1
|
Guo Z, Lv L, Liu D, Ma H, Radović Č. Effect of SNPs on Litter Size in Swine. Curr Issues Mol Biol 2024; 46:6328-6345. [PMID: 39057020 PMCID: PMC11276056 DOI: 10.3390/cimb46070378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 07/28/2024] Open
Abstract
Although sows do not directly enter the market, they play an important role in piglet breeding on farms. They consume large amounts of feed, resulting in a significant environmental burden. Pig farms can increase their income and reduce environmental pollution by increasing the litter size (LS) of swine. PCR-RFLP/SSCP and GWAS are common methods to evaluate single-nucleotide polymorphisms (SNPs) in candidate genes. We conducted a systematic meta-analysis of the effect of SNPs on pig LS. We collected and analysed data published over the past 30 years using traditional and network meta-analyses. Trial sequential analysis (TSA) was used to analyse population data. Gene set enrichment analysis and protein-protein interaction network analysis were used to analyse the GWAS dataset. The results showed that the candidate genes were positively correlated with LS, and defects in PCR-RFLP/SSCP affected the reliability of candidate gene results. However, the genotypes with high and low LSs did not have a significant advantage. Current breeding and management practices for sows should consider increasing the LS while reducing lactation length and minimizing the sows' non-pregnancy period as much as possible.
Collapse
Affiliation(s)
- Zhenhua Guo
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Lei Lv
- Wood Science Research Institute, Heilongjiang Academy of Forestry, No. 134 Haping Road, Harbin 150080, China
| | - Di Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Hong Ma
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Čedomir Radović
- Department of Pig Breeding and Genetics, Institute for Animal Husbandry, Autoput 16, 11080 Belgrade, Serbia
| |
Collapse
|
2
|
Liu M, Chen J, Zhang C, Liu S, Chao X, Yang H, Muhammad A, Zhou B, Ao W, Schinckel AP. Deciphering Estrus Expression in Gilts: The Role of Alternative Polyadenylation and LincRNAs in Reproductive Transcriptomics. Animals (Basel) 2024; 14:791. [PMID: 38473176 DOI: 10.3390/ani14050791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
The fertility rate and litter size of female pigs are critically affected by the expression of estrus. The objective of this study was to elucidate the regulatory mechanisms of estrus expression by analyzing the differential expression of genes and long intergenic non-coding RNAs (lincRNA), as well as the utilization of alternative polyadenylation (APA) sites, in the vulva and vagina during the estrus and diestrus stages of Large White and indigenous Chinese Mi gilts. Our study revealed that the number of differentially expressed genes (DEG) in the vulva was less than that in the vagina, and the DEGs in the vulva were enriched in pathways such as "neural" pathways and steroid hormone responses, including the "Calcium signaling pathway" and "Oxytocin signaling pathway". The DEGs in the vagina were enriched in the "Metabolic pathways" and "VEGF signaling pathway". Furthermore, 27 and 21 differentially expressed lincRNAs (DEL), whose target genes were enriched in the "Endocrine resistance" pathway, were identified in the vulva and vagina, respectively. Additionally, we observed that 63 and 618 transcripts of the 3'-untranslated region (3'-UTR) were lengthened during estrus in the vulva and vagina, respectively. Interestingly, the genes undergoing APA events in the vulva exhibited species-specific enrichment in neural or steroid-related pathways, whereas those in the vagina were enriched in apoptosis or autophagy-related pathways. Further bioinformatic analysis of these lengthened 3'-UTRs revealed the presence of multiple miRNAs binding sites and cytoplasmic polyadenylation element (CPE) regulatory aspects. In particular, we identified more than 10 CPEs in the validated lengthened 3'-UTRs of the NFIX, PCNX4, CEP162 and ABHD2 genes using RT-qPCR. These findings demonstrated the involvement of APA and lincRNAs in the regulation of estrus expression in female pigs, providing new insights into the molecular mechanisms underlying estrus expression in pigs.
