1
|
Michaels TM, Essop MF, Joseph DE. Potential Effects of Hyperglycemia on SARS-CoV-2 Entry Mechanisms in Pancreatic Beta Cells. Viruses 2024; 16:1243. [PMID: 39205219 PMCID: PMC11358987 DOI: 10.3390/v16081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The COVID-19 pandemic has revealed a bidirectional relationship between SARS-CoV-2 infection and diabetes mellitus. Existing evidence strongly suggests hyperglycemia as an independent risk factor for severe COVID-19, resulting in increased morbidity and mortality. Conversely, recent studies have reported new-onset diabetes following SARS-CoV-2 infection, hinting at a potential direct viral attack on pancreatic beta cells. In this review, we explore how hyperglycemia, a hallmark of diabetes, might influence SARS-CoV-2 entry and accessory proteins in pancreatic β-cells. We examine how the virus may enter and manipulate such cells, focusing on the role of the spike protein and its interaction with host receptors. Additionally, we analyze potential effects on endosomal processing and accessory proteins involved in viral infection. Our analysis suggests a complex interplay between hyperglycemia and SARS-CoV-2 in pancreatic β-cells. Understanding these mechanisms may help unlock urgent therapeutic strategies to mitigate the detrimental effects of COVID-19 in diabetic patients and unveil if the virus itself can trigger diabetes onset.
Collapse
Affiliation(s)
- Tara M. Michaels
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - M. Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa;
| | - Danzil E. Joseph
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| |
Collapse
|
2
|
Uceda AB, Mariño L, Casasnovas R, Adrover M. An overview on glycation: molecular mechanisms, impact on proteins, pathogenesis, and inhibition. Biophys Rev 2024; 16:189-218. [PMID: 38737201 PMCID: PMC11078917 DOI: 10.1007/s12551-024-01188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/14/2024] Open
Abstract
The formation of a heterogeneous set of advanced glycation end products (AGEs) is the final outcome of a non-enzymatic process that occurs in vivo on long-life biomolecules. This process, known as glycation, starts with the reaction between reducing sugars, or their autoxidation products, with the amino groups of proteins, DNA, or lipids, thus gaining relevance under hyperglycemic conditions. Once AGEs are formed, they might affect the biological function of the biomacromolecule and, therefore, induce the development of pathophysiological events. In fact, the accumulation of AGEs has been pointed as a triggering factor of obesity, diabetes-related diseases, coronary artery disease, neurological disorders, or chronic renal failure, among others. Given the deleterious consequences of glycation, evolution has designed endogenous mechanisms to undo glycation or to prevent it. In addition, many exogenous molecules have also emerged as powerful glycation inhibitors. This review aims to provide an overview on what glycation is. It starts by explaining the similarities and differences between glycation and glycosylation. Then, it describes in detail the molecular mechanism underlying glycation reactions, and the bio-molecular targets with higher propensity to be glycated. Next, it discusses the precise effects of glycation on protein structure, function, and aggregation, and how computational chemistry has provided insights on these aspects. Finally, it reports the most prevalent diseases induced by glycation, and the endogenous mechanisms and the current therapeutic interventions against it.
