1
|
Iori S, D'Onofrio C, Laham-Karam N, Mushimiyimana I, Lucatello L, Montanucci L, Lopparelli RM, Bonsembiante F, Capolongo F, Pauletto M, Dacasto M, Giantin M. Generation and characterization of cytochrome P450 3A74 CRISPR/Cas9 knockout bovine foetal hepatocyte cell line (BFH12). Biochem Pharmacol 2024; 224:116231. [PMID: 38648904 DOI: 10.1016/j.bcp.2024.116231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
In human, the cytochrome P450 3A (CYP3A) subfamily of drug-metabolizing enzymes (DMEs) is responsible for a significant number of phase I reactions, with the CYP3A4 isoform superintending the hepatic and intestinal metabolism of diverse endobiotic and xenobiotic compounds. The CYP3A4-dependent bioactivation of chemicals may result in hepatotoxicity and trigger carcinogenesis. In cattle, four CYP3A genes (CYP3A74, CYP3A76, CYP3A28 and CYP3A24) have been identified. Despite cattle being daily exposed to xenobiotics (e.g., mycotoxins, food additives, drugs and pesticides), the existing knowledge about the contribution of CYP3A in bovine hepatic metabolism is still incomplete. Nowadays, CRISPR/Cas9 mediated knockout (KO) is a valuable method to generate in vivo and in vitro models for studying the metabolism of xenobiotics. In the present study, we successfully performed CRISPR/Cas9-mediated KO of bovine CYP3A74, human CYP3A4-like, in a bovine foetal hepatocyte cell line (BFH12). After clonal expansion and selection, CYP3A74 ablation was confirmed at the DNA, mRNA, and protein level. The subsequent characterization of the CYP3A74 KO clone highlighted significant transcriptomic changes (RNA-sequencing) associated with the regulation of cell cycle and proliferation, immune and inflammatory response, as well as metabolic processes. Overall, this study successfully developed a new CYP3A74 KO in vitro model by using CRISPR/Cas9 technology, which represents a novel resource for xenobiotic metabolism studies in cattle. Furthermore, the transcriptomic analysis suggests a key role of CYP3A74 in bovine hepatocyte cell cycle regulation and metabolic homeostasis.
Collapse
Affiliation(s)
- Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Caterina D'Onofrio
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Nihay Laham-Karam
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211 Kuopio, Finland
| | - Isidore Mushimiyimana
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211 Kuopio, Finland
| | - Lorena Lucatello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Ludovica Montanucci
- Department of Neurology, University of Texas Health Science Center, 6431 Fannin Street, Houston, TX, OH 44106, USA
| | - Rosa Maria Lopparelli
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Federico Bonsembiante
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Francesca Capolongo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy.
| |
Collapse
|
2
|
Iori S, D'Onofrio C, Laham-Karam N, Mushimiyimana I, Lucatello L, Lopparelli RM, Gelain ME, Capolongo F, Pauletto M, Dacasto M, Giantin M. Establishment and characterization of cytochrome P450 1A1 CRISPR/Cas9 Knockout Bovine Foetal Hepatocyte Cell Line (BFH12). Cell Biol Toxicol 2024; 40:18. [PMID: 38528259 PMCID: PMC10963470 DOI: 10.1007/s10565-024-09856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
The cytochrome P450 1A (CYP1A) subfamily of xenobiotic metabolizing enzymes (XMEs) consists of two different isoforms, namely CYP1A1 and CYP1A2, which are highly conserved among species. These two isoenzymes are involved in the biotransformation of many endogenous compounds as well as in the bioactivation of several xenobiotics into carcinogenic derivatives, thereby increasing the risk of tumour development. Cattle (Bos taurus) are one of the most important food-producing animal species, being a significant source of nutrition worldwide. Despite daily exposure to xenobiotics, data on the contribution of CYP1A to bovine hepatic metabolism are still scarce. The CRISPR/Cas9-mediated knockout (KO) is a useful method for generating in vivo and in vitro models for studying xenobiotic biotransformations. In this study, we applied the ribonucleoprotein (RNP)-complex approach to successfully obtain the KO of CYP1A1 in a bovine foetal hepatocyte cell line (BFH12). After clonal expansion and selection, CYP1A1 excision was confirmed at the DNA, mRNA and protein level. Therefore, RNA-seq analysis revealed significant transcriptomic changes associated with cell cycle regulation, proliferation, and detoxification processes as well as on iron, lipid and mitochondrial homeostasis. Altogether, this study successfully generates a new bovine CYP1A1 KO in vitro model, representing a valuable resource for xenobiotic metabolism studies in this important farm animal species.