Collapse
Affiliation(s)
- Mingzheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuhan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohuan Chao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huan Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Asim Muhammad
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiping Ao
- College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Allan P Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2054, USA
| |
Collapse
|
3
|
Li X, Zhang F, Wang J, Feng Y, Zhang S, Li L, Tan J, Shen W. LncRNA profiles of Cyanidin-3-O-glucoside ameliorated Zearalenone-induced damage in porcine granulosa cells. Gene 2023; 884:147693. [PMID: 37549855 DOI: 10.1016/j.gene.2023.147693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Long non-coding RNA (lncRNA), a class of RNA molecules with transcripts longer than 200 nt, is crucial for maintaining animal reproductive function. Zearalenone (ZEN) damaged animal reproduction by targeting ovarian granulosa cells (GCs), especially in pigs. Nonetheless, it is not quite clear that whether Cyanidin-3-O-glucoside (C3G) exert effects on porcine GCs (pGCs) after ZEN exposure by altering lncRNA expression. Here, we sought to gain novel information regarding C3G protect against damages induced by ZEN in pGCs. The pGCs were divided into control (Ctrl), ZEN, ZEN + C3G (Z + C), and C3G groups. Results revealed that C3G effectively increased cell viability and suppressed ZEN-induced apoptosis in pGCs. 87 and 82 differentially expressed lncRNAs (DELs) were identified in ZEN vs. Ctrl and Z + C vs. ZEN group, respectively. Gene Ontology (GO) analysis observed that the DELs were related to cell metabolism and cell-matrix adhesion biological processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the DELs were associated with the phosphatidylinositide 3-kinases (PI3K)-protein kinase B (AKT) signaling pathway. In brief, we demonstrated that C3G could shield apoptosis induced by ZEN, which may be connected with the changes of lncRNA expression profiles in pGCs. This study complemented our understanding of the genetic basis and molecular mechanisms by which C3G mitigated the toxicity of ZEN in pGCs.
Collapse
Affiliation(s)
- Xiuxiu Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Fali Zhang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Jingya Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanqin Feng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuer Zhang
- Animal Husbandry General Station of Shandong Province, Jinan 250010, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinghe Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
4
|
Shuyuan Y, Meimei W, Fenghua L, Huishan Z, Min C, Hongchu B, Xuemei L. hUMSC transplantation restores follicle development in ovary damaged mice via re-establish extracellular matrix (ECM) components. J Ovarian Res 2023; 16:172. [PMID: 37620943 PMCID: PMC10464307 DOI: 10.1186/s13048-023-01217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/20/2023] [Indexed: 08/26/2023] Open
Abstract
OBJECTIVES Explore the therapeutic role of human umbilical mesenchymal stem cells (hUMSCs) transplantation for regeneration of ECM components and restoration of follicular development in mice. BACKGROUND The extracellular matrix (ECM) is crucial to maintain ovary function and regulate follicular development, as it participates in important cell signaling and provides physical support to the cells. However, it is unknown how hUMSCs affect the expression of ECM-related genes in ovaries treated with cyclophosphamide (CTX) and busulfan (BUS). METHODS In the present study, we used 64 six- to eight-week-old ICR female mice to established mouse model. The mice were randomly divided into four groups (n = 16/group): control, POI, POI + hUMSCs, and POI + PBS group. The premature ovarian insufficiency (POI) mouse model was established by intraperitoneal injection of CTX and BUS for 7days, then, hUMSCs or PBS were respectively injected via the tail vein in POI + hUMSCs or POI + PBS group. Another 7days after injection, the mice were sacrificed to harvest the ovary tissue. The ovaries were immediately frozen with liquid nitrogen or fixed with 4% PFA for subsequent experiments. To screen differentially expressed genes (DEGs), we performed transcriptome sequencing of ovaries. Thereafter, a Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to predict the related biological functions. Retrieval of interacting genes for ECM-related DEGs was performed using the function of STRINGdb (version 2.6.5) to evaluate potential protein-protein interaction (PPI) networks. Furthermore, qRT-PCR and IHC were performed to assess the differential expression of selected DEGs in control, damaged, hUMSCs-transplanted and non-transplanted ovaries. RESULTS Chemotherapy caused mouse ovarian follicular reserve depletion, and hUMSCs transplantation partially restored follicular development. Our results revealed that ECM-receptor interaction and ECM organization were both downregulated in the damaged ovaries. Further investigation showed that ECM-related genes were downregulated in the CTX and BUS treatment group and partially rescued in hUMSCs injection group but not in the PBS group. qRT-PCR and IHC verified the results: collagen IV and laminin gamma 3 were both expressed around follicle regions in normal ovaries, chemotherapy treatment disrupted their expression, and hUMSCs transplantation rescued their localization and expression to some extent. CONCLUSION Our data demonstrated that ECM-related genes participate in the regulation of ovarian reserve, hUMSCs treatment rescued abnormal expression and localization of collagen IV and laminin gamma 3 in the damaged ovaries. The results suggest that hUMSCs transplantation can maintain ECM-stable microenvironments, which is beneficial to follicular development.
