1
|
Giedraitis E, Neve RL, Phelan VV. Iron content of commercial mucin contributes to compositional stability of a cystic fibrosis airway synthetic microbiota community. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611695. [PMID: 39282275 PMCID: PMC11398496 DOI: 10.1101/2024.09.06.611695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
In vitro culture models of mucosal environments are used to elucidate the mechanistic roles of the microbiota in human health. These models often include commercial mucins to reflect the in-situ role of mucins as an attachment site and nutrient source for the microbiota. Two types of mucins are commercially available: porcine gastric mucin (PGM) and bovine submaxillary mucin (BSM). These commercial mucins have been shown to contain iron, an essential element required by the microbiota as a co-factor for a variety of metabolic functions. In these mucin preparations, the concentration of available iron can exceed physiological concentrations present in the native environment. This unexpected source of iron influences experimental outcomes, including shaping the interactions between co-existing microbes in synthetic microbial communities used to elucidate the multispecies interactions within native microbiota. In this work, we leveraged the well-characterized iron-dependent production of secondary metabolites by the opportunistic pathogen Pseudomonas aeruginosa to aid in the development of a simple, low-cost, reproducible workflow to remove iron from commercial mucins. Using the mucosal environment of the cystic fibrosis (CF) airway as a model system, we show that P. aeruginosa is canonically responsive to iron concentration in the chemically defined synthetic CF medium complemented with semi-purified PGM, and community composition of a clinically relevant, synthetic CF airway microbial community is modulated, in part, by iron concentration in PGM.
Collapse
Affiliation(s)
- Emily Giedraitis
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado - Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rachel L. Neve
- Department of Immunology and Microbiology, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Vanessa V. Phelan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado - Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
2
|
Shukla A, Rodriguez S, Brennan-Krohn T. Activity of antibiotics against Burkholderia cepacia complex in artificial sputum medium. J Antimicrob Chemother 2024:dkae299. [PMID: 39224940 DOI: 10.1093/jac/dkae299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Burkholderia cepacia complex (Bcc) is a collection of intrinsically drug-resistant Gram-negative bacteria that cause life-threatening disease in people with cystic fibrosis (CF). Standard antimicrobial susceptibility testing methods have poor predictive value for clinical outcomes in Bcc infections, probably due in part to differences between in vitro testing conditions and the environment in which Bcc grow in the lungs of people with CF. OBJECTIVES To compare the activity of commonly used antibiotics under standard in vitro testing conditions with activity in conditions mimicking those found in vivo. METHODS Two Bcc strains were grown alone and with six different antibiotics (minocycline, ceftazidime, meropenem, tobramycin, levofloxacin, trimethoprim-sulfamethoxazole) in two different media: standard cation-adjusted Mueller-Hinton broth and an artificial sputum medium designed to simulate the environment in the lungs of people with CF through addition of components including mucin, free DNA and amino acids. Two different starting conditions were used for time-kill assays: a standard ∼5 × 106 cfu/mL inoculum, and a high-density inoculum in which bacteria were grown for 72 hours before addition of antibiotics. Growth detection was performed by colony enumeration and by detection of resazurin reduction. RESULTS There were major discrepancies between standard susceptibility results and activity in our models. Some antibiotics, including ceftazidime, showed minimal activity in all time-kill assays despite low minimal inhibitory concentrations, while others, notably tobramycin, were more active in high-density growth conditions than in standard time-kill assays. CONCLUSIONS This work underscores the urgent need to develop more clinically relevant susceptibility testing approaches for Bcc.
