1
|
Wu L, Shi L, Fan L, Pan Z, Zhao Z, Su H, Wang C, Yang N, Xu C, Yang G. Synthesis and Antifungal Activities of Glucosamine Aromatic Derivatives Against Four Phytopathogenic Fungi of Crops. Chem Biodivers 2024; 21:e202401052. [PMID: 39058413 DOI: 10.1002/cbdv.202401052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
A series of diversified glucosamine derivatives (3a-3y) was synthesized and their antifungal activity was examined against four kinds of phytopathogens, Fusarium graminearum (F. graminearum), Fusarium moniliforme (F. moniliforme), Curvularia. lunata (C. lunata), and Rhizoctonia solani (R. solani) which cause seriously economic losses worldwide by affecting crops. The compound 3o showed remarkable antifungal activity against F. graminearum with EC50 value of 3.96 μg/mL, compared to the standard drug triadimefon (10.1 μg/mL). 3D-QSAR model with the statistically recommended values (r2=0.915, q2=0.872) showed that positive charge group or bulky group in the benzyl ring was favorable for the antifungal activity. Enzyme activity assays confirmed that 3o had a moderate inhibition of trehalase with inhibition rate of 51.4 % at 5 μg/mL, which is comparable to those of commercial inhibitor validamycin A with inhibition rate of 83.3 %. Molecular docking analysis revealed that 3o also had a hydrogen bond interaction with key amino acid residue compared to validoxylamine.
Collapse
Affiliation(s)
- Lulu Wu
- College of Sciences, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Lijun Shi
- College of Sciences, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Liangxin Fan
- College of Sciences, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Zhenliang Pan
- College of Sciences, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Zhonglin Zhao
- College of Sciences, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Hui Su
- College of Sciences, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Caixia Wang
- College of Sciences, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Nan Yang
- Henan Province Tobacco Company Pingdingshan Company, Pingdingshan, 467000, P. R. China
| | - Cuilian Xu
- College of Sciences, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Guoyu Yang
- College of Sciences, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| |
Collapse
|
2
|
Sakai K, Kondo Y, Goto Y, Aoki K. Cytoplasmic fluidization contributes to breaking spore dormancy in fission yeast. Proc Natl Acad Sci U S A 2024; 121:e2405553121. [PMID: 38889144 PMCID: PMC11214080 DOI: 10.1073/pnas.2405553121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 06/20/2024] Open
Abstract
The cytoplasm is a complex, crowded environment that influences myriad cellular processes including protein folding and metabolic reactions. Recent studies have suggested that changes in the biophysical properties of the cytoplasm play a key role in cellular homeostasis and adaptation. However, it still remains unclear how cells control their cytoplasmic properties in response to environmental cues. Here, we used fission yeast spores as a model system of dormant cells to elucidate the mechanisms underlying regulation of the cytoplasmic properties. By tracking fluorescent tracer particles, we found that particle mobility decreased in spores compared to vegetative cells and rapidly increased at the onset of dormancy breaking upon glucose addition. This cytoplasmic fluidization depended on glucose-sensing via the cyclic adenosine monophosphate-protein kinase A pathway. PKA activation led to trehalose degradation through trehalase Ntp1, thereby increasing particle mobility as the amount of trehalose decreased. In contrast, the rapid cytoplasmic fluidization did not require de novo protein synthesis, cytoskeletal dynamics, or cell volume increase. Furthermore, the measurement of diffusion coefficients with tracer particles of different sizes suggests that the spore cytoplasm impedes the movement of larger protein complexes (40 to 150 nm) such as ribosomes, while allowing free diffusion of smaller molecules (~3 nm) such as second messengers and signaling proteins. Our experiments have thus uncovered a series of signaling events that enable cells to quickly fluidize the cytoplasm at the onset of dormancy breaking.