Collapse
Affiliation(s)
- Yin Shuyuan
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Wang Meimei
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Li Fenghua
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Zhao Huishan
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Chu Min
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Bao Hongchu
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China.
| | - Liu Xuemei
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China.
| |
Collapse
|
5
|
Su P, Luo Y, Huang Y, Akhatayeva Z, Xin D, Guo Z, Pan C, Zhang Q, Xu H, Lan X. Short variation of the sheep PDGFD gene is correlated with litter size. Gene X 2022; 844:146797. [PMID: 35985413 DOI: 10.1016/j.gene.2022.146797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
Platelet-derived growth factor (PDGF) family, exert plays a key role in embryonic development, cell proliferation, cell migration, angiogenesis and reproduction. Related studies about GWAS analyses have found that PDGFD significantly affected deposition of tail fat in sheep, but there are no studies on reproduction in animals. In this study, three breed of sheep were used to find insertion/deletion (indel) fragment polymorphism of PDGFD which including Australian white (AUW) sheep (Meat type, n = 932), Guiqian semi-fine wool (GSFW) sheep (wool type, n = 60) and East Friensian milk (EFM) sheep (dairy type, n = 60). Only a 18-bp variation was polymorphic in the study AUW sheep population and the genotypes of different sheep breed are also specific. Moreover, the association analysis indicated that this variant was associated with litter size of AUW sheep in the first parity (p < 0.05). The litter size of II genotype was significantly lower than other genotypes in the first parity (p < 0.05). We also revealed that the PDGFD gene was relatively conservative in eight species, PDGFD mRNA expression in 832 sheep samples implying this gene was related to reproduction traits. Hence, these finding demonstrated the one-cause multipotency of PDGFD gene. Collectively, these results suggest that this indel can be used as an effective marker for sheep breeding.
Collapse
Affiliation(s)
- Peng Su
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shanxi 712100, China; Tianjin Aoqun Animal Husbandry Co.Ltd., Tianjin 301607, China.
| | - Yunyun Luo
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shanxi 712100, China.
| | - Yangming Huang
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shanxi 712100, China; Tianjin Aoqun Animal Husbandry Co.Ltd., Tianjin 301607, China.
| | - Zhanerke Akhatayeva
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shanxi 712100, China.
| | - Dongyun Xin
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shanxi 712100, China.
| | - Zhengang Guo
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shanxi 712100, China.
| | - Chuanying Pan
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shanxi 712100, China.
| | - Qingfeng Zhang
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin 300000, China; Tianjin Aoqun Animal Husbandry Co.Ltd., Tianjin 301607, China.
| | - Hongwei Xu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China.
| | - Xianyong Lan
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shanxi 712100, China.
| |
Collapse
|
6
|
Sun Y, Lin X, Zhang Q, Pang Y, Zhang X, Zhao X, Liu D, Yang X. Genome-wide characterization of lncRNAs and mRNAs in muscles with differential intramuscular fat contents. Front Vet Sci 2022; 9:982258. [PMID: 36003408 PMCID: PMC9393339 DOI: 10.3389/fvets.2022.982258] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
Meat quality is one of the most important traits in pig production. Long non-coding RNAs (lncRNAs) have been involved in diverse biological processes such as muscle development through regulating gene expression. However, studies on lncRNAs lag behind and a comparatively small number of lncRNAs have been identified in pigs. Also, the effects of lncRNAs on meat quality remain to be characterized. Here, we analyzed lncRNAs in longissimus thoracis (LT) and semitendinosus (ST) muscles, being different in meat quality, with RNA-sequencing technology. A total of 500 differentially expressed lncRNAs (DELs) and 2,094 protein-coding genes (DEGs) were identified. Through KEGG analysis on DELs, we first made clear that fat deposition might be the main reason resulting in the differential phenotype of LT and ST, for which cGMP–PKG and VEGF signaling pathways were the most important ones. In total, forty-one key DELs and 50 DEGs involved in the differential fat deposition were then characterized. One of the key genes, cAMP-response element binding protein 1, was selected to confirm its role in porcine adipogenesis with molecular biology methods and found that it promotes the differentiation of porcine preadipocytes, consistent with its higher expression level and intramuscular fat contents in LT than that in ST muscle. Furthermore, through integrated analysis of DELs and DEGs, transcription factors important for differential fat deposition were characterized among which BCL6 has the most target DEGs while MEF2A was targeted by the most DELs. The results provide candidate genes crucial for meat quality, which will contribute to improving meat quality with molecular-breeding strategies.
