1
|
Wang Q, Su Z, Zhang J, Yan H, Zhang J. Unraveling the copper-death connection: Decoding COVID-19's immune landscape through advanced bioinformatics and machine learning approaches. Hum Vaccin Immunother 2024; 20:2310359. [PMID: 38468184 PMCID: PMC10936617 DOI: 10.1080/21645515.2024.2310359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/23/2024] [Indexed: 03/13/2024] Open
Abstract
This study aims to analyze Coronavirus Disease 2019 (COVID-19)-associated copper-death genes using the Gene Expression Omnibus (GEO) dataset and machine learning, exploring their immune microenvironment correlation and underlying mechanisms. Utilizing GEO, we analyzed the GSE217948 dataset with control samples. Differential expression analysis identified 16 differentially expressed copper-death genes, and Cell type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) quantified immune cell infiltration. Gene classification yielded two copper-death clusters, with Weighted Gene Co-expression Network Analysis (WGCNA) identifying key module genes. Machine learning models (random forest, Support Vector Machine (SVM), Generalized Linear Model (GLM), eXtreme Gradient Boosting (XGBoost)) selected 6 feature genes validated by the GSE213313 dataset. Ferredoxin 1 (FDX1) emerged as the top gene, corroborated by Area Under the Curve (AUC) analysis. Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) revealed enriched pathways in T cell receptor, natural killer cytotoxicity, and Peroxisome Proliferator-Activated Receptor (PPAR). We uncovered differentially expressed copper-death genes and immune infiltration differences, notably CD8 T cells and M0 macrophages. Clustering identified modules with potential implications for COVID-19. Machine learning models effectively predicted COVID-19 risk, with FDX1's pivotal role validated. FDX1's high expression was associated with immune pathways, suggesting its role in COVID-19 pathogenesis. This comprehensive approach elucidated COVID-19-related copper-death genes, their immune context, and risk prediction potential. FDX1's connection to immune pathways offers insights into COVID-19 mechanisms and therapy.
Collapse
Affiliation(s)
- Qi Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhenzhong Su
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jing Zhang
- Department of General Gynecology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - He Yan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Huma C, Hawon L, Sarisha J, Erdal T, Kevin C, Valentina KA. Advances in the field of developing biomarkers for re-irradiation: a how-to guide to small, powerful data sets and artificial intelligence. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2024; 9:3-16. [PMID: 38550554 PMCID: PMC10972602 DOI: 10.1080/23808993.2024.2325936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/28/2024] [Indexed: 04/01/2024]
Abstract
Introduction Patient selection remains challenging as the clinical use of re-irradiation (re-RT) increases. Re-RT data is limited to retrospective studies and small prospective single-institution reports, resulting in small, heterogenous data sets. Validated prognostic and predictive biomarkers are derived from large-volume studies with long-term follow-up. This review aims to examine existing re-RT publications and available data sets and discuss strategies using artificial intelligence (AI) to approach small data sets to optimize the use of re-RT data. Methods Re-RT publications were identified where associated public data was present. The existing literature on small data sets to identify biomarkers was also explored. Results Publications with associated public data were identified, with glioma and nasopharyngeal cancers emerging as the most common tumor sites where the use of re-RT was the primary management approach. Existing and emerging AI strategies have been used to approach small data sets including data generation, augmentation, discovery, and transfer learning. Conclusions Further data is needed to generate adaptive frameworks, improve the collection of specimens for molecular analysis, and improve the interpretability of results in re-RT data.