Collapse
Affiliation(s)
- Ana Belén Uceda
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Laura Mariño
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Rodrigo Casasnovas
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Miquel Adrover
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| |
Collapse
|
3
|
Conte C, Cipponeri E, Roden M. Diabetes Mellitus, Energy Metabolism, and COVID-19. Endocr Rev 2024; 45:281-308. [PMID: 37934800 PMCID: PMC10911957 DOI: 10.1210/endrev/bnad032] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/30/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Obesity, diabetes mellitus (mostly type 2), and COVID-19 show mutual interactions because they are not only risk factors for both acute and chronic COVID-19 manifestations, but also because COVID-19 alters energy metabolism. Such metabolic alterations can lead to dysglycemia and long-lasting effects. Thus, the COVID-19 pandemic has the potential for a further rise of the diabetes pandemic. This review outlines how preexisting metabolic alterations spanning from excess visceral adipose tissue to hyperglycemia and overt diabetes may exacerbate COVID-19 severity. We also summarize the different effects of SARS-CoV-2 infection on the key organs and tissues orchestrating energy metabolism, including adipose tissue, liver, skeletal muscle, and pancreas. Last, we provide an integrative view of the metabolic derangements that occur during COVID-19. Altogether, this review allows for better understanding of the metabolic derangements occurring when a fire starts from a small flame, and thereby help reducing the impact of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome 00166, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Elisa Cipponeri
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg 85764, Germany
| |
Collapse
|
4
|
Bassani D, Moro S. Past, Present, and Future Perspectives on Computer-Aided Drug Design Methodologies. Molecules 2023; 28:3906. [PMID: 37175316 PMCID: PMC10180087 DOI: 10.3390/molecules28093906] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The application of computational approaches in drug discovery has been consolidated in the last decades. These families of techniques are usually grouped under the common name of "computer-aided drug design" (CADD), and they now constitute one of the pillars in the pharmaceutical discovery pipelines in many academic and industrial environments. Their implementation has been demonstrated to tremendously improve the speed of the early discovery steps, allowing for the proficient and rational choice of proper compounds for a desired therapeutic need among the extreme vastness of the drug-like chemical space. Moreover, the application of CADD approaches allows the rationalization of biochemical and interactive processes of pharmaceutical interest at the molecular level. Because of this, computational tools are now extensively used also in the field of rational 3D design and optimization of chemical entities starting from the structural information of the targets, which can be experimentally resolved or can also be obtained with other computer-based techniques. In this work, we revised the state-of-the-art computer-aided drug design methods, focusing on their application in different scenarios of pharmaceutical and biological interest, not only highlighting their great potential and their benefits, but also discussing their actual limitations and eventual weaknesses. This work can be considered a brief overview of computational methods for drug discovery.
Collapse
Affiliation(s)
- Davide Bassani
- Pharmaceutical Research & Early Development, Roche Innovation Center Basel, F. Hoffmann—La Roche Ltd., 4070 Basel, Switzerland;
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
5
|
Duarte T, Silva MDM, Michelotti P, Barbosa NBDV, Feltes BC, Dorn M, Rocha JBTD, Dalla Corte CL. The Drosophila melanogaster ACE2 ortholog genes are differently expressed in obesity/diabetes and aging models: Implications for COVID-19 pathology. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166551. [PMID: 36116726 PMCID: PMC9474972 DOI: 10.1016/j.bbadis.2022.166551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/08/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
The Spike glycoprotein of SARS-CoV-2, the virus responsible for coronavirus disease 2019, binds to its ACE2 receptor for internalization in the host cells. Elderly individuals or those with subjacent disorders, such as obesity and diabetes, are more susceptible to COVID-19 severity. Additionally, several SARS-CoV-2 variants appear to enhance the Spike-ACE2 interaction, which increases transmissibility and death. Considering that the fruit fly is a robust animal model in metabolic research and has two ACE2 orthologs, Ance and Acer, in this work, we studied the effects of two hypercaloric diets (HFD and HSD) and aging on ACE2 orthologs mRNA expression levels in Drosophila melanogaster. To complement our work, we analyzed the predicted binding affinity between the Spike protein with Ance and Acer. We show for the first time that Ance and Acer genes are differentially regulated and dependent on diet and age in adult flies. At the molecular level, Ance and Acer proteins exhibit the potential to bind to the Spike protein in different regions, as shown by a molecular docking approach. Acer, in particular, interacts with the Spike protein in the same region as in humans. Overall, we suggest that the D. melanogaster is a promising animal model for translational studies on COVID-19 associated risk factors and ACE2.
