1
|
Sorrells JE, Park J, Aksamitiene E, Marjanovic M, Martin EM, Chaney EJ, Higham AM, Cradock KA, Liu ZG, Boppart SA. Label-free nonlinear optical signatures of extracellular vesicles in liquid and tissue biopsies of human breast cancer. Sci Rep 2024; 14:5528. [PMID: 38448508 PMCID: PMC10917806 DOI: 10.1038/s41598-024-55781-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Extracellular vesicles (EVs) have been implicated in metastasis and proposed as cancer biomarkers. However, heterogeneity and small size makes assessments of EVs challenging. Often, EVs are isolated from biofluids, losing spatial and temporal context and thus lacking the ability to access EVs in situ in their native microenvironment. This work examines the capabilities of label-free nonlinear optical microscopy to extract biochemical optical metrics of EVs in ex vivo tissue and EVs isolated from biofluids in cases of human breast cancer, comparing these metrics within and between EV sources. Before surgery, fresh urine and blood serum samples were obtained from human participants scheduled for breast tumor surgery (24 malignant, 6 benign) or healthy participants scheduled for breast reduction surgery (4 control). EVs were directly imaged both in intact ex vivo tissue that was removed during surgery and in samples isolated from biofluids by differential ultracentrifugation. Isolated EVs and freshly excised ex vivo breast tissue samples were imaged with custom nonlinear optical microscopes to extract single-EV optical metabolic signatures of NAD(P)H and FAD autofluorescence. Optical metrics were significantly altered in cases of malignant breast cancer in biofluid-derived EVs and intact tissue EVs compared to control samples. Specifically, urinary isolated EVs showed elevated NAD(P)H fluorescence lifetime in cases of malignant cancer, serum-derived isolated EVs showed decreased optical redox ratio in stage II cancer, but not earlier stages, and ex vivo breast tissue showed an elevated number of EVs in cases of malignant cancer. Results further indicated significant differences in the measured optical metabolic signature based on EV source (urine, serum and tissue) within individuals.
Collapse
Affiliation(s)
- Janet E Sorrells
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jaena Park
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Edita Aksamitiene
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marina Marjanovic
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- NIH/NIBIB P41 Center for Label-Free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Elisabeth M Martin
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Eric J Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, Urbana, IL, 61801, USA
| | | | | | - Zheng G Liu
- Carle Foundation Hospital, Urbana, IL, 61801, USA
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- NIH/NIBIB P41 Center for Label-Free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Cancer Center at Illinois, Urbana, IL, 61801, USA.
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Interdisciplinary Health Sciences Institute, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
2
|
Leggio L, Paternò G, Vivarelli S, Bonasera A, Pignataro B, Iraci N, Arrabito G. Label-free approaches for extracellular vesicle detection. iScience 2023; 26:108105. [PMID: 37867957 PMCID: PMC10589885 DOI: 10.1016/j.isci.2023.108105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
Extracellular vesicles (EVs) represent pivotal mediators in cell-to-cell communication. They are lipid-membranous carriers of several biomolecules, which can be produced by almost all cells. In the current Era of precision medicine, EVs gained growing attention thanks to their potential in both biomarker discovery and nanotherapeutics applications. However, current technical limitations in isolating and/or detecting EVs restrain their standard use in clinics. This review explores all the state-of-the-art analytical technologies which are currently overcoming these issues. On one end, several innovative optical-, electrical-, and spectroscopy-based detection methods represent advantageous label-free methodologies for faster EV detection. On the other end, microfluidics-based lab-on-a-chip tools support EV purification from low-concentrated samples. Altogether, these technologies will strengthen the routine application of EVs in clinics.