Collapse
Affiliation(s)
- Keiichiro Sakai
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji-cho, Okazaki, Aichi444-8787, Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Division of Integrated Life Science, Department of Gene Mechanisms, Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto606-8315, Japan
- Center for Living Systems Information Science, Graduate School of Biostudies, Kyoto University, Kyoto606-8315, Japan
| | - Yuhei Goto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Division of Integrated Life Science, Department of Gene Mechanisms, Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto606-8315, Japan
- Center for Living Systems Information Science, Graduate School of Biostudies, Kyoto University, Kyoto606-8315, Japan
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Division of Integrated Life Science, Department of Gene Mechanisms, Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto606-8315, Japan
- Center for Living Systems Information Science, Graduate School of Biostudies, Kyoto University, Kyoto606-8315, Japan
| |
Collapse
|
3
|
Creamer DR, Beynon RJ, Hubbard SJ, Ashe MP, Grant CM. Isoform-specific sequestration of protein kinase A fine-tunes intracellular signaling during heat stress. Cell Rep 2024; 43:114360. [PMID: 38865242 DOI: 10.1016/j.celrep.2024.114360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/24/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
Protein kinase A (PKA) is a conserved kinase crucial for fundamental biological processes linked to growth, development, and metabolism. The PKA catalytic subunit is expressed as multiple isoforms in diverse eukaryotes; however, their contribution to ensuring signaling specificity in response to environmental cues remains poorly defined. Catalytic subunit activity is classically moderated via interaction with an inhibitory regulatory subunit. Here, a quantitative mass spectrometry approach is used to examine heat-stress-induced changes in the binding of yeast Tpk1-3 catalytic subunits to the Bcy1 regulatory subunit. We show that Tpk3 is not regulated by Bcy1 binding but, instead, is deactivated upon heat stress via reversible sequestration into cytoplasmic granules. These "Tpk3 granules" are enriched for multiple PKA substrates involved in various metabolic processes, with the Hsp42 sequestrase required for their formation. Hence, regulated sequestration of Tpk3 provides a mechanism to control isoform-specific kinase signaling activity during stress conditions.
Collapse
Affiliation(s)
- Declan R Creamer
- Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Systems and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Simon J Hubbard
- Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Mark P Ashe
- Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Chris M Grant
- Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
4
|
Chen Y, Yao Z, Zhao L, Yu M, Chen B, Zou C. Redundant and Distinct Roles of Two 14-3-3 Proteins in Fusarium sacchari, Pathogen of Sugarcane Pokkah Boeng Disease. J Fungi (Basel) 2024; 10:257. [PMID: 38667928 PMCID: PMC11051555 DOI: 10.3390/jof10040257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/14/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Fusarium sacchari, a key pathogen of sugarcane, is responsible for the Pokkah boeng disease (PBD) in China. The 14-3-3 proteins have been implicated in critical developmental processes, including dimorphic transition, signal transduction, and carbon metabolism in various phytopathogenic fungi. However, their roles are poorly understood in F. sacchari. This study focused on the characterization of two 14-3-3 protein-encoding genes, FsBmh1 and FsBmh2, within F. sacchari. Both genes were found to be expressed during the vegetative growth stage, yet FsBmh1 was repressed at the sporulation stage in vitro. To elucidate the functions of these genes, the deletion mutants ΔFsBmh1 and ΔFsBmh2 were generated. The ΔFsBmh2 exhibited more pronounced phenotypic defects, such as impaired hyphal branching, septation, conidiation, spore germination, and colony growth, compared to the ΔFsBmh1. Notably, both knockout mutants showed a reduction in virulence, with transcriptome analysis revealing changes associated with the observed phenotypes. To further investigate the functional interplay between FsBmh1 and FsBmh2, we constructed and analyzed mutants with combined deletion and silencing (ΔFsBmh/siFsBmh) as well as overexpression (O-FsBmh). The combinations of ΔFsBmh1/siFsBmh2 or ΔFsBmh2/siFsBmh1 displayed more severe phenotypes than those with single allele deletions, suggesting a functional redundancy between the two 14-3-3 proteins. Yeast two-hybrid (Y2H) assays identified 20 proteins with pivotal roles in primary metabolism or diverse biological functions, 12 of which interacted with both FsBmh1 and FsBmh2. Three proteins were specifically associated with FsBmh1, while five interacted exclusively with FsBmh2. In summary, this research provides novel insights into the roles of FsBmh1 and FsBmh2 in F. sacchari and highlights potential targets for PBD management through the modulation of FsBmh functions.
Collapse
Affiliation(s)
- Yuejia Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Ministry & Province Co-Sponsored Center of Collaborative Innovation for Sugarcane Industry, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (Y.C.); (M.Y.)
| | - Ziting Yao
- Plant Protection Research Institute, Guangxi Academy of Agriculture Science, Nanning 530007, China;
| | - Lixian Zhao
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China;
| | - Mei Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Ministry & Province Co-Sponsored Center of Collaborative Innovation for Sugarcane Industry, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (Y.C.); (M.Y.)
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Ministry & Province Co-Sponsored Center of Collaborative Innovation for Sugarcane Industry, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (Y.C.); (M.Y.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China;
| | - Chengwu Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Ministry & Province Co-Sponsored Center of Collaborative Innovation for Sugarcane Industry, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (Y.C.); (M.Y.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China;
| |
Collapse
|
5
|
Nishimura A. Regulations and functions of proline utilization in yeast Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2024; 88:131-137. [PMID: 37994668 DOI: 10.1093/bbb/zbad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
The quality of alcoholic beverages strongly depends on the metabolic characteristics of the yeast cells being used. To control the aroma and the taste of alcoholic beverages, as well as the production of ethanol in them, it is thus crucial to select yeast cells with the proper characteristics. Grape must contain a high concentration of proline, an amino acid that can potentially be a useful nitrogen source. However, Saccharomyces cerevisiae cannot utilize proline during the wine-making process, resulting in the elevated levels of proline in wine and consequent negative effects on wine quality. In this article, I review and discuss recent discoveries about the inhibitory mechanisms and roles of proline utilization in yeast. The information can help in developing novel yeast strains that can improve fermentation and enhance the quality and production efficiency of wine.