Collapse
Affiliation(s)
- Tâmie Duarte
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Mônica de Medeiros Silva
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Paula Michelotti
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Nilda Berenice de Vargas Barbosa
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Bruno César Feltes
- Institute of Informatics, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, RS 91501-970, Brazil; Institute of Biosciences, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, RS 91501-970, Brazil
| | - Márcio Dorn
- Institute of Informatics, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, RS 91501-970, Brazil; Center of Biotechnology, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, RS 91501-970, Brazil; National Institute of Science and Technology - Forensic Science, 6681 Ipiranga Avenue, Porto Alegre, RS 90619-900, Brazil
| | - João Batista Teixeira da Rocha
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Cristiane Lenz Dalla Corte
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
6
|
Pavan M, Bassani D, Sturlese M, Moro S. From the Wuhan-Hu-1 strain to the XD and XE variants: is targeting the SARS-CoV-2 spike protein still a pharmaceutically relevant option against COVID-19? J Enzyme Inhib Med Chem 2022; 37:1704-1714. [PMID: 35695095 PMCID: PMC9196651 DOI: 10.1080/14756366.2022.2081847] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/20/2022] [Indexed: 11/08/2022] Open
Abstract
Since the outbreak of the COVID-19 pandemic in December 2019, the SARS-CoV-2 genome has undergone several mutations. The emergence of such variants has resulted in multiple pandemic waves, contributing to sustaining to date the number of infections, hospitalisations, and deaths despite the swift development of vaccines, since most of these mutations are concentrated on the Spike protein, a viral surface glycoprotein that is the main target for most vaccines. A milestone in the fight against the COVID-19 pandemic has been represented by the development of Paxlovid, the first orally available drug against COVID-19, which acts on the Main Protease (Mpro). In this article, we analyse the structural features of both the Spike protein and the Mpro of the recently reported SARS-CoV-2 variant XE, as well the closely related XD and XF ones, discussing their impact on the efficacy of existing treatments against COVID-19 and on the development of future ones.
Collapse
Affiliation(s)
- Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
7
|
Pavan M, Bassani D, Sturlese M, Moro S. Investigating RNA-protein recognition mechanisms through supervised molecular dynamics (SuMD) simulations. NAR Genom Bioinform 2022; 4:lqac088. [PMID: 36458023 PMCID: PMC9706429 DOI: 10.1093/nargab/lqac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/20/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Ribonucleic acid (RNA) plays a key regulatory role within the cell, cooperating with proteins to control the genome expression and several biological processes. Due to its characteristic structural features, this polymer can mold itself into different three-dimensional structures able to recognize target biomolecules with high affinity and specificity, thereby attracting the interest of drug developers and medicinal chemists. One successful example of the exploitation of RNA's structural and functional peculiarities is represented by aptamers, a class of therapeutic and diagnostic tools that can recognize and tightly bind several pharmaceutically relevant targets, ranging from small molecules to proteins, making use of the available structural and conformational freedom to maximize the complementarity with their interacting counterparts. In this scientific work, we present the first application of Supervised Molecular Dynamics (SuMD), an enhanced sampling Molecular Dynamics-based method for the study of receptor-ligand association processes in the nanoseconds timescale, to the study of recognition pathways between RNA aptamers and proteins, elucidating the main advantages and limitations of the technique while discussing its possible role in the rational design of RNA-based therapeutics.
Collapse
Affiliation(s)
- Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Stefano Moro
- To whom correspondence should be addressed. Tel: +39 0498275704; Fax: +39 0498275366;
| |
Collapse
|
8
|
dos Santos AAC, Rodrigues LE, Alecrim-Zeza AL, de Araújo Ferreira L, Trettel CDS, Gimenes GM, da Silva AF, Sousa-Filho CPB, Serdan TDA, Levada-Pires AC, Hatanaka E, Borges FT, de Barros MP, Cury-Boaventura MF, Bertolini GL, Cassolla P, Marzuca-Nassr GN, Vitzel KF, Pithon-Curi TC, Masi LN, Curi R, Gorjao R, Hirabara SM. Molecular and cellular mechanisms involved in tissue-specific metabolic modulation by SARS-CoV-2. Front Microbiol 2022; 13:1037467. [PMID: 36439786 PMCID: PMC9684198 DOI: 10.3389/fmicb.2022.1037467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/26/2022] [Indexed: 09/09/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is triggered by the SARS-CoV-2, which is able to infect and cause dysfunction not only in lungs, but also in multiple organs, including central nervous system, skeletal muscle, kidneys, heart, liver, and intestine. Several metabolic disturbances are associated with cell damage or tissue injury, but the mechanisms involved are not yet fully elucidated. Some potential mechanisms involved in the COVID-19-induced tissue dysfunction are proposed, such as: (a) High expression and levels of proinflammatory cytokines, including TNF-α IL-6, IL-1β, INF-α and INF-β, increasing the systemic and tissue inflammatory state; (b) Induction of oxidative stress due to redox imbalance, resulting in cell injury or death induced by elevated production of reactive oxygen species; and (c) Deregulation of the renin-angiotensin-aldosterone system, exacerbating the inflammatory and oxidative stress responses. In this review, we discuss the main metabolic disturbances observed in different target tissues of SARS-CoV-2 and the potential mechanisms involved in these changes associated with the tissue dysfunction.