Collapse
Affiliation(s)
- Yuanlu Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xu Lin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Qian Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yu Pang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiaohan Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xuelian Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Di Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
- *Correspondence: Di Liu
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Xiuqin Yang
| |
Collapse
|
7
|
Jian H, Sun H, Liu R, Zhang W, Shang L, Wang J, Khassanov V, Lyu D. Construction of drought stress regulation networks in potato based on SMRT and RNA sequencing data. BMC PLANT BIOLOGY 2022; 22:381. [PMID: 35909124 PMCID: PMC9341072 DOI: 10.1186/s12870-022-03758-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Potato (Solanum tuberosum) is the fourth most important food crop in the world and plays an important role in food security. Drought stress has a significantly negative impact on potato growth and production. There are several publications involved drought stress in potato, this research contributes to enrich the knowledge. RESULTS In this study, next-generation sequencing (NGS) and single-molecule real-time (SMRT) sequencing technology were used to study the transcription profiles in potato in response to 20%PEG6000 simulates drought stress. The leaves of the variety "Désirée" from in vitro plantlets after drought stress at six time points from 0 to 48 hours were used to perform NGS and SMRT sequencing. According to the sequencing data, a total of 12,798 differentially expressed genes (DEGs) were identified in six time points. The real-time (RT)-PCR results are significantly correlated with the sequencing data, confirming the accuracy of the sequencing data. Gene ontology and KEGG analysis show that these DEGs participate in response to drought stress through galactose metabolism, fatty acid metabolism, plant-pathogen interaction, glutathione metabolism and other pathways. Through the analysis of alternative splicing of 66,888 transcripts, the functional pathways of these transcripts were enriched, and 51,098 transcripts were newly discovered from alternative splicing events and 47,994 transcripts were functionally annotated. Moreover, 3445 lncRNAs were predicted and enrichment analysis of corresponding target genes was also performed. Additionally, Alternative polyadenylation was analyzed by TADIS, and 26,153 poly (A) sites from 13,010 genes were detected in the Iso-Seq data. CONCLUSION Our research greatly enhanced potato drought-induced gene annotations and provides transcriptome-wide insights into the molecular basis of potato drought resistance.
Collapse
Affiliation(s)
- Hongju Jian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, 400715 China
| | - Haonan Sun
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Rongrong Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Wenzhe Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Lina Shang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Jichun Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, 400715 China
| | - Vadim Khassanov
- S. Seifullin Kazakh Agrotechnical University, Zhenis Avenue, 010011 Astana, Republic of Kazakhstan
| | - Dianqiu Lyu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, 400715 China
| |
Collapse
|
8
|
Chang C, He X, Di R, Wang X, Han M, Liang C, Chu M. Thyroid Transcriptomic Profiling Reveals the Follicular Phase Differential Regulation of lncRNA and mRNA Related to Prolificacy in Small Tail Han Sheep with Two FecB Genotypes. Genes (Basel) 2022; 13:849. [PMID: 35627234 PMCID: PMC9141851 DOI: 10.3390/genes13050849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNA (lncRNA) accounts for a large proportion of RNA in animals. The thyroid gland has been established as an important gland involved in animal reproduction, however, little is known of its gene expression patterns and potential roles in the sheep. Herein, RNA-Seq was used to detect reproduction-related differentially expressed lncRNAs (DELs) and mRNAs (DEGs) in the follicular phase (FT) FecBBB (MM) and FecB++ (ww) genotypes of Small Tail Han (STH) sheep thyroids. Overall, 29 DELs and 448 DEGs in thyroid between MM and ww sheep were screened. Moreover, GO and KEGG enrichment analysis showed that targets of DELs and DEGs were annotated in biological transitions, such as cell cycle, oocyte meiosis and methylation, which in turn affect reproductive performance in sheep. In addition, we constructed co-expression and networks of lncRNAs-mRNAs. Specifically, XLOC_075176 targeted MYB, XLOC_014695 targeted VCAN, 106991527 targeted CASR, XLOC_075176 targeted KIFC1, XLOC_360232 targeted BRCA2. All these differential lncRNAs and mRNAs expression profiles in the thyroid provide a new resource for elucidating the regulatory mechanism underlying STH sheep prolificacy.