Collapse
Affiliation(s)
- Akira Nishimura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
- Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| |
Collapse
|
6
|
Obsilova V, Obsil T. The yeast 14-3-3 proteins Bmh1 and Bmh2 regulate key signaling pathways. Front Mol Biosci 2024; 11:1327014. [PMID: 38328397 PMCID: PMC10847541 DOI: 10.3389/fmolb.2024.1327014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Cell signaling regulates several physiological processes by receiving, processing, and transmitting signals between the extracellular and intracellular environments. In signal transduction, phosphorylation is a crucial effector as the most common posttranslational modification. Selectively recognizing specific phosphorylated motifs of target proteins and modulating their functions through binding interactions, the yeast 14-3-3 proteins Bmh1 and Bmh2 are involved in catabolite repression, carbon metabolism, endocytosis, and mitochondrial retrograde signaling, among other key cellular processes. These conserved scaffolding molecules also mediate crosstalk between ubiquitination and phosphorylation, the spatiotemporal control of meiosis, and the activity of ion transporters Trk1 and Nha1. In humans, deregulation of analogous processes triggers the development of serious diseases, such as diabetes, cancer, viral infections, microbial conditions and neuronal and age-related diseases. Accordingly, the aim of this review article is to provide a brief overview of the latest findings on the functions of yeast 14-3-3 proteins, focusing on their role in modulating the aforementioned processes.
Collapse
Affiliation(s)
- Veronika Obsilova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division, BIOCEV, Vestec, Czechia
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
7
|
Using Kinetic Modelling to Infer Adaptations in Saccharomyces cerevisiae Carbohydrate Storage Metabolism to Dynamic Substrate Conditions. Metabolites 2023; 13:metabo13010088. [PMID: 36677014 PMCID: PMC9862193 DOI: 10.3390/metabo13010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023] Open
Abstract
Microbial metabolism is strongly dependent on the environmental conditions. While these can be well controlled under laboratory conditions, large-scale bioreactors are characterized by inhomogeneities and consequently dynamic conditions for the organisms. How Saccharomyces cerevisiae response to frequent perturbations in industrial bioreactors is still not understood mechanistically. To study the adjustments to prolonged dynamic conditions, we used published repeated substrate perturbation regime experimental data, extended it with proteomic measurements and used both for modelling approaches. Multiple types of data were combined; including quantitative metabolome, 13C enrichment and flux quantification data. Kinetic metabolic modelling was applied to study the relevant intracellular metabolic response dynamics. An existing model of yeast central carbon metabolism was extended, and different subsets of enzymatic kinetic constants were estimated. A novel parameter estimation pipeline based on combinatorial enzyme selection supplemented by regularization was developed to identify and predict the minimum enzyme and parameter adjustments from steady-state to dynamic substrate conditions. This approach predicted proteomic changes in hexose transport and phosphorylation reactions, which were additionally confirmed by proteome measurements. Nevertheless, the modelling also hints at a yet unknown kinetic or regulation phenomenon. Some intracellular fluxes could not be reproduced by mechanistic rate laws, including hexose transport and intracellular trehalase activity during substrate perturbation cycles.
Collapse
|
8
|
The evolution of post-translational modifications. Curr Opin Genet Dev 2022; 76:101956. [PMID: 35843204 DOI: 10.1016/j.gde.2022.101956] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022]
Abstract
Post-translational modifications (PTMs) are chemical modifications that can regulate the activity and function of proteins. From an evolutionary perspective, they also represent a fast mechanism for the generation of phenotypic diversity and divergence. Advances in mass spectrometry have now enabled the identification of over 600 distinct PTM classes collectively spanning an order of 106 unique sites. However, the chemical detection of PTMs has lagged far behind their functional characterisation, and relatively little is still known about the selective constraints that govern PTM evolution. In particular, the true fraction of PTM sites that are functional - and thus subject to selection - remains an open question. Here, I review advances made in the past two years towards understanding the evolution of PTMs and their associated enzymes.