Collapse
Affiliation(s)
| | - Luiz Eduardo Rodrigues
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Amanda Lins Alecrim-Zeza
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Liliane de Araújo Ferreira
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Caio dos Santos Trettel
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Gabriela Mandú Gimenes
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Adelson Fernandes da Silva
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | | | - Tamires Duarte Afonso Serdan
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
- Department of Molecular Pathobiology, University of New York, New York, NY, United States
| | - Adriana Cristina Levada-Pires
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Elaine Hatanaka
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Fernanda Teixeira Borges
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
- Divisão de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcelo Paes de Barros
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Maria Fernanda Cury-Boaventura
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Gisele Lopes Bertolini
- Department of Physiological Sciences, Biological Science Center, State University of Londrina, Londrina, PR, Brazil
| | - Priscila Cassolla
- Department of Physiological Sciences, Biological Science Center, State University of Londrina, Londrina, PR, Brazil
| | | | - Kaio Fernando Vitzel
- School of Health Sciences, College of Health, Massey University, Auckland, New Zealand
| | - Tania Cristina Pithon-Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Laureane Nunes Masi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Rui Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
- Instituto Butantan, São Paulo, Brazil
| | - Renata Gorjao
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Sandro Massao Hirabara
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Wang T, Cao Y, Zhang H, Wang Z, Man CH, Yang Y, Chen L, Xu S, Yan X, Zheng Q, Wang Y. COVID-19 metabolism: Mechanisms and therapeutic targets. MedComm (Beijing) 2022; 3:e157. [PMID: 35958432 PMCID: PMC9363584 DOI: 10.1002/mco2.157] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 01/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) dysregulates antiviral signaling, immune response, and cell metabolism in human body. Viral genome and proteins hijack host metabolic network to support viral biogenesis and propagation. However, the regulatory mechanism of SARS-CoV-2-induced metabolic dysfunction has not been elucidated until recently. Multiomic studies of coronavirus disease 2019 (COVID-19) revealed an intensive interaction between host metabolic regulators and viral proteins. SARS-CoV-2 deregulated cellular metabolism in blood, intestine, liver, pancreas, fat, and immune cells. Host metabolism supported almost every stage of viral lifecycle. Strikingly, viral proteins were found to interact with metabolic enzymes in different cellular compartments. Biochemical and genetic assays also identified key regulatory nodes and metabolic dependencies of viral replication. Of note, cholesterol metabolism, lipid metabolism, and glucose metabolism are broadly involved in viral lifecycle. Here, we summarized the current understanding of the hallmarks of COVID-19 metabolism. SARS-CoV-2 infection remodels host cell metabolism, which in turn modulates viral biogenesis and replication. Remodeling of host metabolism creates metabolic vulnerability of SARS-CoV-2 replication, which could be explored to uncover new therapeutic targets. The efficacy of metabolic inhibitors against COVID-19 is under investigation in several clinical trials. Ultimately, the knowledge of SARS-CoV-2-induced metabolic reprogramming would accelerate drug repurposing or screening to combat the COVID-19 pandemic.