Collapse
Affiliation(s)
- Cheng Chang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| | - Miaoceng Han
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| |
Collapse
|
9
|
Liu M, Xu Q, Zhao J, Guo Y, Zhang C, Chao X, Cheng M, Schinckel AP, Zhou B. Comprehensive Transcriptome Analysis of Follicles from Two Stages of the Estrus Cycle of Two Breeds Reveals the Roles of Long Intergenic Non-Coding RNAs in Gilts. BIOLOGY 2022; 11:biology11050716. [PMID: 35625443 PMCID: PMC9138455 DOI: 10.3390/biology11050716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022]
Abstract
Simple Summary This study provides new perspectives about the roles of lincRNAs in the estrus expression of gilts, which is correlated with ovarian steroid hormone and follicular development. Follicular tissues from two stages of the estrus cycle of Large White and Mi gilts were used for RNA-seq. Some genes and lincRNAs related to estrus expression in pigs were discovered. PPI and ceRNA networks related to the estrus expression were constructed. These results suggest that the estrus expression may be affected by lincRNAs and their target genes. Abstract Visible and long-lasting estrus expression of gilts and sows effectively sends a mating signal. To reveal the roles of Long Intergenic Non-coding RNAs (lincRNAs) in estrus expression, RNA-seq was used to investigate the lincRNAs expression of follicular tissues from Large White gilts at diestrus (LD) and estrus (LE), and Chinese Mi gilts at diestrus (MD) and estrus (ME). Seventy-three differentially expressed lincRNAs (DELs) were found in all comparisons (LE vs. ME, LD vs. LE, and MD vs. ME comparisons). Eleven lincRNAs were differentially expressed in both LD vs. LE and MD vs. ME comparisons. Fifteen DELs were mapped onto the pig corpus luteum number Quantitative Trait Loci (QTL) fragments. A protein–protein interaction (PPI) network that involved estrus expression using 20 DEGs was then constructed. Interestingly, three predicted target DEGs (PTGs) (CYP19A1 of MSTRG.10910, CDK1 of MSTRG.10910 and MSTRG.23984, SCARB1 of MSTRG.1559) were observed in the PPI network. A competitive endogenous RNA (ceRNA) network including three lincRNAs, five miRNAs, and five genes was constructed. Our study provides new insight into the lincRNAs associated with estrus expression and follicular development in gilts.
Collapse
Affiliation(s)
- Mingzheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (Q.X.); (J.Z.); (Y.G.); (C.Z.); (X.C.); (M.C.)
| | - Qinglei Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (Q.X.); (J.Z.); (Y.G.); (C.Z.); (X.C.); (M.C.)
| | - Jing Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (Q.X.); (J.Z.); (Y.G.); (C.Z.); (X.C.); (M.C.)
| | - Yanli Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (Q.X.); (J.Z.); (Y.G.); (C.Z.); (X.C.); (M.C.)
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (Q.X.); (J.Z.); (Y.G.); (C.Z.); (X.C.); (M.C.)
| | - Xiaohuan Chao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (Q.X.); (J.Z.); (Y.G.); (C.Z.); (X.C.); (M.C.)
| | - Meng Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (Q.X.); (J.Z.); (Y.G.); (C.Z.); (X.C.); (M.C.)
| | - Allan P. Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2054, USA;
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (Q.X.); (J.Z.); (Y.G.); (C.Z.); (X.C.); (M.C.)
- Correspondence:
| |
Collapse
|