1
|
Hedayati N, Safaei Naeini M, Ale Sahebfosoul MM, Mafi A, Eshaghi Milasi Y, Rizaneh A, Nabavi N, Farahani N, Alimohammadi M, Ghezelbash B. MicroRNA dysregulation and its impact on apoptosis-related signaling pathways in myelodysplastic syndrome. Pathol Res Pract 2024; 261:155478. [PMID: 39079383 DOI: 10.1016/j.prp.2024.155478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/18/2024]
Abstract
Myelodysplastic syndrome (MDS) holds a unique position among blood cancers, encompassing a spectrum of blood-related disorders marked by impaired maturation of blood cell precursors, bone marrow abnormalities, genetic instability, and a higher likelihood of progressing to acute myeloid leukemia. MicroRNAs (miRNAs), short non-coding RNA molecules typically 18-24 nucleotides in length, are known to regulate gene expression and contribute to various biological processes, including cellular differentiation and programmed cell death. Additionally, miRNAs are involved in many aspects of cancer development, influencing cell growth, transformation, and apoptosis. In this study, we explore the impact of microRNAs on cellular apoptosis in MDS.
Collapse
Affiliation(s)
- Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mobina Safaei Naeini
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anahita Rizaneh
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Behrooz Ghezelbash
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Micheva ID, Atanasova SA. MicroRNA dysregulation in myelodysplastic syndromes: implications for diagnosis, prognosis, and therapeutic response. Front Oncol 2024; 14:1410656. [PMID: 39156702 PMCID: PMC11327013 DOI: 10.3389/fonc.2024.1410656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Myelodysplastic syndromes (MDS) are a group of malignant clonal hematological disorders with heterogeneous clinical course and risk of transformation to acute myeloid leukemia. Genetic and epigenetic dysregulation, including alterations in microRNA (miRNA) expression, plays a pivotal role in MDS pathogenesis influencing disease development and progression. MiRNAs, known for their regulatory roles in gene expression, have emerged as promising biomarkers in various malignant diseases. This review aims to explore the diagnostic and prognostic roles of miRNAs in MDS. We discuss research efforts aimed at understanding the clinical utility of miRNAs in MDS management. MiRNA dysregulation is linked to specific chromosomal abnormalities in MDS, providing insights into the molecular landscape of the disease. Circulating miRNAs in plasma offer a less invasive avenue for diagnostic and prognostic assessment, with distinct miRNA profiles identified in MDS patients. Additionally, we discuss investigations concerning the role of miRNAs as markers for treatment response to hypomethylating and immunomodulating agents, which could lead to improved treatment decision-making and monitoring. Despite significant progress, further research in larger patient cohorts is needed to fully elucidate the role of miRNAs in MDS pathogenesis and refine personalized approaches to patient care.
Collapse
Affiliation(s)
- Ilina Dimitrova Micheva
- Hematology Department, University Hospital St. Marina, Varna, Bulgaria
- Faculty of Medicine, Medical University of Varna, Varna, Bulgaria
| | - Svilena Angelova Atanasova
- Hematology Department, University Hospital St. Marina, Varna, Bulgaria
- Faculty of Medicine, Medical University of Varna, Varna, Bulgaria
| |
Collapse
|
3
|
Țichil I, Mitre I, Zdrenghea MT, Bojan AS, Tomuleasa CI, Cenariu D. A Review of Key Regulators of Steady-State and Ineffective Erythropoiesis. J Clin Med 2024; 13:2585. [PMID: 38731114 PMCID: PMC11084473 DOI: 10.3390/jcm13092585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Erythropoiesis is initiated with the transformation of multipotent hematopoietic stem cells into committed erythroid progenitor cells in the erythroblastic islands of the bone marrow in adults. These cells undergo several stages of differentiation, including erythroblast formation, normoblast formation, and finally, the expulsion of the nucleus to form mature red blood cells. The erythropoietin (EPO) pathway, which is activated by hypoxia, induces stimulation of the erythroid progenitor cells and the promotion of their proliferation and survival as well as maturation and hemoglobin synthesis. The regulation of erythropoiesis is a complex and dynamic interaction of a myriad of factors, such as transcription factors (GATA-1, STAT5), cytokines (IL-3, IL-6, IL-11), iron metabolism and cell cycle regulators. Multiple microRNAs are involved in erythropoiesis, mediating cell growth and development, regulating oxidative stress, erythrocyte maturation and differentiation, hemoglobin synthesis, transferrin function and iron homeostasis. This review aims to explore the physiology of steady-state erythropoiesis and to outline key mechanisms involved in ineffective erythropoiesis linked to anemia, chronic inflammation, stress, and hematological malignancies. Studying aberrations in erythropoiesis in various diseases allows a more in-depth understanding of the heterogeneity within erythroid populations and the development of gene therapies to treat hematological disorders.