Collapse
Affiliation(s)
- Loredana Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Greta Paternò
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, Messina, Italy
| | - Aurelio Bonasera
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, building 17, 90128 Palermo, Italy
| | - Bruno Pignataro
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, building 17, 90128 Palermo, Italy
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Arrabito
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, building 17, 90128 Palermo, Italy
| |
Collapse
|
3
|
Sánchez-Hernández A, Polleys CM, Georgakoudi I. Formalin fixation and paraffin embedding interfere with the preservation of optical metabolic assessments based on endogenous NAD(P)H and FAD two-photon excited fluorescence. BIOMEDICAL OPTICS EXPRESS 2023; 14:5238-5253. [PMID: 37854574 PMCID: PMC10581792 DOI: 10.1364/boe.498297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 10/20/2023]
Abstract
Endogenous NAD(P)H and FAD two-photon excited fluorescence (TPEF) images provide functional metabolic information with high spatial resolution for a wide range of living specimens. Preservation of metabolic function optical metrics upon fixation would facilitate studies which assess the impact of metabolic changes in the context of numerous diseases. However, robust assessments of the impact of formalin fixation, paraffin embedding, and sectioning on the preservation of optical metabolic readouts are lacking. Here, we evaluate intensity and lifetime images at excitation/emission settings optimized for NAD(P)H and FAD TPEF detection from freshly excised murine oral epithelia and corresponding bulk and sectioned fixed tissues. We find that fixation impacts the overall intensity as well as the intensity fluctuations of the images acquired. Accordingly, the depth-dependent variations of the optical redox ratio (defined as FAD/(NAD(P)H + FAD)) across squamous epithelia are not preserved following fixation. This is consistent with significant changes in the 755 nm excited spectra, which reveal broadening upon fixation and additional distortions upon paraffin embedding and sectioning. Analysis of fluorescence lifetime images acquired for excitation/emission settings optimized for NAD(P)H TPEF detection indicate that fixation alters the long lifetime of the observed fluorescence and the long lifetime intensity fraction. These parameters as well as the short TPEF lifetime are significantly modified upon embedding and sectioning. Thus, our studies highlight that the autofluorescence products formed during formalin fixation, paraffin embedding and sectioning overlap highly with NAD(P)H and FAD emission and limit the potential to utilize such tissues to assess metabolic activity.
Collapse
Affiliation(s)
| | | | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
4
|
Park J, Sorrells JE, Chaney EJ, Abdelrahman AM, Yonkus JA, Leiting JL, Nelson H, Harrington JJ, Aksamitiene E, Marjanovic M, Groves PD, Bushell C, Truty MJ, Boppart SA. In vivo label-free optical signatures of chemotherapy response in human pancreatic ductal adenocarcinoma patient-derived xenografts. Commun Biol 2023; 6:980. [PMID: 37749184 PMCID: PMC10520051 DOI: 10.1038/s42003-023-05368-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023] Open
Abstract
Pancreatic cancer is a devastating disease often detected at later stages, necessitating swift and effective chemotherapy treatment. However, chemoresistance is common and its mechanisms are poorly understood. Here, label-free multi-modal nonlinear optical microscopy was applied to study microstructural and functional features of pancreatic tumors in vivo to monitor inter- and intra-tumor heterogeneity and treatment response. Patient-derived xenografts with human pancreatic ductal adenocarcinoma were implanted into mice and characterized over five weeks of intraperitoneal chemotherapy (FIRINOX or Gem/NabP) with known responsiveness/resistance. Resistant and responsive tumors exhibited a similar initial metabolic response, but by week 5 the resistant tumor deviated significantly from the responsive tumor, indicating that a representative response may take up to five weeks to appear. This biphasic metabolic response in a chemoresistant tumor reveals the possibility of intra-tumor spatiotemporal heterogeneity of drug responsiveness. These results, though limited by small sample size, suggest the possibility for further work characterizing chemoresistance mechanisms using nonlinear optical microscopy.
