1
|
Yuan X, Luo L, Li X, Lu Y, Chen S, Luan T. Recent advances in the removal of psychoactive substances from aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176156. [PMID: 39255934 DOI: 10.1016/j.scitotenv.2024.176156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
Psychoactive substances (PS) have become emerging contaminants in aquatic environments, characterized by their wide distribution, high persistence, bioaccumulation and toxicity. They are difficult to be completely removed in sewage treatment plants due to their high stability under different conditions. The incomplete removal of PS poses a threat to the aquatic animals and can also lead to human health problems through accumulation in the food chain. PS has become a huge burden on global health systems. Therefore, finding an effective technology to completely remove PS has become a "hot topic" for researchers. The methods for removal PS include physical techniques, chemical methods and biological approaches. However, there is still a lack of comprehensive and systematic exploration of these methods. This review aims to address this gap by providing a comprehensive overview of traditional strategies, highlighting recent advancements, and emphasizing the potential of natural aquatic plants in removing trace PS from water environments. Additionally, the degradation mechanisms that occur during the treatment process were discussed and an evaluation of the strengths and weaknesses associated with each method was provided. This work would help researchers in gaining a deeper understanding of the methodologies employed and serve as a reference point for future research endeavors and promoting the sustainable and large-scale application of PS elimination.
Collapse
Affiliation(s)
- Xueting Yuan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Lijuan Luo
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xinyan Li
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaobin Lu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Shanshan Chen
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Tiangang Luan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
2
|
Bonomi RE, Riordan W, Gelovani JG. The Structures, Functions, and Roles of Class III HDACs (Sirtuins) in Neuropsychiatric Diseases. Cells 2024; 13:1644. [PMID: 39404407 PMCID: PMC11476333 DOI: 10.3390/cells13191644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Over the past two decades, epigenetic regulation has become a rapidly growing and influential field in biology and medicine. One key mechanism involves the acetylation and deacetylation of lysine residues on histone core proteins and other critical proteins that regulate gene expression and cellular signaling. Although histone deacetylases (HDACs) have received significant attention, the roles of individual HDAC isoforms in the pathogenesis of psychiatric diseases still require further research. This is particularly true with regard to the sirtuins, class III HDACs. Sirtuins have unique functional activity and significant roles in normal neurophysiology, as well as in the mechanisms of addiction, mood disorders, and other neuropsychiatric abnormalities. This review aims to elucidate the differences in catalytic structure and function of the seven sirtuins as they relate to psychiatry.
Collapse
Affiliation(s)
- Robin E. Bonomi
- Department of Psychiatry, Yale University, New Haven, CT 06511, USA;
| | - William Riordan
- Department of Psychiatry, Yale University, New Haven, CT 06511, USA;
| | - Juri G. Gelovani
- College of Medicine and Health Sciences, Office of the Provost, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Radiology, Division of Nuclear Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
3
|
Nohesara S, Mostafavi Abdolmaleky H, Thiagalingam S. Substance-Induced Psychiatric Disorders, Epigenetic and Microbiome Alterations, and Potential for Therapeutic Interventions. Brain Sci 2024; 14:769. [PMID: 39199463 PMCID: PMC11352452 DOI: 10.3390/brainsci14080769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Substance use disorders (SUDs) are complex biopsychosocial diseases that cause neurocognitive deficits and neurological impairments by altering the gene expression in reward-related brain areas. Repeated drug use gives rise to alterations in DNA methylation, histone modifications, and the expression of microRNAs in several brain areas that may be associated with the development of psychotic symptoms. The first section of this review discusses how substance use contributes to the development of psychotic symptoms via epigenetic alterations. Then, we present more evidence about the link between SUDs and brain epigenetic alterations. The next section presents associations between paternal and maternal exposure to substances and epigenetic alterations in the brains of offspring and the role of maternal diet in preventing substance-induced neurological impairments. Then, we introduce potential therapeutic agents/approaches such as methyl-rich diets to modify epigenetic alterations for alleviating psychotic symptoms or depression in SUDs. Next, we discuss how substance use-gut microbiome interactions contribute to the development of neurological impairments through epigenetic alterations and how gut microbiome-derived metabolites may become new therapeutics for normalizing epigenetic aberrations. Finally, we address possible challenges and future perspectives for alleviating psychotic symptoms and depression in patients with SUDs by modulating diets, the epigenome, and gut microbiome.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Mental Health Research Center, Psychosocial Health Research Institute, Department of Psychiatry, School of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Nutrition/Metabolism Laboratory, Department of Surgery, BIDMC, Harvard Medical School, Boston, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
4
|
Holt LM, Nestler EJ. Astrocytic transcriptional and epigenetic mechanisms of drug addiction. J Neural Transm (Vienna) 2024; 131:409-424. [PMID: 37940687 PMCID: PMC11066772 DOI: 10.1007/s00702-023-02716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Addiction is a leading cause of disease burden worldwide and remains a challenge in current neuroscience research. Drug-induced lasting changes in gene expression are mediated by transcriptional and epigenetic regulation in the brain and are thought to underlie behavioral adaptations. Emerging evidence implicates astrocytes in regulating drug-seeking behaviors and demonstrates robust transcriptional response to several substances of abuse. This review focuses on the astrocytic transcriptional and epigenetic mechanisms of drug action.