Collapse
Affiliation(s)
- Ioana Țichil
- Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (I.M.); (M.T.Z.); (A.S.B.); (C.I.T.); (D.C.)
- Department of Haematology, “Ion Chiricuta” Institute of Oncology, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Ileana Mitre
- Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (I.M.); (M.T.Z.); (A.S.B.); (C.I.T.); (D.C.)
| | - Mihnea Tudor Zdrenghea
- Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (I.M.); (M.T.Z.); (A.S.B.); (C.I.T.); (D.C.)
- Department of Haematology, “Ion Chiricuta” Institute of Oncology, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Anca Simona Bojan
- Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (I.M.); (M.T.Z.); (A.S.B.); (C.I.T.); (D.C.)
- Department of Haematology, “Ion Chiricuta” Institute of Oncology, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Ciprian Ionuț Tomuleasa
- Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (I.M.); (M.T.Z.); (A.S.B.); (C.I.T.); (D.C.)
- Department of Haematology, “Ion Chiricuta” Institute of Oncology, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
- MEDFUTURE—Research Centre for Advanced Medicine, 8 Louis Pasteur Street, 400347 Cluj-Napoca, Romania
| | - Diana Cenariu
- Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (I.M.); (M.T.Z.); (A.S.B.); (C.I.T.); (D.C.)
- MEDFUTURE—Research Centre for Advanced Medicine, 8 Louis Pasteur Street, 400347 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Georgoulis V, Koumpis E, Hatzimichael E. The Role of Non-Coding RNAs in Myelodysplastic Neoplasms. Cancers (Basel) 2023; 15:4810. [PMID: 37835504 PMCID: PMC10571949 DOI: 10.3390/cancers15194810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Myelodysplastic syndromes or neoplasms (MDS) are a heterogeneous group of myeloid clonal disorders characterized by peripheral blood cytopenias, blood and marrow cell dysplasia, and increased risk of evolution to acute myeloid leukemia (AML). Non-coding RNAs, especially microRNAs and long non-coding RNAs, serve as regulators of normal and malignant hematopoiesis and have been implicated in carcinogenesis. This review presents a comprehensive summary of the biology and role of non-coding RNAs, including the less studied circRNA, siRNA, piRNA, and snoRNA as potential prognostic and/or predictive biomarkers or therapeutic targets in MDS.
Collapse
Affiliation(s)
- Vasileios Georgoulis
- Department of Haematology, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece; (V.G.); (E.K.)
| | - Epameinondas Koumpis
- Department of Haematology, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece; (V.G.); (E.K.)
| | - Eleftheria Hatzimichael
- Department of Haematology, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece; (V.G.); (E.K.)