Collapse
Affiliation(s)
- Chaudhry Huma
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Bethesda, MD, 20892, United States
| | - Lee Hawon
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Bethesda, MD, 20892, United States
| | - Jagasia Sarisha
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Bethesda, MD, 20892, United States
| | - Tasci Erdal
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Bethesda, MD, 20892, United States
| | - Camphausen Kevin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Bethesda, MD, 20892, United States
| | - Krauze Andra Valentina
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Bethesda, MD, 20892, United States
| |
Collapse
|
3
|
Kumar V, Gaddam M, Moustafa A, Iqbal R, Gala D, Shah M, Gayam VR, Bandaru P, Reddy M, Gadaputi V. The Utility of Artificial Intelligence in the Diagnosis and Management of Pancreatic Cancer. Cureus 2023; 15:e49560. [PMID: 38156176 PMCID: PMC10754023 DOI: 10.7759/cureus.49560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Artificial intelligence (AI) has made significant advancements in the medical domain in recent years. AI, an expansive field comprising Machine Learning (ML) and, within it, Deep Learning (DL), seeks to emulate the intricate operations of the human brain. It examines vast amounts of data and plays a crucial role in decision-making, overcoming limitations related to human evaluation. DL utilizes complex algorithms to analyze data. ML and DL are subsets of AI that utilize hard statistical techniques that help machines consistently improve at tasks with experience. Pancreatic cancer is more common in developed countries and is one of the leading causes of cancer-related mortality worldwide. Managing pancreatic cancer remains a challenge despite significant advancements in diagnosis and treatment. AI has secured an almost ubiquitous presence in the field of oncological workup and management, especially in gastroenterology malignancies. AI is particularly useful for various investigations of pancreatic carcinoma because it has specific radiological features that enable diagnostic procedures without the requirement of a histological study. However, interpreting and evaluating resulting images is not always simple since images vary as the disease progresses. Secondly, a number of factors may impact prognosis and response to the treatment process. Currently, AI models have been created for diagnosing, grading, staging, and predicting prognosis and treatment response. This review presents the most up-to-date knowledge on the use of AI in the diagnosis and treatment of pancreatic carcinoma.
Collapse
Affiliation(s)
- Vikash Kumar
- Internal Medicine, The Brooklyn Hospital Center, Brooklyn, USA
| | | | - Amr Moustafa
- Internal Medicine, The Brooklyn Hospital Center, Brooklyn, USA
| | - Rabia Iqbal
- Internal Medicine, The Brooklyn Hospital Center, Brooklyn, USA
| | - Dhir Gala
- Internal Medicine, American University of the Caribbean School of Medicine, Sint Maarten, SXM
| | - Mili Shah
- Internal Medicine, American University of the Caribbean School of Medicine, Sint Maarten, SXM
| | - Vijay Reddy Gayam
- Gastroenterology and Hepatology, The Brooklyn Hospital Center, Brooklyn, USA
| | - Praneeth Bandaru
- Gastroenterology and Hepatology, The Brooklyn Hospital Center, Brooklyn, USA
| | - Madhavi Reddy
- Gastroenterology and Hepatology, The Brooklyn Hospital Center, Brooklyn, USA
| | - Vinaya Gadaputi
- Gastroenterology and Hepatology, Blanchard Valley Health System, Findlay, USA
| |
Collapse
|
4
|
Lee S, Jung H, Park J, Ahn J. Accurate Prediction of Cancer Prognosis by Exploiting Patient-Specific Cancer Driver Genes. Int J Mol Sci 2023; 24:ijms24076445. [PMID: 37047418 PMCID: PMC10095073 DOI: 10.3390/ijms24076445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Accurate prediction of the prognoses of cancer patients and identification of prognostic biomarkers are both important for the improved treatment of cancer patients, in addition to enhanced anticancer drugs. Many previous bioinformatic studies have been carried out to achieve this goal; however, there remains room for improvement in terms of accuracy. In this study, we demonstrated that patient-specific cancer driver genes could be used to predict cancer prognoses more accurately. To identify patient-specific cancer driver genes, we first generated patient-specific gene networks before using modified PageRank to generate feature vectors that represented the impacts genes had on the patient-specific gene network. Subsequently, the feature vectors of the good and poor prognosis groups were used to train the deep feedforward network. For the 11 cancer types in the TCGA data, the proposed method showed a significantly better prediction performance than the existing state-of-the-art methods for three cancer types (BRCA, CESC and PAAD), better performance for five cancer types (COAD, ESCA, HNSC, KIRC and STAD), and a similar or slightly worse performance for the remaining three cancer types (BLCA, LIHC and LUAD). Furthermore, the case study for the identified breast cancer and cervical squamous cell carcinoma prognostic genes and their subnetworks included several pathways associated with the progression of breast cancer and cervical squamous cell carcinoma. These results suggested that heterogeneous cancer driver information may be associated with cancer prognosis.