Collapse
Affiliation(s)
- Jaena Park
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Janet E Sorrells
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Eric J Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Amro M Abdelrahman
- Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jennifer A Yonkus
- Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jennifer L Leiting
- Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Heidi Nelson
- Division of Research and Optimal Patient Care, Cancer Programs, American College of Surgeons, Rochester, MN, 55905, USA
| | | | - Edita Aksamitiene
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marina Marjanovic
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- NIH/NIBIB Center for Label-free Imaging and Multiscale Biophotonics, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Peter D Groves
- National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Colleen Bushell
- National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Mark J Truty
- Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- NIH/NIBIB Center for Label-free Imaging and Multiscale Biophotonics, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Interdisciplinary Health Sciences Institute, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
5
|
Bao C, Xiang H, Chen Q, Zhao Y, Gao Q, Huang F, Mao L. A Review of Labeling Approaches Used in Small Extracellular Vesicles Tracing and Imaging. Int J Nanomedicine 2023; 18:4567-4588. [PMID: 37588627 PMCID: PMC10426735 DOI: 10.2147/ijn.s416131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023] Open
Abstract
Small extracellular vesicles (sEVs), a subset of extracellular vesicles (EVs) originating from the endosomal compartment, are a kind of lipid bilayer vesicles released by almost all types of cells, serving as natural carriers of nucleic acids, proteins, and lipids for intercellular communication and transfer of bioactive molecules. The current findings suggest their vital role in physiological and pathological processes. Various sEVs labeling techniques have been developed for the more advanced study of the function, mode of action, bio-distribution, and related information of sEVs. In this review, we summarize the existing and emerging sEVs labeling techniques, including fluorescent labeling, radioisotope labeling, nanoparticle labeling, chemical contrast agents labeling, and label-free technique. These approaches will pave the way for an in-depth study of sEVs. We present a systematic and comprehensive review of the principles, advantages, disadvantages, and applications of these techniques, to help promote applications of these labeling approaches in future research on sEVs.
Collapse
Affiliation(s)
- Chenxuan Bao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, People’s Republic of China
| | - Huayuan Xiang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, People’s Republic of China
| | - Qiaoqiao Chen
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, People’s Republic of China
- Department of Laboratory Medicine, the Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Yuxue Zhao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, People’s Republic of China
- Department of Laboratory Medicine, the Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Qianqian Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, People’s Republic of China
| | - Feng Huang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, People’s Republic of China
| | - Lingxiang Mao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, People’s Republic of China
- Department of Laboratory Medicine, the Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| |
Collapse
|
6
|
Sánchez-Hernández A, Polleys CM, Georgakoudi I. Formalin fixation and paraffin embedding interfere with preservation of optical metabolic assessments based on endogenous NAD(P)H and FAD two photon excited fluorescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545363. [PMID: 37398103 PMCID: PMC10312786 DOI: 10.1101/2023.06.16.545363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Endogenous NAD(P)H and FAD two-photon excited fluorescence (TPEF) images provide functional metabolic information with high spatial resolution for a wide range of living specimens. Preservation of metabolic function optical metrics upon fixation would facilitate studies which assess the impact of metabolic changes in the context of numerous diseases. However, robust assessments of the impact of formalin fixation, paraffin embedding, and sectioning on the preservation of optical metabolic readouts are lacking. Here, we evaluate intensity and lifetime images at excitation/emission settings optimized for NAD(P)H and FAD TPEF detection from freshly excised murine oral epithelia and corresponding bulk and sectioned fixed tissues. We find that fixation impacts the overall intensity as well as the intensity fluctuations of the images acquired. Accordingly, the depth-dependent variations of the optical redox ratio (defined as FAD/(NAD(P)H + FAD)) across squamous epithelia are not preserved following fixation. This is consistent with significant changes in the 755 nm excited spectra, which reveal broadening upon fixation and additional distortions upon paraffin embedding and sectioning. Analysis of fluorescence lifetime images acquired for excitation/emission settings optimized for NAD(P)H TPEF detection indicate that fixation alters the long lifetime of the observed fluorescence and the long lifetime intensity fraction. These parameters as well as the short TPEF lifetime are significantly modified upon embedding and sectioning. Thus, our studies highlight that the autofluorescence products formed during formalin fixation, paraffin embedding and sectioning overlap highly with NAD(P)H and FAD emission and limit the potential to utilize such tissues to assess metabolic activity.