Collapse
Affiliation(s)
- Leanne M Holt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Xiao H, Xie Y, Xi K, Xie J, Liu M, Zhang Y, Cheng Z, Wang W, Guo B, Wu S. Targeting Mitochondrial Sirtuins in Age-Related Neurodegenerative Diseases and Fibrosis. Aging Dis 2023; 14:1583-1605. [PMID: 37196115 PMCID: PMC10529758 DOI: 10.14336/ad.2023.0203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/03/2023] [Indexed: 05/19/2023] Open
Abstract
Aging is a natural and complex biological process that is associated with widespread functional declines in numerous physiological processes, terminally affecting multiple organs and tissues. Fibrosis and neurodegenerative diseases (NDs) often occur with aging, imposing large burdens on public health worldwide, and there are currently no effective treatment strategies for these diseases. Mitochondrial sirtuins (SIRT3-5), which are members of the sirtuin family of NAD+-dependent deacylases and ADP-ribosyltransferases, are capable of regulating mitochondrial function by modifying mitochondrial proteins that participate in the regulation of cell survival under various physiological and pathological conditions. A growing body of evidence has revealed that SIRT3-5 exert protective effects against fibrosis in multiple organs and tissues, including the heart, liver, and kidney. SIRT3-5 are also involved in multiple age-related NDs, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. Furthermore, SIRT3-5 have been noted as promising targets for antifibrotic therapies and the treatment of NDs. This review systematically highlights recent advances in knowledge regarding the role of SIRT3-5 in fibrosis and NDs and discusses SIRT3-5 as therapeutic targets for NDs and fibrosis.
Collapse
Affiliation(s)
- Haoxiang Xiao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Yuqiao Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Kaiwen Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Jinyi Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Mingyue Liu
- Medical School, Yan’an University, Yan’an, China
| | - Yangming Zhang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Zishuo Cheng
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| |
Collapse
|
6
|
Bodnar RJ. Endogenous opiates and behavior: 2021. Peptides 2023; 164:171004. [PMID: 36990387 DOI: 10.1016/j.peptides.2023.171004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
This paper is the forty-fourth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2021 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonizts and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
7
|
Ray S, Sil S, Kannan M, Periyasamy P, Buch S. Role of the gut-brain axis in HIV and drug abuse-mediated neuroinflammation. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11092. [PMID: 38389809 PMCID: PMC10880759 DOI: 10.3389/adar.2023.11092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/23/2023] [Indexed: 02/24/2024]
Abstract
Drug abuse and related disorders are a global public health crisis affecting millions, but to date, limited treatment options are available. Abused drugs include but are not limited to opioids, cocaine, nicotine, methamphetamine, and alcohol. Drug abuse and human immunodeficiency virus-1/acquired immune deficiency syndrome (HIV-1/AIDS) are inextricably linked. Extensive research has been done to understand the effect of prolonged drug use on neuronal signaling networks and gut microbiota. Recently, there has been rising interest in exploring the interactions between the central nervous system and the gut microbiome. This review summarizes the existing research that points toward the potential role of the gut microbiome in the pathogenesis of HIV-1-linked drug abuse and subsequent neuroinflammation and neurodegenerative disorders. Preclinical data about gut dysbiosis as a consequence of drug abuse in the context of HIV-1 has been discussed in detail, along with its implications in various neurodegenerative disorders. Understanding this interplay will help elucidate the etiology and progression of drug abuse-induced neurodegenerative disorders. This will consequently be beneficial in developing possible interventions and therapeutic options for these drug abuse-related disorders.