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19 107, USA
| |
Collapse
|
5
|
Extracellular Vesicles and MicroRNA in Myelodysplastic Syndromes. Cells 2023; 12:cells12040658. [PMID: 36831325 PMCID: PMC9955013 DOI: 10.3390/cells12040658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The bone marrow niche plays an increasing role in the pathophysiogenesis of myelodysplastic syndromes. More specifically, mesenchymal stromal cells, which can secrete extracellular vesicles and their miRNA contents, modulate the fate of hematopoietic stem cells leading to leukemogenesis. Extracellular vesicles can mediate their miRNA and protein contents between nearby cells but also in the plasma of the patients, being potent tools for diagnosis and prognostic markers in MDS. They can be targeted by antisense miRNA or by modulators of the secretion of extracellular vesicles and could lead to future therapeutic directions in MDS.
Collapse
|
6
|
Stverakova T, Baranova I, Mikyskova P, Gajdosova B, Vosmikova H, Laco J, Palicka V, Parova H. Selection of endogenous control and identification of significant microRNA deregulations in cervical cancer. Front Oncol 2023; 13:1143691. [PMID: 37168377 PMCID: PMC10164982 DOI: 10.3389/fonc.2023.1143691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction Cervical cancer causes approximately 350,000 deaths each year. The availability of sensitive and specific diagnostic tests to detect cervical cancer in its early stages is essential to improve survival rates. Methods In this study, we compared two strategies for selecting endogenous controls: miRNA profiling by small-RNA sequencing and a commercially available microfluidic card with 30 recommended endogenous controls preloaded by the manufacturer. We used the RefFinder algorithm and coefficient of variation to select endogenous controls. We selected the combination of miR-181a-5p and miR-423-3p as the most optimal normalizer. In the second part of this study, we determined the differential expression (between tumor/non-tumor groups) of microRNA in cervical cancer FFPE tissue samples. We determined the comprehensive miRNA expression profile using small-RNA sequencing technology and verified the results by real-time PCR. We determined the relative expression of selected miRNAs using the 2-ΔΔCt method. Results We detected statistically significant upregulation of miR-320a-3p, miR-7704, and downregulation of miR-26a-5p in the tumor group compared to the control group. The combination of these miRNAs may have the potential to be utilized as a diagnostic panel for cervical cancer. Using ROC curve analysis, the proposed panel showed 93.33% specificity and 96.97% sensitivity with AUC = 0.985. Conclusions We proposed a combination of miR-181a-5p and miR-423-3p as optimal endogenous control and detected potentially significant miRNAs (miR-320a-3p, miR-7704, miR-26a-5p). After further validation of our results, these miRNAs could be used in a diagnostic panel for cervical cancer.
Collapse
Affiliation(s)
- T. Stverakova
- Department of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Hradec Králové, Czechia
| | - I. Baranova
- Department of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Hradec Králové, Czechia
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - P. Mikyskova
- Department of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Hradec Králové, Czechia
| | - B. Gajdosova
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Hradec Králové, Czechia
| | - H. Vosmikova
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Hradec Králové, Czechia
| | - J. Laco
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Hradec Králové, Czechia
| | - V. Palicka
- Department of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Hradec Králové, Czechia
| | - H. Parova
- Department of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Hradec Králové, Czechia
- *Correspondence: H. Parova,
| |
Collapse
|
7
|
Symeonidis A, Chatzilygeroudi T, Chondrou V, Sgourou A. Contingent Synergistic Interactions between Non-Coding RNAs and DNA-Modifying Enzymes in Myelodysplastic Syndromes. Int J Mol Sci 2022; 23:16069. [PMID: 36555712 PMCID: PMC9785516 DOI: 10.3390/ijms232416069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic stem cell disorders with maturation and differentiation defects exhibiting morphological dysplasia in one or more hematopoietic cell lineages. They are associated with peripheral blood cytopenias and by increased risk for progression into acute myelogenous leukemia. Among their multifactorial pathogenesis, age-related epigenetic instability and the error-rate DNA methylation maintenance have been recognized as critical factors for both the initial steps of their pathogenesis and for disease progression. Although lower-risk MDS is associated with an inflammatory bone marrow microenvironment, higher-risk disease is delineated by immunosuppression and clonal expansion. "Epigenetics" is a multidimensional level of gene regulation that determines the specific gene networks expressed in tissues under physiological conditions and guides appropriate chromatin rearrangements upon influence of environmental stimulation. Regulation of this level consists of biochemical modifications in amino acid residues of the histone proteins' N-terminal tails and their concomitant effects on chromatin structure, DNA methylation patterns in CpG dinucleotides and the tissue-specific non-coding RNAs repertoire, which are directed against various gene targets. The role of epigenetic modifications is widely recognized as pivotal both in gene expression control and differential molecular response to drug therapies in humans. Insights to the potential of synergistic cooperations of epigenetic mechanisms provide new avenues for treatment development to comfort human diseases with a known epigenetic shift, such as MDS. Hypomethylating agents (HMAs), such as epigenetic modulating drugs, have been widely used in the past years as first line treatment for elderly higher-risk MDS patients; however, just half of them respond to therapy and are benefited. Rational outcome predictors following epigenetic therapy in MDS and biomarkers associated with disease relapse are of high importance to improve our efforts in developing patient-tailored clinical approaches.