Collapse
Affiliation(s)
- Suyeon Lee
- Department of Computer Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Heewon Jung
- Samsung Electronics Company Ltd., Suwon 16677, Republic of Korea
| | - Jiwoo Park
- Department of Computer Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jaegyoon Ahn
- Department of Computer Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea
- Correspondence:
| |
Collapse
|
5
|
Huang B, Huang H, Zhang S, Zhang D, Shi Q, Liu J, Guo J. Artificial intelligence in pancreatic cancer. Theranostics 2022; 12:6931-6954. [PMID: 36276650 PMCID: PMC9576619 DOI: 10.7150/thno.77949] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022] Open
Abstract
Pancreatic cancer is the deadliest disease, with a five-year overall survival rate of just 11%. The pancreatic cancer patients diagnosed with early screening have a median overall survival of nearly ten years, compared with 1.5 years for those not diagnosed with early screening. Therefore, early diagnosis and early treatment of pancreatic cancer are particularly critical. However, as a rare disease, the general screening cost of pancreatic cancer is high, the accuracy of existing tumor markers is not enough, and the efficacy of treatment methods is not exact. In terms of early diagnosis, artificial intelligence technology can quickly locate high-risk groups through medical images, pathological examination, biomarkers, and other aspects, then screening pancreatic cancer lesions early. At the same time, the artificial intelligence algorithm can also be used to predict the survival time, recurrence risk, metastasis, and therapy response which could affect the prognosis. In addition, artificial intelligence is widely used in pancreatic cancer health records, estimating medical imaging parameters, developing computer-aided diagnosis systems, etc. Advances in AI applications for pancreatic cancer will require a concerted effort among clinicians, basic scientists, statisticians, and engineers. Although it has some limitations, it will play an essential role in overcoming pancreatic cancer in the foreseeable future due to its mighty computing power.
Collapse
Affiliation(s)
- Bowen Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Haoran Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Shuting Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Dingyue Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qingya Shi
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jianzhou Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Junchao Guo
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
6
|
Dobosz P, Stempor PA, Ramírez Moreno M, Bulgakova NA. Transcriptional and post-transcriptional regulation of checkpoint genes on the tumour side of the immunological synapse. Heredity (Edinb) 2022; 129:64-74. [PMID: 35459932 PMCID: PMC9273643 DOI: 10.1038/s41437-022-00533-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is a disease of the genome, therefore, its development has a clear Mendelian component, demonstrated by well-studied genes such as BRCA1 and BRCA2 in breast cancer risk. However, it is known that a single genetic variant is not enough for cancer to develop leading to the theory of multistage carcinogenesis. In many cases, it is a sequence of events, acquired somatic mutations, or simply polygenic components with strong epigenetic effects, such as in the case of brain tumours. The expression of many genes is the product of the complex interplay between several factors, including the organism's genotype (in most cases Mendelian-inherited), genetic instability, epigenetic factors (non-Mendelian-inherited) as well as the immune response of the host, to name just a few. In recent years the importance of the immune system has been elevated, especially in the light of the immune checkpoint genes discovery and the subsequent development of their inhibitors. As the expression of these genes normally suppresses self-immunoreactivity, their expression by tumour cells prevents the elimination of the tumour by the immune system. These discoveries led to the rapid growth of the field of immuno-oncology that offers new possibilities of long-lasting and effective treatment options. Here we discuss the recent advances in the understanding of the key mechanisms controlling the expression of immune checkpoint genes in tumour cells.