Collapse
Affiliation(s)
| | | | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA, US
| |
Collapse
|
7
|
Marie R, Rasmussen MK, Pedersen JN. Quantifying DNA-mediated liposome fusion kinetics with a fluidic trap. SOFT MATTER 2023; 19:2815-2822. [PMID: 37000534 DOI: 10.1039/d2sm01658c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Self-assembly of synthetic lipid vesicles via lipid membrane fusion is a versatile tool for creating biomimetic nano- and micron-sized particles. These so-called liposomes are used in the development of biosensing platforms, design of drug delivery schemes, and for investigating protein-mediated fusion of biological membranes. This work demonstrates DNA-induced liposome fusion in a nanofluidic trap where the reaction occurs in a 15 femtoliter volume at homogeneous mixing. In contrast to current methods for fusion in bulk, we show that the fusion reaction follows second-order kinetics with a fusion rate of (170 ± 30)/(M-1s-1) times the square number of DNA molecules per liposome. The nanofluidic trapping gives a full characterization of the size and charge of the liposomes before and after fusion. The chip-based approach limits the amount of sample (down to 440 vesicles) and can be parallelized for systematic studies in synthetic biology, diagnostics, and drug delivery.
Collapse
Affiliation(s)
- Rodolphe Marie
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads Build. 345C, 2800 Kongens Lyngby, Denmark.
| | - Martin K Rasmussen
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads Build. 345C, 2800 Kongens Lyngby, Denmark.
| | - Jonas N Pedersen
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads Build. 345C, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
8
|
De Sousa KP, Rossi I, Abdullahi M, Ramirez MI, Stratton D, Inal JM. Isolation and characterization of extracellular vesicles and future directions in diagnosis and therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1835. [PMID: 35898167 PMCID: PMC10078256 DOI: 10.1002/wnan.1835] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 01/31/2023]
Abstract
Extracellular vesicles (EVs) are a unique and heterogeneous class of lipid bilayer nanoparticles secreted by most cells. EVs are regarded as important mediators of intercellular communication in both prokaryotic and eukaryotic cells due to their ability to transfer proteins, lipids and nucleic acids to recipient cells. In addition to their physiological role, EVs are recognized as modulators in pathological processes such as cancer, infectious diseases, and neurodegenerative disorders, providing new potential targets for diagnosis and therapeutic intervention. For a complete understanding of EVs as a universal cellular biological system and its translational applications, optimal techniques for their isolation and characterization are required. Here, we review recent progress in those techniques, from isolation methods to characterization techniques. With interest in therapeutic applications of EVs growing, we address fundamental points of EV-related cell biology, such as cellular uptake mechanisms and their biodistribution in tissues as well as challenges to their application as drug carriers or biomarkers for less invasive diagnosis or as immunogens. This article is categorized under: Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Karina P. De Sousa
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
| | - Izadora Rossi
- School of Human SciencesLondon Metropolitan UniversityLondonUK
- Federal University of ParanáCuritibaBrazil
| | | | - Marcel Ivan Ramirez
- Federal University of ParanáCuritibaBrazil
- Carlos Chagas Institute (ICC)CuritibaBrazil
| | - Dan Stratton
- Open UniversityThe School of Life, Health and Chemical SciencesMilton KeynesUK
| | - Jameel Malhador Inal
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
- School of Human SciencesLondon Metropolitan UniversityLondonUK
| |
Collapse
|
9
|
The unperturbed picture: Label-free real-time optical monitoring of cells and extracellular vesicles for therapy. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Borisov AV, Zakharova OA, Samarinova AA, Yunusova NV, Cheremisina OV, Kistenev YV. A Criterion of Colorectal Cancer Diagnosis Using Exosome Fluorescence-Lifetime Imaging. Diagnostics (Basel) 2022; 12:diagnostics12081792. [PMID: 35892503 PMCID: PMC9394250 DOI: 10.3390/diagnostics12081792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
This study was aimed to investigate the applicability of the exosome fluorescence-lifetime imaging microscopy (FLIM) for colorectal cancer (CRC) diagnosis. Differential ultra-centrifugation was used to extract exosomes from the blood plasma of 11 patients with colon polyps (CPs) and 13 patients with CRC at the T2-4, N0-3, and M0-1 stages. Analysis was performed using a two-photon FLIM device. In total, 165 and 195 FLIM images were recorded for the CP and CCR patient groups, respectively. Two classes of exosomes differentiated by autofluorescence average lifetime tm were discovered in the samples. The first class of exosomes with tm = (0.21 ± 0.06) ns was mostly found in samples from CRC patients. The second class with tm = (0.43 ± 0.19) ns was mostly found in samples from CP patients. The relative number of “CRC-associated” exosomes Nch in the FLIM dataset was shown to be very small for the CP patient group and large for the CRC patient group. This difference was statistically significant. Therefore, the suggested CRS diagnostics criterion can be as follows. If Nch > 0.5, the probability of CRC is high. If Nch < 0.3, the probability of CRC is low.