Collapse
Affiliation(s)
- Argiris Symeonidis
- Hematology Division & Stem Cell Transplantation Unit, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece
- Medical School University of Patras, University Campus, 26500 Patras, Greece
| | - Theodora Chatzilygeroudi
- Hematology Division & Stem Cell Transplantation Unit, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece
| | - Vasiliki Chondrou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Argyro Sgourou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| |
Collapse
|
8
|
Kong L, Xu J, Yu L, Liu S, Liu Z, Xiang J. Construction of PARPi Resistance-related Competing Endogenous RNA Network. Curr Genomics 2022; 23:262-274. [PMID: 36777878 PMCID: PMC9875538 DOI: 10.2174/1389202923666220527114108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022] Open
Abstract
Objective: Ovarian cancer is a kind of common gynecological malignancy in women. PARP inhibitors (PARPi) have been approved for ovarian cancer treatment. However, the primary and acquired resistance have limited the application of PARPi. The mechanisms remain to be elucidated. Methods: In this study, we characterized the expression profiles of mRNA and nonconding RNAs (ncRNAs) and constructed the regulatory networks based on RNA sequencing in PARPi Olaparib-induced ovarian cancer cells. Results: We found that the functions of the differentially expressed genes were enriched in "PI3K/AKT signaling pathway," "MAPK signaling pathway" and "metabolic process". The functions of DELs (cis) were enriched in "Human papillomavirus infection""tight junction" "MAPK signaling pathway". As the central regulator of ceRNAs, the differentially expressed miRNAs were enriched in "Human papillomavirus infection" "MAPK signaling pathway" "Ras signaling pathway". According to the degree of interaction, we identified 3 lncRNAs, 2 circRNAs, 7 miRNAs, and 12 mRNA as the key regulatory ceRNA axis, in which miR-320b was the important mediator. Conclusion: Here, we revealed the key regulatory lncRNA (circRNA)-miRNA-mRNA axis and their involved pathways in the PARPi resistant ovarian cancer cells. These findings provide new insights into exploring the ceRNA regulatory networks and developing new targets for PARPi resistance.