Collapse
Affiliation(s)
- Paula Dobosz
- Central Clinical Hospital of the Ministry of Interior Affairs and Administration in Warsaw, Warsaw, Poland
| | | | - Miguel Ramírez Moreno
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield, UK
| | - Natalia A Bulgakova
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
7
|
Kokol P, Kokol M, Zagoranski S. Machine learning on small size samples: A synthetic knowledge synthesis. Sci Prog 2022; 105:368504211029777. [PMID: 35220816 PMCID: PMC10358596 DOI: 10.1177/00368504211029777] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Machine Learning is an increasingly important technology dealing with the growing complexity of the digitalised world. Despite the fact, that we live in a 'Big data' world where, almost 'everything' is digitally stored, there are many real-world situations, where researchers are still faced with small data samples. The present bibliometric knowledge synthesis study aims to answer the research question 'What is the small data problem in machine learning and how it is solved?' The analysis a positive trend in the number of research publications and substantial growth of the research community, indicating that the research field is reaching maturity. Most productive countries are China, United States and United Kingdom. Despite notable international cooperation, the regional concentration of research literature production in economically more developed countries was observed. Thematic analysis identified four research themes. The themes are concerned with to dimension reduction in complex big data analysis, data augmentation techniques in deep learning, data mining and statistical learning on small datasets.
Collapse
Affiliation(s)
- Peter Kokol
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | | | | |
Collapse
|
8
|
Zambrano AF, Giraldo LF, Quimbayo J, Medina B, Castillo E. Machine learning for manually-measured water quality prediction in fish farming. PLoS One 2021; 16:e0256380. [PMID: 34407149 PMCID: PMC8372934 DOI: 10.1371/journal.pone.0256380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022] Open
Abstract
Monitoring variables such as dissolved oxygen, pH, and pond temperature is a key aspect of high-quality fish farming. Machine learning (ML) techniques have been proposed to model the dynamics of such variables to improve the fish farmer's decision-making. Most of the research on ML in aquaculture has focused on scenarios where devices for real-time data acquisition, storage, and remote monitoring are available, making it easy to develop accurate ML techniques. However, fish farmers do not necessarily have access to such devices. Many of them prefer to use equipment to manually measure these variables limiting the amount of available data to process. In this work, we study the use of random forests, multivariate linear regression, and artificial neural networks in scenarios with limited amount of measurements to analyze data from water-quality variables that are commonly measured in fish farming. We propose a methodology to build models in two scenarios: i) estimation of unobserved variables based on the observed ones, and ii) forecasting when a low amount of data is available for training. We show that random forests can be used to forecast dissolved oxygen, pond temperature, pH, ammonia, and ammonium when the water pond variables are measured only twice per day. Moreover, we showed that these prediction models can be implemented on a mobile-based information system and run in an average smartphone that fish farmers can afford.
Collapse
Affiliation(s)
- Andres Felipe Zambrano
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Bogota, Colombia
| | - Luis Felipe Giraldo
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Bogota, Colombia
| | - Julian Quimbayo
- Department of Systems Engineering, Corporación Universitaria del Huila, Neiva, Colombia
| | - Brayan Medina
- Department of Systems Engineering, Corporación Universitaria del Huila, Neiva, Colombia
| | - Eduardo Castillo
- Department of Veterinary Medicine, Corporación Universitaria del Huila, Neiva, Colombia
| |
Collapse
|
9
|
Harnessing artificial intelligence for the next generation of 3D printed medicines. Adv Drug Deliv Rev 2021; 175:113805. [PMID: 34019957 DOI: 10.1016/j.addr.2021.05.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/02/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Artificial intelligence (AI) is redefining how we exist in the world. In almost every sector of society, AI is performing tasks with super-human speed and intellect; from the prediction of stock market trends to driverless vehicles, diagnosis of disease, and robotic surgery. Despite this growing success, the pharmaceutical field is yet to truly harness AI. Development and manufacture of medicines remains largely in a 'one size fits all' paradigm, in which mass-produced, identical formulations are expected to meet individual patient needs. Recently, 3D printing (3DP) has illuminated a path for on-demand production of fully customisable medicines. Due to its flexibility, pharmaceutical 3DP presents innumerable options during formulation development that generally require expert navigation. Leveraging AI within pharmaceutical 3DP removes the need for human expertise, as optimal process parameters can be accurately predicted by machine learning. AI can also be incorporated into a pharmaceutical 3DP 'Internet of Things', moving the personalised production of medicines into an intelligent, streamlined, and autonomous pipeline. Supportive infrastructure, such as The Cloud and blockchain, will also play a vital role. Crucially, these technologies will expedite the use of pharmaceutical 3DP in clinical settings and drive the global movement towards personalised medicine and Industry 4.0.
Collapse
|