Collapse
Affiliation(s)
- Alexey V. Borisov
- Laboratory of Laser Molecular Imaging and Machine Learning, National Research Tomsk State University, 634050 Tomsk, Russia; (A.V.B.); (O.A.Z.); (A.A.S.)
| | - Olga A. Zakharova
- Laboratory of Laser Molecular Imaging and Machine Learning, National Research Tomsk State University, 634050 Tomsk, Russia; (A.V.B.); (O.A.Z.); (A.A.S.)
| | - Alisa A. Samarinova
- Laboratory of Laser Molecular Imaging and Machine Learning, National Research Tomsk State University, 634050 Tomsk, Russia; (A.V.B.); (O.A.Z.); (A.A.S.)
| | - Natalia V. Yunusova
- Laboratory of Tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center RAS, 634009 Tomsk, Russia; (N.V.Y.); (O.V.C.)
| | - Olga V. Cheremisina
- Laboratory of Tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center RAS, 634009 Tomsk, Russia; (N.V.Y.); (O.V.C.)
| | - Yury V. Kistenev
- Laboratory of Laser Molecular Imaging and Machine Learning, National Research Tomsk State University, 634050 Tomsk, Russia; (A.V.B.); (O.A.Z.); (A.A.S.)
- Correspondence:
| |
Collapse
|
11
|
Changing Perspectives from Oxidative Stress to Redox Signaling-Extracellular Redox Control in Translational Medicine. Antioxidants (Basel) 2022; 11:antiox11061181. [PMID: 35740078 PMCID: PMC9228063 DOI: 10.3390/antiox11061181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/07/2022] Open
Abstract
Extensive research has changed the understanding of oxidative stress that has been linked to every major disease. Today we distinguish oxidative eu- and distress, acknowledging that redox modifications are crucial for signal transduction in the form of specific thiol switches. Long underestimated, reactive species and redox proteins of the Thioredoxin (Trx) family are indeed essential for physiological processes. Moreover, extracellular redox proteins, low molecular weight thiols and thiol switches affect signal transduction and cell–cell communication. Here, we highlight the impact of extracellular redox regulation for health, intermediate pathophenotypes and disease. Of note, recent advances allow the analysis of redox changes in body fluids without using invasive and expensive techniques. With this new knowledge in redox biochemistry, translational strategies can lead to innovative new preventive and diagnostic tools and treatments in life sciences and medicine.
Collapse
|
12
|
Ejidike I, McCracken RA, Bajek D. Modelling two-laser asynchronous optical sampling using a single 2-section semiconductor mode-locked laser diode. OPTICS EXPRESS 2022; 30:3289-3301. [PMID: 35209590 DOI: 10.1364/oe.445173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
We present a theoretical overview and a proposed methodology which demonstrates SLASOPS (single laser asynchronous optical sampling) as a single-laser alternative to the conventional two-laser ASOPS technique. We propose the optical and electronic setup in which SLASOPS may be achieved experimentally with a single 2-section mode-locked laser diode as the pulsed-laser source and simulate how asynchronous optical sampling is generated and detected theoretically. We highlight the technique's ability to provide customizable scan ranges, scan rates and scan resolutions through variation of the imbalance in the interferometer arms and by tuning the repetition rate of the pulsed-laser source, which we present as optical cross-correlations between pulse pairs. We incorporate jitter into the system mathematically to assess the limitations on resolving both intensity and interferometric cross-correlation traces and to investigate the effects of averaging such traces in real-time. Analysis is then carried out on cross-correlation trace amplitude, width, and temporal positioning in order to discuss the technique's ability for deployment in typical optical sampling applications. In particular we note SLASOPS' ability to conduct asynchronous optical sampling using only a single laser, halving both the expense and technical requirements, doing so at megahertz scan rates, and within a spatial precision of just a few microns.