Collapse
Affiliation(s)
- Lili Kong
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Jiaqi Xu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, Beijing, China;,NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, Beijing, China
| | - Lijun Yu
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Shuo Liu
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Zongjian Liu
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Juanjuan Xiang
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, Beijing, China;,NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, Beijing, China,Address correspondence to this author at the Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, Beijing, China; Tel/Fax: 008673182355401; E-mail:
| |
Collapse
|
9
|
MiRNA-320a-5p contributes to the homeostasis of osteogenesis and adipogenesis in bone marrow mesenchymal stem cell. Regen Ther 2022; 20:32-40. [PMID: 35402661 PMCID: PMC8968203 DOI: 10.1016/j.reth.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/19/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022] Open
Abstract
Objective A number of miRNAs and their targets were dragged in the differentiation of bone marrow mesenchymal stem cells (BMSCs). We aimed to elaborate the underlying molecular mechanisms of miRNA-320a in the osteoblast and adipocyte differentiation. Methods Trauma-induced osteonecrosis of the femoral head (TIONFH) and normal control samples (n = 10 for each group) were collected, followed by miRNA chip analysis to identify the differentially expressed miRNAs. H&E staining was used to observe the pathological development of TIONFH. Lentiviral vector was used for overexpression and inhibition of miRNA-320a in vitro. Quantitative real-time PCR (qPCR), Western blotting and immunohistochemistry staining were employed to determine the expression of interested genes at mRNA or protein level. Luciferase report assay was employed to determine the binding of miRNA-320a and RUNX2. Alkaline phosphatase (ALP) and Alizarin red staining were performed to observe the osteogenesis and Oil red O staining were conducted to visualize the adipogenesis. Results Expression of miRNA-320a was up-regulated while RUNX2 expression was down-regulated in TIONFH than Normal control. Luciferase report assay confirmed that miRNA-320a directly targeted to the 3′UTR of RUNX2. miRNA-320a overexpression significantly declined the expressions of osteogenesis-related markers: RUNX2, OSTERIX, Collagen I, Osteocalcin and Osteopontin. ALP and Alizarin red staining confirmed the inhibition function of miRNA-320a in osteogenesis of BMSCs. miRNA-320a inhibition significantly decreased the expression of adipogenesis-related markers: AP2, C/EBPα, FABP4 and PPARγ. Oil Red O staining confirmed the miRNA-320a inhibition reduced adipogenesis of BMSCs. Conclusions miRNA-320a inhibits osteoblast differentiation via targeting RUNX2 and promotes adipocyte differentiation of BMSCs.
Collapse
|
10
|
Khan MM, Serajuddin M, Malik MZ. Identification of microRNA and gene interactions through bioinformatic integrative analysis for revealing candidate signatures in prostate cancer. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Crisafulli L, Ficara F. Micro-RNAs: A safety net to protect hematopoietic stem cell self-renewal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1693. [PMID: 34532984 PMCID: PMC9285953 DOI: 10.1002/wrna.1693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/05/2022]
Abstract
The hematopoietic system is sustained over time by a small pool of hematopoietic stem cells (HSCs). They reside at the apex of a complex hierarchy composed of cells with progressively more restricted lineage potential, regenerative capacity, and with different proliferation characteristics. Like other somatic stem cells, HSCs are endowed with long-term self-renewal and multipotent differentiation ability, to sustain the high turnover of mature cells such as erythrocytes or granulocytes, and to rapidly respond to acute peripheral stresses including bleeding, infections, or inflammation. Maintenance of both attributes over time, and of the proper balance between these opposite features, is crucial to ensure the homeostasis of the hematopoietic system. Micro-RNAs (miRNAs) are short non-coding RNAs that regulate gene expression posttranscriptionally upon binding to specific mRNA targets. In the past 10 years they have emerged as important players for preserving the HSC pool by acting on several biological mechanisms, such as maintenance of the quiescent state while preserving proliferation ability, prevention of apoptosis, premature differentiation, lineage skewing, excessive expansion, or retention within the BM niche. miRNA-mediated posttranscriptional fine-tuning of all these processes constitutes a safety mechanism to protect HSCs, by complementing the action of transcription factors and of other regulators and avoiding unwanted expansion or aplasia. The current knowledge of miRNAs function in different aspects of HSC biology, including consequences of aberrant miRNA expression, will be reviewed; yet unsolved issues will be discussed. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Laura Crisafulli
