1
|
Park H, Cho D, Ha JW, Hwang DH, Park RH, Seo H, Lee I. Corroboration of the Toms effect from a frictional drag reducing self-polishing copolymer. Sci Rep 2023; 13:9276. [PMID: 37286700 DOI: 10.1038/s41598-023-36549-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/06/2023] [Indexed: 06/09/2023] Open
Abstract
A novel frictional drag reducing self-polishing copolymer (FDR-SPC) was first developed by the authors. The FDR-SPC is a special derivative of an SPC that was designed to achieve skin frictional drag reduction in turbulent water flow by releasing polyethylene glycol (PEG) into water through a hydrolysis reaction. Thus, the FDR-SPC coating acts as a continuous medium accommodating countless, molecular-level polymer injectors. However, direct evidence of such PEG release has not yet been demonstrated. Here, we report the results of in situ PEG concentration measurement based on the planar laser-induced fluorescence (PLIF) method. Polyethylene glycol methacrylate (PEGMA) was probed by the fluorescent functional material dansyl, and the fluorescence intensity from dansyl-PEG was then measured to quantify the concentration in the flow. The near-wall concentration of dansyl-PEG is observed to range from 1 to 2 ppm depending on the flow speed, which corroborates the existence of a drag reducing function for the FDR-SPC. In the concurrent measurement of skin friction, the present FDR-SPC specimen exhibited a skin friction reduction ratio of 9.49% at the freestream flow speed [Formula: see text]. In the comparative experiment of dansyl-PEGMA solution injection, the skin friction was found to decrease by 11.9%, which is in reasonable accordance with that for the FDR-SPC.
Collapse
Affiliation(s)
- Hyun Park
- Department Naval Architecture and Ocean Eng, Pusan National University, Busan, 46241, Korea
| | - Donghyun Cho
- Department Naval Architecture and Ocean Eng, Pusan National University, Busan, 46241, Korea
| | - Jong-Woon Ha
- Korea Research Institute of Chemical Technology, Daejon, 34114, Korea
| | - Do-Hoon Hwang
- Department Chemistry, Pusan National University, Busan, 46241, Korea
| | - Ra Hui Park
- Material and Coating Research, Samsung Heavy Industries Co. Ltd., Gyeongsangnam-Do, 53261, Korea
| | - Hwawon Seo
- Department Naval Architecture and Ocean Eng, Pusan National University, Busan, 46241, Korea
| | - Inwon Lee
- Department Naval Architecture and Ocean Eng, Pusan National University, Busan, 46241, Korea.
| |
Collapse
|
2
|
Prousis KC, Kikionis S, Ioannou E, Morgana S, Faimali M, Piazza V, Calogeropoulou T, Roussis V. Synthesis and Antifouling Activity Evaluation of Analogs of Bromosphaerol, a Brominated Diterpene Isolated from the Red Alga Sphaerococcus coronopifolius. Mar Drugs 2021; 20:md20010007. [PMID: 35049862 PMCID: PMC8781426 DOI: 10.3390/md20010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022] Open
Abstract
Marine biofouling is an epibiotic biological process that affects almost any kind of submerged surface, causing globally significant economic problems mainly for the shipping industry and aquaculture companies, and its prevention so far has been associated with adverse environmental effects for non-target organisms. Previously, we have identified bromosphaerol (1), a brominated diterpene isolated from the red alga Sphaerococcus coronopifolius, as a promising agent with significant antifouling activity, exerting strong anti-settlement activity against larvae of Amphibalanus (Balanus) amphitrite and very low toxicity. The significant antifouling activity and low toxicity of bromosphaerol (1) motivated us to explore its chemistry, aiming to optimize its antifouling potential through the preparation of a number of analogs. Following different synthetic routes, we successfully synthesized 15 structural analogs (2–16) of bromosphaerol (1), decorated with different functional groups. The anti-settlement activity (EC50) and the degree of toxicity (LC50) of the bromosphaerol derivatives were evaluated using cyprids and nauplii of the cirriped crustacean A. amphitrite as a model organism. Derivatives 2, 4, and 6–16 showed diverse levels of antifouling activity. Among them, compounds 9 and 13 can be considered as well-performing antifoulants, exerting their activity through a non-toxic mechanism.
Collapse
Affiliation(s)
- Kyriakos C. Prousis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11653 Athens, Greece;
| | - Stefanos Kikionis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (E.I.)
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (E.I.)
| | - Silvia Morgana
- Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), National Research Council (CNR), Via De Marini 6, 16149 Genova, Italy; (S.M.); (M.F.)
| | - Marco Faimali
- Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), National Research Council (CNR), Via De Marini 6, 16149 Genova, Italy; (S.M.); (M.F.)
| | - Veronica Piazza
- Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), National Research Council (CNR), Via De Marini 6, 16149 Genova, Italy; (S.M.); (M.F.)
- Correspondence: (V.P.); (T.C.); (V.R.); Tel.: +39-010-6475409 (V.P.); +30-210-7273833 (T.C.); +30-210-7274592 (V.R.)
| | - Theodora Calogeropoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11653 Athens, Greece;
- Correspondence: (V.P.); (T.C.); (V.R.); Tel.: +39-010-6475409 (V.P.); +30-210-7273833 (T.C.); +30-210-7274592 (V.R.)
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (E.I.)
- Correspondence: (V.P.); (T.C.); (V.R.); Tel.: +39-010-6475409 (V.P.); +30-210-7273833 (T.C.); +30-210-7274592 (V.R.)
| |
Collapse
|