Collapse
Affiliation(s)
- Anusha Shukla
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Shade Rodriguez
- Pathobiology Graduate Program, Brown University, Providence, RI, USA
| | - Thea Brennan-Krohn
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Li X, Zhao S, Lu C, Shen Y. New secondary metabolites produced by an engineered strain Streptomyces sp. XZQH13OEΔastC. Nat Prod Res 2024:1-6. [PMID: 39105411 DOI: 10.1080/14786419.2024.2385701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 08/07/2024]
Abstract
Two previously undescribed alkaloids (1-2), five known alkaloids (3-7) and five cyclodipeptides (8-12) were obtained from an ansatrienin-producing mutant strain Streptomyces sp. XZQH13OEΔ astC. Their structures were elucidated by analysis of the 1D, 2D NMR and ESI HRMS data and by comparison with the reported data. The antibacterial activities of compounds 1-12 were evaluated.
Collapse
Affiliation(s)
- Xiaomei Li
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shengliang Zhao
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
4
|
Lewis JM, Jebeli L, Coulon PML, Lay CE, Scott NE. Glycoproteomic and proteomic analysis of Burkholderia cenocepacia reveals glycosylation events within FliF and MotB are dispensable for motility. Microbiol Spectr 2024; 12:e0034624. [PMID: 38709084 PMCID: PMC11237607 DOI: 10.1128/spectrum.00346-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Across the Burkholderia genus O-linked protein glycosylation is highly conserved. While the inhibition of glycosylation has been shown to be detrimental for virulence in Burkholderia cepacia complex species, such as Burkholderia cenocepacia, little is known about how specific glycosylation sites impact protein functionality. Within this study, we sought to improve our understanding of the breadth, dynamics, and requirement for glycosylation across the B. cenocepacia O-glycoproteome. Assessing the B. cenocepacia glycoproteome across different culture media using complementary glycoproteomic approaches, we increase the known glycoproteome to 141 glycoproteins. Leveraging this repertoire of glycoproteins, we quantitively assessed the glycoproteome of B. cenocepacia using Data-Independent Acquisition (DIA) revealing the B. cenocepacia glycoproteome is largely stable across conditions with most glycoproteins constitutively expressed. Examination of how the absence of glycosylation impacts the glycoproteome reveals that the protein abundance of only five glycoproteins (BCAL1086, BCAL2974, BCAL0525, BCAM0505, and BCAL0127) are altered by the loss of glycosylation. Assessing ΔfliF (ΔBCAL0525), ΔmotB (ΔBCAL0127), and ΔBCAM0505 strains, we demonstrate the loss of FliF, and to a lesser extent MotB, mirror the proteomic effects observed in the absence of glycosylation in ΔpglL. While both MotB and FliF are essential for motility, we find loss of glycosylation sites in MotB or FliF does not impact motility supporting these sites are dispensable for function. Combined this work broadens our understanding of the B. cenocepacia glycoproteome supporting that the loss of glycoproteins in the absence of glycosylation is not an indicator of the requirement for glycosylation for protein function. IMPORTANCE Burkholderia cenocepacia is an opportunistic pathogen of concern within the Cystic Fibrosis community. Despite a greater appreciation of the unique physiology of B. cenocepacia gained over the last 20 years a complete understanding of the proteome and especially the O-glycoproteome, is lacking. In this study, we utilize systems biology approaches to expand the known B. cenocepacia glycoproteome as well as track the dynamics of glycoproteins across growth phases, culturing media and in response to the loss of glycosylation. We show that the glycoproteome of B. cenocepacia is largely stable across conditions and that the loss of glycosylation only impacts five glycoproteins including the motility associated proteins FliF and MotB. Examination of MotB and FliF shows, while these proteins are essential for motility, glycosylation is dispensable. Combined this work supports that B. cenocepacia glycosylation can be dispensable for protein function and may influence protein properties beyond stability.