Collapse
Affiliation(s)
- Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Caterina D'Onofrio
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Nihay Laham-Karam
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211, Kuopio, Finland
| | - Isidore Mushimiyimana
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211, Kuopio, Finland
| | - Lorena Lucatello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Rosa Maria Lopparelli
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Maria Elena Gelain
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Francesca Capolongo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy.
| |
Collapse
|
3
|
Atypical kinetics of cytochrome P450 enzymes in pharmacology and toxicology. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:131-176. [PMID: 35953154 DOI: 10.1016/bs.apha.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atypical kinetics are observed in metabolic reactions catalyzed by cytochrome P450 enzymes (P450). Yet, this phenomenon is regarded as experimental artifacts in some instances despite increasing evidence challenging the assumptions of typical Michaelis-Menten kinetics. As P450 play a major role in the metabolism of a wide range of substrates including drugs and endogenous compounds, it becomes critical to consider the impact of atypical kinetics on the accuracy of estimated kinetic and inhibitory parameters which could affect extrapolation of pharmacological and toxicological implications. The first half of this book chapter will focus on atypical non-Michaelis-Menten kinetics (e.g. substrate inhibition, biphasic and sigmoidal kinetics) as well as proposed underlying mechanisms supported by recent insights in mechanistic enzymology. In particular, substrate inhibition kinetics in P450 as well as concurrent drug inhibition of P450 in the presence of substrate inhibition will be further discussed. Moreover, mounting evidence has revealed that despite the high degree of sequence homology between CYP3A isoforms (i.e. CYP3A4 and CYP3A5), they have the propensities to exhibit vastly different susceptibilities and potencies of mechanism-based inactivation (MBI) with a common drug inhibitor. These experimental observations pertaining to the presence of these atypical isoform- and probe substrate-specific complexities in CYP3A isoforms by several clinically-relevant drugs will therefore be expounded and elaborated upon in the second half of this book chapter.
Collapse
|
4
|
Zuo Q, Xu W, Wan Y, Feng D, He C, Lin C, Huang D, Chen F, Han L, Sun Q, Chen D, Du H, Huang L. Efficient generation of a CYP3A4-T2A-luciferase knock-in HepaRG subclone and its optimized differentiation. Biomed Pharmacother 2022; 152:113243. [PMID: 35687910 DOI: 10.1016/j.biopha.2022.113243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
CRISPR/Cas9 has allowed development of better and easier-to-use ADME models than traditional methods by complete knockout or knock-in of genes. However, gene editing in HepaRG cells remains challenging because long-term monoclonal cultivation may alter their differentiation capacity to a large extent. Here, CRISPR/Cas9 was used to generate a CYP3A4-T2A-luciferase knock-in HepaRG subclone by Cas9-mediated homologous recombination and monoclonal cultivation. The knock-in HepaRG-#9 subclone retained a similar differentiation potential to wildtype HepaRG cells (HepaRG-WT). To further improve differentiation and expand the applications of knock-in HepaRG cells, two optimized differentiation procedures were evaluated by comparison with the standard differentiation procedure using the knock-in HepaRG-#9 subclone and HepaRG-WT. The results indicated that addition of forskolin (an adenylate cyclase activator) and SB431542 (a TGF-β pathway inhibitor) to the first optimized differentiation procedure led to better differentiation consequence in terms of not only the initiation time for differentiation and morphological characterization, but also the mRNA levels of hepatocyte-specific genes. These data may contribute to more extensive applications of genetically modified HepaRG cells in ADME studies.
