1
|
Hoshino N, Kanadome T, Takasugi T, Itoh M, Kaneko R, Inoue YU, Inoue T, Hirabayashi T, Watanabe M, Matsuda T, Nagai T, Tarusawa E, Yagi T. Visualization of trans homophilic interaction of clustered protocadherin in neurons. Proc Natl Acad Sci U S A 2023; 120:e2301003120. [PMID: 37695902 PMCID: PMC10515168 DOI: 10.1073/pnas.2301003120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/20/2023] [Indexed: 09/13/2023] Open
Abstract
Clustered protocadherin (Pcdh) functions as a cell recognition molecule through the homophilic interaction in the central nervous system. However, its interactions have not yet been visualized in neurons. We previously reported PcdhγB2-Förster resonance energy transfer (FRET) probes to be applicable only to cell lines. Herein, we designed γB2-FRET probes by fusing FRET donor and acceptor fluorescent proteins to a single γB2 molecule and succeeded in visualizing γB2 homophilic interaction in cultured hippocampal neurons. The γB2-FRET probe localized in the soma and neurites, and FRET signals, which were observed at contact sites between neurites, eliminated by ethylene glycol tetraacetic acid (EGTA) addition. Live imaging revealed that the FRET-negative γB2 signals rapidly moved along neurites and soma, whereas the FRET-positive signals remained in place. We observed that the γB2 proteins at synapses rarely interact homophilically. The γB2-FRET probe might allow us to elucidate the function of the homophilic interaction and the cell recognition mechanism.
Collapse
Affiliation(s)
- Natsumi Hoshino
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Takashi Kanadome
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Ibaraki, Osaka567-0047, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama332-0012, Japan
| | - Tomomi Takasugi
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Mizuho Itoh
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Ryosuke Kaneko
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Yukiko U. Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo187-8501, Japan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo187-8501, Japan
| | - Takahiro Hirabayashi
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
- Clinical Medicine Research Laboratory, Shonan University of Medical Sciences, Yokohama244-0806, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido060-8638, Japan
| | - Tomoki Matsuda
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Ibaraki, Osaka567-0047, Japan
| | - Takeharu Nagai
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Ibaraki, Osaka567-0047, Japan
| | - Etsuko Tarusawa
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| |
Collapse
|
2
|
Kanadome T, Hoshino N, Nagai T, Yagi T, Matsuda T. Visualization of trans-interactions of a protocadherin-α between processes originating from single neurons. iScience 2023; 26:107238. [PMID: 37534169 PMCID: PMC10392085 DOI: 10.1016/j.isci.2023.107238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
Clustered protocadherin (Pcdh), a cell adhesion protein, is involved in the self-recognition and non-self-discrimination of neurons by conferring diversity on the cell surface. Although the roles of Pcdh in neurons have been elucidated, it has been challenging to visualize its adhesion activity in neurons, which is a molecular function of Pcdh. Here, we present fluorescent indicators, named IPADs, which visualize the interaction of protocadherin-α4 isoform (α4). IPADs successfully visualize not only homophilic α4 trans-interactions, but also combinatorial homophilic interactions between cells. The reversible nature of IPADs overcomes a drawback of the split-GFP technique and allows for monitoring the dissociation of α4 trans-interactions. Specially designed IPADs for self-recognition are able to monitor the formation and disruption of α4 trans-interactions between processes originating from the same neurons. We expect that IPADs will be useful tools for obtaining spatiotemporal information on Pcdh interactions in neuronal self-recognition and non-self-discrimination processes.
Collapse
Affiliation(s)
- Takashi Kanadome
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
- Department of Biomolecular Science and Engineering, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Natsumi Hoshino
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Takeharu Nagai
- Department of Biomolecular Science and Engineering, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Tomoki Matsuda
- Department of Biomolecular Science and Engineering, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| |
Collapse
|
3
|
Kanadome T, Hayashi K, Seto Y, Eiraku M, Nakajima K, Nagai T, Matsuda T. Development of intensiometric indicators for visualizing N-cadherin interaction across cells. Commun Biol 2022; 5:1065. [PMID: 36207396 PMCID: PMC9546846 DOI: 10.1038/s42003-022-04023-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
N-cadherin (NCad) is a classical cadherin that mediates cell–cell interactions in a Ca2+-dependent manner. NCad participates in various biological processes, from ontogenesis to higher brain functions, though the visualization of NCad interactions in living cells remains limited. Here, we present intensiometric NCad interaction indicators, named INCIDERs, that utilize dimerization-dependent fluorescent proteins. INCIDERs successfully visualize reversible NCad interactions across cells. Compared to FRET-based indicators, INCIDERs have a ~70-fold higher signal contrast, enabling clear identification of NCad interactions. In primary neuronal cells, NCad interactions are visualized between closely apposed processes. Furthermore, visualization of NCad interaction at cell adhesion sites in dense cell populations is achieved by two-photon microscopy. INCIDERs are useful tools in the spatiotemporal investigation of NCad interactions across cells; future research should evaluate the potential of INCIDERs in mapping complex three-dimensional architectures in multi-cellular systems. Intensiometric N-cadherin (NCad) interaction indicators, named INCIDERs, visualize reversible NCad-mediated cell-cell interactions.
Collapse
Affiliation(s)
- Takashi Kanadome
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan.,Department of Biomolecular Science and Engineering, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, 567-0047, Japan
| | - Kanehiro Hayashi
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yusuke Seto
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Mototsugu Eiraku
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8507, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takeharu Nagai
- Department of Biomolecular Science and Engineering, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, 567-0047, Japan
| | - Tomoki Matsuda
- Department of Biomolecular Science and Engineering, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, 567-0047, Japan.
| |
Collapse
|