Collapse
Affiliation(s)
- Jessica M Lewis
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Leila Jebeli
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Pauline M L Coulon
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Catrina E Lay
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
5
|
Gomes PWP, de Tralia Medeiros TC, Maimone NM, Leão TF, de Moraes LAB, Bauermeister A. Microbial Metabolites Annotation by Mass Spectrometry-Based Metabolomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:225-248. [PMID: 37843811 DOI: 10.1007/978-3-031-41741-2_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Since the discovery of penicillin, microbial metabolites have been extensively investigated for drug discovery purposes. In the last decades, microbial derived compounds have gained increasing attention in different fields from pharmacognosy to industry and agriculture. Microbial metabolites in microbiomes present specific functions and can be associated with the maintenance of the natural ecosystems. These metabolites may exhibit a broad range of biological activities of great interest to human purposes. Samples from either microbial isolated cultures or microbiomes consist of complex mixtures of metabolites and their analysis are not a simple process. Mass spectrometry-based metabolomics encompass a set of analytical methods that have brought several improvements to the microbial natural products field. This analytical tool allows the comprehensively detection of metabolites, and therefore, the access of the chemical profile from those biological samples. These analyses generate thousands of mass spectra which is challenging to analyse. In this context, bioinformatic metabolomics tools have been successfully employed to accelerate and facilitate the investigation of specialized microbial metabolites. Herein, we describe metabolomics tools used to provide chemical information for the metabolites, and furthermore, we discuss how they can improve investigation of microbial cultures and interactions.
Collapse
Affiliation(s)
- Paulo Wender P Gomes
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Talita Carla de Tralia Medeiros
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Naydja Moralles Maimone
- Departamento de Ciências Exatas, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Tiago F Leão
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Luiz Alberto Beraldo de Moraes
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Anelize Bauermeister
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
6
|
McAvoy AC, Threatt PH, Kapcia J, Garg N. Discovery of Homogentisic Acid as a Precursor in Trimethoprim Metabolism and Natural Product Biosynthesis. ACS Chem Biol 2022; 18:711-723. [PMID: 36215670 DOI: 10.1021/acschembio.2c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Opportunistic infections by Burkholderia cenocepacia are life threatening for patients suffering from cystic fibrosis and chronic granulomatous disease. These infections are often associated with variable clinical outcomes, prompting an interest in molecular investigations of phenotypes associated with disease severity. The production of the pyomelanin pigment is one such phenotype, which was recently linked to the ability of clinical strains to carry out biotransformation of the antibiotic trimethoprim. However, this biotransformation product was not identified, and differences in metabolite production associated with pyomelanin pigmentation are poorly understood. Here, we identify several key metabolites produced exclusively by the pyomelanin-producing strains. To provide insight into the structures and biosynthetic origin of these metabolites, we developed a mass spectrometry-based strategy coupling unsupervised in silico substructure prediction with stable isotope labeling referred to as MAS-SILAC (Metabolite Annotation assisted by Substructure discovery and Stable Isotope Labeling by Amino acids in Cell culture). This approach led to discovery of homogentisic acid as a precursor for biosynthesis of several natural products and for biotransformation of trimethoprim, representing a previously unknown mechanism of antibiotic tolerance. This work presents application of computational methods for analysis of untargeted metabolomic data to link the chemotype of pathogenic microorganisms with a specific phenotype. The observations made in this study provide insights into the clinical significance of the melanated phenotype.