Collapse
Affiliation(s)
- Tianshi Wang
- Shanghai Key Laboratory for Tumor Microenvironment and InflammationDepartment of Biochemistry and Molecular Cell BiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ying Cao
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haiyan Zhang
- Bai Jia Obstetrics and Gynecology HospitalShanghaiChina
| | - Zihao Wang
- Fudan University Shanghai Cancer CenterKey Laboratory of Breast Cancer in ShanghaiShanghai Key Laboratory of Radiation OncologyCancer Instituteand The Shanghai Key Laboratory of Medical EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- The International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghaiChina
| | - Cheuk Him Man
- Division of HematologyDepartment of MedicineUniversity of Hong KongPokfulamHong Kong, China
| | - Yunfan Yang
- Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
| | - Lingchao Chen
- Department of NeurosurgeryHuashan HospitalShanghai Medical CollegeFudan UniversityNational Center for Neurological DisordersShanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationNeurosurgical Institute of Fudan UniversityShanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Shuangnian Xu
- Department of HematologySouthwest HospitalArmy Medical UniversityChongqingChina
| | - Xiaojing Yan
- Department of HematologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Quan Zheng
- Center for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi‐Ping Wang
- Fudan University Shanghai Cancer CenterKey Laboratory of Breast Cancer in ShanghaiShanghai Key Laboratory of Radiation OncologyCancer Instituteand The Shanghai Key Laboratory of Medical EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- The International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghaiChina
| |
Collapse
|
10
|
Vargas-Rodriguez JR, Valdés Aguayo JJ, Garza-Veloz I, Martinez-Rendon J, del Refugio Rocha Pizaña M, Cabral-Pacheco GA, Juárez-Alcalá V, Martinez-Fierro ML. Sustained Hyperglycemia and Its Relationship with the Outcome of Hospitalized Patients with Severe COVID-19: Potential Role of ACE2 Upregulation. J Pers Med 2022; 12:805. [PMID: 35629227 PMCID: PMC9147379 DOI: 10.3390/jpm12050805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/03/2022] [Accepted: 05/14/2022] [Indexed: 01/09/2023] Open
Abstract
Chronic hyperglycemia increases the risk of developing severe COVID-19 symptoms, but the related mechanisms are unclear. A mean glucose level upon hospital admission >166 mg/dl correlates positively with acute respiratory distress syndrome in patients with hyperglycemia. The objective of this study was to evaluate the relationship between sustained hyperglycemia and the outcome of hospitalized patients with severe COVID-19. We also evaluated the effect of high glucose concentrations on the expression of angiotensin-converting enzyme 2 (ACE2). We carried out a case-control study with hospitalized patients with severe COVID-19 with and without sustained hyperglycemia. In a second stage, we performed in vitro assays evaluating the effects of high glucose concentrations on ACE2 gene expression. Fifty hospitalized patients with severe COVID-19 were included, of which 28 (56%) died and 22 (44%) recovered. Patients who died due to COVID-19 and COVID-19 survivors had a high prevalence of hyperglycemia (96.4% versus 90.9%), with elevated central glucose upon admission (197.7 mg/dl versus 155.9 mg/dl, p = 0.089) and at discharge (185.2 mg/dl versus 134 mg/dl, p = 0.038). The mean hypoxemia level upon hospital admission was 81% in patients who died due to COVID-19 complications and 88% in patients who survived (p = 0.026); at the time of discharge, hypoxemia levels were also different between the groups (68% versus 92%, p ≤ 0.001). In vitro assays showed that the viability of A549 cells decreased (76.41%) as the glucose concentration increased, and the ACE2 gene was overexpressed 9.91-fold after 72 h (p ≤ 0.001). The relationship between hyperglycemia and COVID-19 in hospitalized patients with COVID-19 plays an important role in COVID-19-related complications and the outcome for these patients. In patients with chronic and/or sustained hyperglycemia, the upregulation of ACE2, and its potential glycation and malfunction, could be related to complications observed in patients with COVID-19.