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNRMilanItaly
- IRCCS Humanitas Research HospitalMilanItaly
| | - Francesca Ficara
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNRMilanItaly
- IRCCS Humanitas Research HospitalMilanItaly
| |
Collapse
|
12
|
Cirillo PDR, Margiotti K, Fabiani M, Barros-Filho MC, Sparacino D, Cima A, Longo SA, Cupellaro M, Mesoraca A, Giorlandino C. Multi-analytical test based on serum miRNAs and proteins quantification for ovarian cancer early detection. PLoS One 2021; 16:e0255804. [PMID: 34352040 PMCID: PMC8341627 DOI: 10.1371/journal.pone.0255804] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/25/2021] [Indexed: 11/25/2022] Open
Abstract
Advanced ovarian cancer is one of the most lethal gynecological tumor, mainly due to late diagnoses and acquired drug resistance. MicroRNAs (miRNAs) are small-non coding RNA acting as tumor suppressor/oncogenes differentially expressed in normal and epithelial ovarian cancer and has been recognized as a new class of tumor early detection biomarkers as they are released in blood fluids since tumor initiation process. Here, we evaluated by droplet digital PCR (ddPCR) circulating miRNAs in serum samples from healthy (N = 105) and untreated ovarian cancer patients (stages I to IV) (N = 72), grouped into a discovery/training and clinical validation set with the goal to identify the best classifier allowing the discrimination between earlier ovarian tumors from health controls women. The selection of 45 candidate miRNAs to be evaluated in the discovery set was based on miRNAs represented in ovarian cancer explorative commercial panels. We found six miRNAs showing increased levels in the blood of early or late-stage ovarian cancer groups compared to healthy controls. The serum levels of miR-320b and miR-141-3p were considered independent markers of malignancy in a multivariate logistic regression analysis. These markers were used to train diagnostic classifiers comprising miRNAs (miR-320b and miR-141-3p) and miRNAs combined with well-established ovarian cancer protein markers (miR-320b, miR-141-3p, CA-125 and HE4). The miRNA-based classifier was able to accurately discriminate early-stage ovarian cancer patients from health-controls in an independent sample set (Sensitivity = 80.0%, Specificity = 70.3%, AUC = 0.789). In addition, the integration of the serum proteins in the model markedly improved the performance (Sensitivity = 88.9%, Specificity = 100%, AUC = 1.000). A cross-study validation was carried out using four data series obtained from Gene Expression Omnibus (GEO), corroborating the performance of the miRNA-based classifier (AUCs ranging from 0.637 to 0.979). The clinical utility of the miRNA model should be validated in a prospective cohort in order to investigate their feasibility as an ovarian cancer early detection tool.
Collapse
Affiliation(s)
| | - Katia Margiotti
- Altamedica Center, Human Genetics Laboratories, Altamedica Main Center, Rome, Italy
| | - Marco Fabiani
- Altamedica Center, Human Genetics Laboratories, Altamedica Main Center, Rome, Italy
| | - Mateus C. Barros-Filho
- Department of Head and Neck Surgery, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - David Sparacino
- Altamedica Center, Human Genetics Laboratories, Altamedica Main Center, Rome, Italy
| | - Antonella Cima
- Altamedica Center, Human Genetics Laboratories, Altamedica Main Center, Rome, Italy
| | - Salvatore A. Longo
- Altamedica Center, Human Genetics Laboratories, Altamedica Main Center, Rome, Italy
| | - Marina Cupellaro
- Altamedica, Department of Biochemistry, Altamedica Main Centre, Rome, Italy
| | - Alvaro Mesoraca
- Altamedica Center, Human Genetics Laboratories, Altamedica Main Center, Rome, Italy
| | - Claudio Giorlandino
- Altamedica Center, Human Genetics Laboratories, Altamedica Main Center, Rome, Italy
- Altamedica, Department of Biochemistry, Altamedica Main Centre, Rome, Italy
- Altamedica, Department of Prenatal Diagnosis, Fetal-Maternal Medical Center, Rome, Italy
| |
Collapse
|