Collapse
Affiliation(s)
- Andrew C McAvoy
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States
| | - Paxton H Threatt
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States
| | - Joseph Kapcia
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, California 92697-2525, United States
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 311 Ferst Drive, ES&T, Atlanta, Georgia 30332, United States
| |
Collapse
|
7
|
Zhao Q, Wu ZE, Li B, Li F. Recent advances in metabolism and toxicity of tyrosine kinase inhibitors. Pharmacol Ther 2022; 237:108256. [DOI: 10.1016/j.pharmthera.2022.108256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022]
|
8
|
Aiosa N, Sinha A, Jaiyesimi OA, da Silva RR, Branda SS, Garg N. Metabolomics Analysis of Bacterial Pathogen Burkholderia thailandensis and Mammalian Host Cells in Co-culture. ACS Infect Dis 2022; 8:1646-1662. [PMID: 35767828 DOI: 10.1021/acsinfecdis.2c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Tier 1 HHS/USDA Select Agent Burkholderia pseudomallei is a bacterial pathogen that is highly virulent when introduced into the respiratory tract and intrinsically resistant to many antibiotics. Transcriptomic- and proteomic-based methodologies have been used to investigate mechanisms of virulence employed by B. pseudomallei and Burkholderia thailandensis, a convenient surrogate; however, analysis of the pathogen and host metabolomes during infection is lacking. Changes in the metabolites produced can be a result of altered gene expression and/or post-transcriptional processes. Thus, metabolomics complements transcriptomics and proteomics by providing a chemical readout of a biological phenotype, which serves as a snapshot of an organism's physiological state. However, the poor signal from bacterial metabolites in the context of infection poses a challenge in their detection and robust annotation. In this study, we coupled mammalian cell culture-based metabolomics with feature-based molecular networking of mono- and co-cultures to annotate the pathogen's secondary metabolome during infection of mammalian cells. These methods enabled us to identify several key secondary metabolites produced by B. thailandensis during infection of airway epithelial and macrophage cell lines. Additionally, the use of in silico approaches provided insights into shifts in host biochemical pathways relevant to defense against infection. Using chemical class enrichment analysis, for example, we identified changes in a number of host-derived compounds including immune lipids such as prostaglandins, which were detected exclusively upon pathogen challenge. Taken together, our findings indicate that co-culture of B. thailandensis with mammalian cells alters the metabolome of both pathogen and host and provides a new dimension of information for in-depth analysis of the host-pathogen interactions underlying Burkholderia infection.
Collapse
Affiliation(s)
- Nicole Aiosa
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States
| | - Anupama Sinha
- Biotechnology & Bioengineering, Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| | - Olakunle A Jaiyesimi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States
| | - Ricardo R da Silva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Av. do Café─Vila Monte Alegre, 14040-903 Ribeirão Preto-SP, Brazil
| | - Steven S Branda
- Systems Biology, Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 311 Ferst Drive, ES&T, Atlanta, Georgia 30332, United States
| |
Collapse
|
9
|
Deutsch JM, Mandelare-Ruiz P, Yang Y, Foster G, Routhu A, Houk J, De La Flor YT, Ushijima B, Meyer JL, Paul VJ, Garg N. Metabolomics Approaches to Dereplicate Natural Products from Coral-Derived Bioactive Bacteria. JOURNAL OF NATURAL PRODUCTS 2022; 85:462-478. [PMID: 35112871 DOI: 10.1021/acs.jnatprod.1c01110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stony corals (Scleractinia) are invertebrates that form symbiotic relationships with eukaryotic algal endosymbionts and the prokaryotic microbiome. The microbiome has the potential to produce bioactive natural products providing defense and resilience to the coral host against pathogenic microorganisms, but this potential has not been extensively explored. Bacterial pathogens can pose a significant threat to corals, with some species implicated in primary and opportunistic infections of various corals. In response, probiotics have been proposed as a potential strategy to protect corals in the face of increased incidence of disease outbreaks. In this study, we screened bacterial isolates from healthy and diseased corals for antibacterial activity. The bioactive extracts were analyzed using untargeted metabolomics. Herein, an UpSet plot and hierarchical clustering analyses were performed to identify isolates with the largest number of unique metabolites. These isolates also displayed different antibacterial activities. Through application of in silico and experimental approaches coupled with genome analysis, we dereplicated natural products from these coral-derived bacteria from Florida's coral reef environments. The metabolomics approach highlighted in this study serves as a useful resource to select probiotic candidates and enables insights into natural product-mediated chemical ecology in holobiont symbiosis.
Collapse
Affiliation(s)
- Jessica M Deutsch
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Paige Mandelare-Ruiz
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
| | - Yingzhe Yang
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Gabriel Foster
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Apurva Routhu
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jay Houk
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
| | - Yesmarie T De La Flor
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
| | - Blake Ushijima
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Julie L Meyer
- Department of Soil and Water Sciences, University of Florida, Gainesville, Florida 32603, United States
| | - Valerie J Paul
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
| | - Neha Garg
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|