Collapse
|
9
|
Lu AX, Lu AX, Pritišanac I, Zarin T, Forman-Kay JD, Moses AM. Discovering molecular features of intrinsically disordered regions by using evolution for contrastive learning. PLoS Comput Biol 2022; 18:e1010238. [PMID: 35767567 PMCID: PMC9275697 DOI: 10.1371/journal.pcbi.1010238] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 07/12/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023] Open
Abstract
A major challenge to the characterization of intrinsically disordered regions (IDRs), which are widespread in the proteome, but relatively poorly understood, is the identification of molecular features that mediate functions of these regions, such as short motifs, amino acid repeats and physicochemical properties. Here, we introduce a proteome-scale feature discovery approach for IDRs. Our approach, which we call "reverse homology", exploits the principle that important functional features are conserved over evolution. We use this as a contrastive learning signal for deep learning: given a set of homologous IDRs, the neural network has to correctly choose a held-out homolog from another set of IDRs sampled randomly from the proteome. We pair reverse homology with a simple architecture and standard interpretation techniques, and show that the network learns conserved features of IDRs that can be interpreted as motifs, repeats, or bulk features like charge or amino acid propensities. We also show that our model can be used to produce visualizations of what residues and regions are most important to IDR function, generating hypotheses for uncharacterized IDRs. Our results suggest that feature discovery using unsupervised neural networks is a promising avenue to gain systematic insight into poorly understood protein sequences.
Collapse
Affiliation(s)
- Alex X. Lu
- Department of Computer Science, University of Toronto, Toronto, Canada
| | - Amy X. Lu
- Department of Computer Science, University of Toronto, Toronto, Canada
| | - Iva Pritišanac
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
| | - Taraneh Zarin
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Julie D. Forman-Kay
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Alan M. Moses
- Department of Computer Science, University of Toronto, Toronto, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Analysis of protein phosphorylation using Phos-tag gels. J Proteomics 2022; 259:104558. [DOI: 10.1016/j.jprot.2022.104558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022]
|
11
|
Ren L, Hou YP, Zhu YY, Zhao FF, Duan YB, Wu LY, Duan XX, Zhang J, Zhou MG. Validamycin A Enhances the Interaction Between Neutral Trehalase and 14-3-3 Protein Bmh1 in Fusarium graminearum. PHYTOPATHOLOGY 2022; 112:290-298. [PMID: 34156266 DOI: 10.1094/phyto-05-21-0214-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In agriculture, Trehalase is considered the main target of the biological fungicide validamycin A, and the toxicology mechanism of validamycin A is unknown. 14-3-3 proteins, highly conserved proteins, participate in diverse cellular processes, including enzyme activation, protein localization, and acting as a molecular chaperone. In Saccharomyces cerevisiae, the 14-3-3 protein Bmh1could interact with Nth1 to respond to specific external stimuli. Here, we characterized FgNth, FgBmh1, and FgBmh2 in Fusarium graminearum. ΔFgNth, ΔFgBmh1, and ΔFgBmh2 displayed great growth defects and their peripheral tips hyphae generated more branches when compared with wild-type (WT) PH-1. When exposed to validamycin A as well as high osmotic and high temperature stresses, ΔFgNth, ΔFgBmh1, and ΔFgBmh2 showed more tolerance than WT. Both ΔFgNth and ΔFgBmh1 displayed reduced deoxynivalenol production but opposite for ΔFgBmh2, and all three deletion mutants showed reduced virulence on wheat coleoptiles. In addition, coimmunoprecipitation (Co-IP) experiments suggested that FgBmh1 and FgBmh2 both interact with FgNth, but no interaction was detected between FgBmh1 and FgBmh2 in our experiments. Further, validamycin A enhances the interaction between FgBmh1 and FgNth in a positive correlation under concentrations of 1 to 100 μg/ml. In addition, both high osmotic and high temperature stresses promote the interaction between FgBmh1 and FgNth. Co-IP assay also showed that neither FgBmh1 nor FgBmh2 could interact with FgPbs2, a MAPKK kinase in the high-osmolarity glycerol pathway. However, FgBmh2 but not FgBmh1 binds to the heat shock protein FgHsp70 in F. graminearum. Taken together, our results demonstrate that FgNth and FgBmh proteins are involved in growth and responses to external stresses and virulence; and validamycin enhanced the interaction between FgNth and FgBmh1in F. graminearum.
Collapse
Affiliation(s)
- Li Ren
- College of Plant Protection and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yi-Ping Hou
- College of Plant Protection and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuan-Ye Zhu
- College of Plant Protection and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095 China
| | - Fei-Fei Zhao
- College of Plant Protection and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095 China
| | - Ya-Bing Duan
- College of Plant Protection and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095 China
| | - Luo-Yu Wu
- College of Plant Protection and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiao-Xin Duan
- College of Plant Protection and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jie Zhang
- College of Plant Protection and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095 China
| | - Ming-Guo Zhou
- College of Plant Protection and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|