Collapse
Affiliation(s)
- Sudipta Ray
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Muthukumar Kannan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
8
|
Jin Y, Yu X, Hu S, Liu L, Wang B, Feng Y, Li Y, Xiong B, Wang L. Efficacy of electroacupuncture combined with intravenous patient-controlled analgesia after cesarean delivery: a randomized clinical trial. Am J Obstet Gynecol MFM 2023; 5:100826. [PMID: 36464237 DOI: 10.1016/j.ajogmf.2022.100826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Electroacupuncture is a nonpharmacologic intervention for analgesia that is widely recognized as therapy for pain. However, the clinical efficacy of electroacupuncture combined with patient-controlled intravenous analgesia for postoperative analgesia after cesarean delivery remains unclear. OBJECTIVE This study aimed to assess the efficacy of electroacupuncture + patient-controlled intravenous analgesia for postoperative analgesia after cesarean delivery, determine the optimal frequency for the best analgesic effect, and explore the underlying mechanism of action. STUDY DESIGN This single-center, randomized, single-blinded, sham acupuncture controlled clinical trial was conducted at a tertiary university hospital in China. Female patients who underwent cesarean delivery and received fentanyl as patient-controlled intravenous analgesia for postoperative analgesia were enrolled. Patients were after surgery randomized to receive 2 Hz electroacupuncture treatment (n=53), 20/100 Hz electroacupuncture treatment (n=53), or sham electroacupuncture treatment (n=52) (controls). The 2 electroacupuncture groups received electroacupuncture treatment at 2 or 20/100 Hz at the ST36 and SP6 points, whereas, in the sham electroacupuncture group, sham electroacupuncture was performed at nonmeridian points with nonenergized electroacupuncture instruments. Of note, 4 electroacupuncture treatments were performed in all groups at 6, 12, 24, and 48 hours after surgery. The primary outcome was the number of analgesic pump compressions at 48 hours after surgery. The secondary outcomes included number of analgesic pump compressions at 6, 12, and 24 hours after surgery; pain scores at 6, 12, 24, and 48 hours after surgery; fentanyl consumption at 48 hours after surgery; interleukin 6 and procalcitonin levels at 12 and 48 hours after surgery; and time to first exhaust. RESULTS Overall, 174 primigravida women were included in the intention-to-treat analysis. The number of analgesic pump compressions and pain scores at all 4 time points and fentanyl consumption at 48 hours after surgery were significantly lower in the electroacupuncture treatment groups than in the sham electroacupuncture group (P<.001). CONCLUSION Electroacupuncture + patient-controlled intravenous analgesia had a significantly better analgesic effect than sham electroacupuncture + patient-controlled intravenous analgesia within 48 hours after surgery. Thus, electroacupuncture can be considered safe and effective and may improve the efficacy of patient-controlled intravenous analgesia for pain management after cesarean delivery. Electroacupuncture can be recommended as a routine complementary therapy for pain control after cesarean delivery.
Collapse
Affiliation(s)
- Ying Jin
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Province, China (Drs Jin and Xiong); Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Jiangsu, China (Drs Jin and Liu); Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China (Drs Jin and Li)
| | - Xiaoshuai Yu
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (Dr Yu)
| | - Shen Hu
- Department of Obstetrics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Province, China (Drs Hu, Feng, and L Wang)
| | - Lanying Liu
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Jiangsu, China (Drs Jin and Liu)
| | - Bin Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Province, China (Dr B Wang)
| | - Yuanling Feng
- Department of Obstetrics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Province, China (Drs Hu, Feng, and L Wang)
| | - Yubo Li
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China (Dr Li); Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China (Drs Jin and Li)
| | - Bing Xiong
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Province, China (Drs Jin and Xiong).
| | - Liquan Wang
- Department of Obstetrics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Province, China (Drs Hu, Feng, and L Wang).