Collapse
Affiliation(s)
- Jose R. Vargas-Rodriguez
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S, Campus UAZ siglo XXI-L1, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.V.-R.); (J.J.V.A.); (I.G.-V.); (J.M.-R.); (G.A.C.-P.); (V.J.-A.)
| | - José J. Valdés Aguayo
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S, Campus UAZ siglo XXI-L1, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.V.-R.); (J.J.V.A.); (I.G.-V.); (J.M.-R.); (G.A.C.-P.); (V.J.-A.)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S, Campus UAZ siglo XXI-L1, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.V.-R.); (J.J.V.A.); (I.G.-V.); (J.M.-R.); (G.A.C.-P.); (V.J.-A.)
| | - Jacqueline Martinez-Rendon
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S, Campus UAZ siglo XXI-L1, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.V.-R.); (J.J.V.A.); (I.G.-V.); (J.M.-R.); (G.A.C.-P.); (V.J.-A.)
| | | | - Griselda A. Cabral-Pacheco
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S, Campus UAZ siglo XXI-L1, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.V.-R.); (J.J.V.A.); (I.G.-V.); (J.M.-R.); (G.A.C.-P.); (V.J.-A.)
| | - Vladimir Juárez-Alcalá
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S, Campus UAZ siglo XXI-L1, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.V.-R.); (J.J.V.A.); (I.G.-V.); (J.M.-R.); (G.A.C.-P.); (V.J.-A.)
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S, Campus UAZ siglo XXI-L1, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.V.-R.); (J.J.V.A.); (I.G.-V.); (J.M.-R.); (G.A.C.-P.); (V.J.-A.)
| |
Collapse
|
11
|
Bassani D, Ragazzi E, Lapolla A, Sartore G, Moro S. Omicron Variant of SARS-CoV-2 Virus: In Silico Evaluation of the Possible Impact on People Affected by Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:847993. [PMID: 35321335 PMCID: PMC8935058 DOI: 10.3389/fendo.2022.847993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
The Omicron variant of SARS-CoV-2 (Spike mutant B.1.1.529) carrying more than 30-point mutations in its structure, of which 15 are localized in the receptor-binding domain (RBD), allows to hypothesize a relevant change in interactivity with ACE2. In previous reports we hypothesized that the worse outcome of the COVID-19 disease in diabetes mellitus condition could be related to the non-enzymatic glycation of ACE2 receptor and an in silico evaluation led to the demonstration that the number of interactions is decreased in comparison to the unmodified model, possibly shifting the virus attack through different, multiple alternative entry routes. Given the evidenced features of this variant, we aimed to investigate with a computational approach the characteristics of Omicron SARS-CoV-2 with respect to its binding to human ACE-2 receptor, in a particular population, namely people affected by diabetes mellitus, at risk for unfavorable outcomes of the COVID-19. The computational analysis, considering the case in which all the lysine residues in the system are subjected to non-enzymatic glycation, confirmed that lysine glycation causes a general loss of interactivity between wild-type (WT)-Spike-RBD and ACE2. In the Omicron variant, Lys417 mutates into an asparagine, preventing the possible non-enzymatic glycation of this residue. Therefore, if non-enzymatic glycation seemed to cause a shift in the way in which the virus enters the cell from the ACE2-mediated mechanism to other pathways, in the case of the Omicron variant the ACE2-mediated approach of the virus seems to remain an important event to take into account. Indeed, interaction profile analysis, together with molecular mechanics-generalized Born surface area (MM-GBSA) calculations, suggests that the Omicron-Spike-RBD maintains a higher affinity for ACE2 subsequently to non-enzymatic glycation with respect to WT-Spike-RBD. The finding of the present computational study may suggest a different clinical relevance of the Omicron variant for the diabetes mellitus field, also in the possible direction of a lower severity of the disease.
Collapse
Affiliation(s)
- Davide Bassani
- Department of Pharmaceutical and Pharmacological Sciences (DSF), Molecular Modeling Section (MMS), University of Padova School of Medicine and Surgery, Padua, Italy
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences (DSF), University of Padova School of Medicine and Surgery, Padua, Italy
- *Correspondence: Eugenio Ragazzi,
| | - Annunziata Lapolla
- Department of Medicine (DIMED), University of Padova School of Medicine and Surgery, Padua, Italy
| | - Giovanni Sartore
- Department of Medicine (DIMED), University of Padova School of Medicine and Surgery, Padua, Italy
| | - Stefano Moro
- Department of Pharmaceutical and Pharmacological Sciences (DSF), Molecular Modeling Section (MMS), University of Padova School of Medicine and Surgery, Padua, Italy
| |
Collapse
|