Collapse
Affiliation(s)
- Qingxia Zuo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wanqing Xu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yanbin Wan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Dongyan Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Changsheng He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Cailing Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Dongchao Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Feng Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Liya Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Qi Sun
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Dong Chen
- Fangrui Institute of Innovative Drugs, South China University of Technology, Guangzhou 510006, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Lizhen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
5
|
Heintze T, Wilhelm D, Schmidlin T, Hofmann U, Zanger UM, Schwab M, Klein K. Effects of Diminished NADPH:cytochrome P450 Reductase in Human Hepatocytes on Lipid and Bile Acid Homeostasis. Front Pharmacol 2021; 12:769703. [PMID: 34867397 PMCID: PMC8634102 DOI: 10.3389/fphar.2021.769703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
NADPH:cytochrome P450 oxidoreductase (POR) is the obligate electron donor for microsomal cytochrome P450 (CYP) enzymes involved in the biosynthesis of endogenous substances like bile acids and other steroids as well as in the oxidative metabolism of xenobiotics. P450 oxidoreductase also supports other redox enzymes in fatty acid and cholesterol pathways. Recently, we have established CRISPR/Cas9-mediated POR knockdown in a human hepatic cell model, HepaRG, and demonstrated the differential effects of limited POR expression on CYP activity. The aim of the present work was to systematically investigate the impact of POR knockdown with a focus on the expression of ADME (absorption, distribution, metabolism, and excretion) genes and related regulators. Functional consequences have been assessed using quantitative mass spectrometry for targeted metabolomics covering bile acids, and cholesterol and its precursors, and for untargeted proteomics. In addition to the previously described alteration of RNA expression of CYP genes, we showed significant downregulation of transcriptional regulators of drug metabolism and transport, including NR1I3 (CAR), NR1I2 (PXR), NR1H4 (FXR), and NR1H3 (LXRα) in cells with POR gene disruption. Furthermore, POR knockdown resulted in deregulated bile acid and cholesterol biosynthesis demonstrated by low levels of cholic acid derivates and increased concentrations of chenodeoxycholic acid derivates, respectively. Systemic effects of POR knockdown on global protein expression were indicated by downregulation of several metabolic pathways including lipid metabolism and biological oxidation reactions. The deduced protein network map corroborates CYP enzymes as direct interaction partners, whereas changes in lipid metabolism and homeostasis are the result of indirect effects. In summary, our results emphasize a widespread role of POR in various metabolic pathways and provide the first human data on the effects of diminished POR expression on drug and endogenous metabolism in a genomeedited HepaRG cell model.
Collapse
Affiliation(s)
- Tamara Heintze
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Eberhard Karls University, Tübingen, Germany
| | - Denise Wilhelm
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Thierry Schmidlin
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Eberhard Karls University, Tübingen, Germany.,Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ute Hofmann
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Eberhard Karls University, Tübingen, Germany
| | - Ulrich M Zanger
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Eberhard Karls University, Tübingen, Germany
| | - Matthias Schwab
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Departments of Clinical Pharmacology and Biochemistry and Pharmacy, University of Tuebingen, Tübingen, Germany.,Cluster of Excellence IFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Kathrin Klein
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
6
|
The role of DMPK science in improving pharmaceutical research and development efficiency. Drug Discov Today 2021; 27:705-729. [PMID: 34774767 DOI: 10.1016/j.drudis.2021.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/09/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
The successful regulatory authority approval rate of drug candidates in the drug development pipeline is crucial for determining pharmaceutical research and development (R&D) efficiency. Regulatory authorities include the US Food and Drug Administration (FDA), European Medicines Agency (EMA), and Pharmaceutical and Food Safety Bureau Japan (PFSB), among others. Optimal drug metabolism and pharmacokinetics (DMPK) properties influence the progression of a drug candidate from the preclinical to the clinical phase. In this review, we provide a comprehensive assessment of essential concepts, methods, improvements, and challenges in DMPK science and its significance in drug development. This information provides insights into the association of DMPK science with pharmaceutical R&D efficiency.
Collapse
|