Collapse
|
13
|
Yaari Z, Horoszko CP, Antman-Passig M, Kim M, Nguyen FT, Heller DA. Emerging technologies in cancer detection. Cancer Biomark 2022. [DOI: 10.1016/b978-0-12-824302-2.00011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Park J, Kamerer RL, Marjanovic M, Sorrells JE, You S, Barkalifa R, Selting KA, Boppart SA. Label-free optical redox ratio from urinary extracellular vesicles as a screening biomarker for bladder cancer. Am J Cancer Res 2022; 12:2068-2083. [PMID: 35693090 PMCID: PMC9185616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/30/2022] [Indexed: 04/29/2023] Open
Abstract
Extracellular vesicles (EVs) have been studied for their potential applications in cancer screening, diagnosis, and treatment monitoring. Most studies have focused on the bulk content of EVs; however, it is also informative to investigate their metabolic status, and changes under different physiological and environmental conditions. In this study, noninvasive, multimodal, label-free nonlinear optical microscopy was used to evaluate the optical redox ratio of large EVs (microvesicles) isolated from the urine of 11 dogs in three cohorts (4 healthy, 4 transitional cell carcinoma (TCC) of the bladder, and 3 prostate cancer). The optical redox ratio is a common metric comparing the autofluorescence intensities of metabolic cofactors FAD and NAD(P)H to characterize the metabolic profile of cells and tissues, and has recently been applied to EVs. The optical redox ratio revealed that dogs with TCC of the bladder had a more than 2-fold increase in NAD(P)H-rich urinary EVs (uEVs) when compared to healthy dogs, whereas dogs with prostate cancer had no significant difference. The optical redox ratio values of uEVs kept at -20°C for 48 hours were significantly different from those of freshly isolated uEVs, indicating that this parameter is more reliable when assessing freshly isolated uEVs. These results suggest that the label-free optical redox ratio of uEVs, indicating relative rates of glycolysis and oxidative phosphorylation of parent cells and tissues, may act as a potential screening biomarker for bladder cancer.
Collapse
Affiliation(s)
- Jaena Park
- Department of Bioengineering, University of Illinois at Urbana-ChampaignIL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-ChampaignIL, USA
| | - Rebecca L Kamerer
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-ChampaignIL, USA
| | - Marina Marjanovic
- Department of Bioengineering, University of Illinois at Urbana-ChampaignIL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-ChampaignIL, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-ChampaignIL, USA
| | - Janet E Sorrells
- Department of Bioengineering, University of Illinois at Urbana-ChampaignIL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-ChampaignIL, USA
| | - Sixian You
- Department of Bioengineering, University of Illinois at Urbana-ChampaignIL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-ChampaignIL, USA
| | - Ronit Barkalifa
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-ChampaignIL, USA
| | - Kimberly A Selting
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-ChampaignIL, USA
| | - Stephen A Boppart
- Department of Bioengineering, University of Illinois at Urbana-ChampaignIL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-ChampaignIL, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-ChampaignIL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-ChampaignIL, USA
- Cancer Center at Illinois, University of Illinois at Urbana-ChampaignIL, USA
| |
Collapse
|
15
|
Bajek D, Cataluna MA. Megahertz scan rates enabled by optical sampling by repetition-rate tuning. Sci Rep 2021; 11:22995. [PMID: 34837019 PMCID: PMC8626425 DOI: 10.1038/s41598-021-02502-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/17/2021] [Indexed: 11/09/2022] Open
Abstract
We demonstrate, for the first time, optical sampling by repetition-rate tuning (OSBERT) at record megahertz scan rates. A low-cost, tunable and extremely compact 2-section passively mode-locked laser diode (MLLD) is used as the pulsed laser source, whose repetition rate can be modulated electronically through biasing of the saturable absorber section. The pulsed output is split into two arms comparable to an imbalanced Michelson interferometer, where one arm is significantly longer than the other (a passive delay line, or PDL). The resulting electronic detuning of the repetition rate gives rise to a temporal delay between pulse pairs at a detector; the basis for time-resolved spectroscopy. Through impedance-matching, we developed a new system whereby a sinusoidal electrical bias could be applied to the absorber section of the MLLD via a signal generator, whose frequency could be instantly increased from sub-hertz through to megahertz modulation frequencies, corresponding to a ground-breaking megahertz optical sampling scan rate, which was experimentally demonstrated by the real-time acquisition of a cross-correlation trace of two ultrashort optical pulses within just 1 microsecond of real time. This represents scan rates which are three orders of magnitude greater than the recorded demonstrations of OSBERT to date, and paves the way for highly competitive scan rates across the field of time-resolved spectroscopy and applications therein which range from pump probe spectroscopy to metrology.
