertebrate Conservation Lab (Converte), State University of Ceará (UECE), Quixadá, CE, Brazil
| | - Marina G. Bueno
- Laboratory of Comparative and Environmental Virology (LVCA), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Paulo S. D’Andrea
- Laboratory of Biology and Parasitology of Wild Reservoir Mammals (LABPMR), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Fabiana L. Rocha
- Graduate Program in Biological Sciences, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil
- Center for Species Survival Brazil and Conservation Planning Specialist Group, Species Survival Commission (SSC), International Union for Conservation of Nature (IUCN), Foz do Iguaçu, PR, Brazil
| | - Gabriella L. T. Cruz
- Laboratory of Biology and Parasitology of Wild Reservoir Mammals (LABPMR), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | | | - Martha Brandão
- Vice Presidency of Production and Innovation in Health, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - José Luís P. Cordeiro
- Oswaldo Cruz Foundation (Fiocruz), Eusébio, CE, Brazil
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), Aveiro University, Aveiro, Portugal
- International Platform for Science, Technology, and Innovation in Health (PICTIS), Fiocruz and Aveiro, Portugal
| | - Cecilia S. Andreazzi
- Laboratory of Biology and Parasitology of Wild Reservoir Mammals (LABPMR), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- International Platform for Science, Technology, and Innovation in Health (PICTIS), Fiocruz and Aveiro, Portugal
- Centre for Functional Ecology (CFE), University of Coimbra, Coimbra, Portugal
| |
Collapse
|