| |
Collapse
|
9
|
Sundar V, Ramasamy T, Doke M, Samikkannu T. Psychostimulants influence oxidative stress and redox signatures: the role of DNA methylation. Redox Rep 2022; 27:53-59. [PMID: 35227168 PMCID: PMC8890556 DOI: 10.1080/13510002.2022.2043224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Objective: Psychostimulant use induces oxidative stress and alters redox imbalance, influencing epigenetic signatures in the central nervous system (CNS). Among the various epigenetic changes, DNA methylation is directly linked to oxidative stress metabolism via critical redox intermediates such as NAD+, S-adenosylmethionine (SAM), and 2-oxoglutarate. Fluctuations in these intermediates directly influence epigenetic signatures, which leads to detectable alterations in gene expression and protein modification. This review focuses on recent advances in the impact of psychostimulant use on redox-imbalance-induced DNA methylation to develop novel epigenetics-based early interventions. Methods: This review is based on collective research data obtained from the PubMed, Science Direct, and Medline databases. The keywords used in the electronic search in these databases were redox, substance use disorder, psychostimulants, DNA methylation, and neurological diseases. Results: Instability in DNA methylation levels and redox expression effects are reported in various behavioral models stimulated by psychostimulants and opioids, indicating the widespread involvement of epigenetic changes in DNA methylation signatures in neurological disorders. Discussion: This review summarizes the need for more studies and experimental evaluations of DNA-methylation-based strategies that may help to understand the association between psychostimulant use and oxidative stress or redox-linked metabolic recalibration influencing neuronal impairments.
Collapse
Affiliation(s)
- Vaishnavi Sundar
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, Texas, USA
| | - Tamizhselvi Ramasamy
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, Texas, USA
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mayur Doke
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, Texas, USA
| | - Thangavel Samikkannu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, Texas, USA
| |
Collapse
|
10
|
Post-Translational Modifications by Lipid Metabolites during the DNA Damage Response and Their Role in Cancer. Biomolecules 2022; 12:biom12111655. [DOI: 10.3390/biom12111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Genomic DNA damage occurs as an inevitable consequence of exposure to harmful exogenous and endogenous agents. Therefore, the effective sensing and repair of DNA damage are essential for maintaining genomic stability and cellular homeostasis. Inappropriate responses to DNA damage can lead to genomic instability and, ultimately, cancer. Protein post-translational modifications (PTMs) are a key regulator of the DNA damage response (DDR), and recent progress in mass spectrometry analysis methods has revealed that a wide range of metabolites can serve as donors for PTMs. In this review, we will summarize how the DDR is regulated by lipid metabolite-associated PTMs, including acetylation, S-succinylation, N-myristoylation, palmitoylation, and crotonylation, and the implications for tumorigenesis. We will also discuss potential novel targets for anti-cancer drug development.
Collapse
|
11
|
Doke M, Kashanchi F, Khan MA, Samikkannu T. HIV-1 Tat and cocaine coexposure impacts piRNAs to affect astrocyte energy metabolism. Epigenomics 2022; 14:261-278. [PMID: 35170353 PMCID: PMC8892230 DOI: 10.2217/epi-2021-0252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aim: To understand the effect of HIV infection and cocaine exposure on piRNA expression in human primary astrocytes. Materials & methods: We used small RNA sequencing analysis to investigate the impacts of HIV-1 Tat and cocaine coexposure on the expression of piRNAs in human primary astrocytes. Results: We identified 27,700 piRNAs and analyzed them by small RNA next-generation sequencing. A total of 239 piRNAs were significantly altered by HIV-1 Tat and cocaine coexposure. We also identified PIWIL1, PIWIL2, PIWIL3 and PIWIL4 as interacting partners of piRNAs that were affected by cocaine and HIV-1 Tat coexposure. Epigenetic changes in the expression levels of these piRNA targets were associated with Kyoto Encyclopedia of Genes and Genomes pathways of energy metabolism and neurodegeneration. Conclusion: These findings provide evidence that cocaine exposure and HIV infection affect the expression levels of piRNA, PIWIL1, PIWIL2, PIWIL3 and PIWIL4.
Collapse
Affiliation(s)
- Mayur Doke
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Health Science Center, Kingsville, TX 78363, USA
| | - Fatah Kashanchi
- National Center for Biodefense & Infectious Disease, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Mansoor A Khan
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Health Science Center, Kingsville, TX 78363, USA
| | - Thangavel Samikkannu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Health Science Center, Kingsville, TX 78363, USA,Author for correspondence: Tel.: +1 361 221 0750;
| |
Collapse
|