Collapse
Affiliation(s)
- D Bajek
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - M A Cataluna
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| |
Collapse
|
16
|
Sorrells JE, Iyer RR, Yang L, Bower AJ, Spillman DR, Chaney EJ, Tu H, Boppart SA. Real-time pixelwise phasor analysis for video-rate two-photon fluorescence lifetime imaging microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:4003-4019. [PMID: 34457395 PMCID: PMC8367245 DOI: 10.1364/boe.424533] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 05/06/2023]
Abstract
Two-photon fluorescence lifetime imaging microscopy (FLIM) is a widely used technique in biomedical optical imaging. Presently, many two-photon time-domain FLIM setups are limited by long acquisition and postprocessing times that decrease data throughput and inhibit the ability to image fast sub-second processes. Here, we present a versatile two-photon FLIM setup capable of video-rate (up to 25 fps) imaging with graphics processing unit (GPU)-accelerated pixelwise phasor analysis displayed and saved simultaneously with acquisition. The system uses an analog output photomultiplier tube in conjunction with 12-bit digitization at 3.2 GHz to overcome the limited maximum acceptable photon rate associated with the photon counting electronics in many FLIM systems. This allows for higher throughput FLIM acquisition and analysis, and additionally enables the user to assess sample fluorescence lifetime in real-time. We further explore the capabilities of the system to examine the kinetics of Rhodamine B uptake by human breast cancer cells and characterize the effect of pixel dwell time on the reduced nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H) autofluorescence lifetime estimation accuracy.
Collapse
Affiliation(s)
- Janet E. Sorrells
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rishyashring R. Iyer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lingxiao Yang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew J. Bower
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Darold R. Spillman
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Eric J. Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Haohua Tu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
17
|
Tandon I, Quinn KP, Balachandran K. Label-Free Multiphoton Microscopy for the Detection and Monitoring of Calcific Aortic Valve Disease. Front Cardiovasc Med 2021; 8:688513. [PMID: 34179147 PMCID: PMC8226007 DOI: 10.3389/fcvm.2021.688513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is the most common valvular heart disease. CAVD results in a considerable socio-economic burden, especially considering the aging population in Europe and North America. The only treatment standard is surgical valve replacement as early diagnostic, mitigation, and drug strategies remain underdeveloped. Novel diagnostic techniques and biomarkers for early detection and monitoring of CAVD progression are thus a pressing need. Additionally, non-destructive tools are required for longitudinal in vitro and in vivo assessment of CAVD initiation and progression that can be translated into clinical practice in the future. Multiphoton microscopy (MPM) facilitates label-free and non-destructive imaging to obtain quantitative, optical biomarkers that have been shown to correlate with key events during CAVD progression. MPM can also be used to obtain spatiotemporal readouts of metabolic changes that occur in the cells. While cellular metabolism has been extensively explored for various cardiovascular disorders like atherosclerosis, hypertension, and heart failure, and has shown potential in elucidating key pathophysiological processes in heart valve diseases, it has yet to gain traction in the study of CAVD. Furthermore, MPM also provides structural, functional, and metabolic readouts that have the potential to correlate with key pathophysiological events in CAVD progression. This review outlines the applicability of MPM and its derived quantitative metrics for the detection and monitoring of early CAVD progression. The review will further focus on the MPM-detectable metabolic biomarkers that correlate with key biological events during valve pathogenesis and their potential role in assessing CAVD pathophysiology.
Collapse
Affiliation(s)
- Ishita Tandon
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Kyle P Quinn
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Kartik Balachandran
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|