Park SM, Yoon HG, Lee DB, Choi JW, Kwon HY, Won C. Topological magnetic structure generation using VAE-GAN hybrid model and discriminator-driven latent sampling.
Sci Rep 2023;
13:20377. [PMID:
37989882 PMCID:
PMC10663506 DOI:
10.1038/s41598-023-47866-3]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/19/2023] [Indexed: 11/23/2023] Open
Abstract
Recently, deep generative models using machine intelligence are widely utilized to investigate scientific systems by generating scientific data. In this study, we experiment with a hybrid model of a variational autoencoder (VAE) and a generative adversarial network (GAN) to generate a variety of plausible two-dimensional magnetic topological structure data. Due to the topological properties in the system, numerous and diverse metastable magnetic structures exist, and energy and topological barriers separate them. Thus, generating a variety of plausible spin structures avoiding those barrier states is a challenging problem. The VAE-GAN hybrid model can present an effective approach to this problem because it brings the advantages of both VAE's diversity and GAN's fidelity. It allows one to perform various applications including searching a desired sample from a variety of valid samples. Additionally, we perform a discriminator-driven latent sampling (DDLS) using our hybrid model to improve the quality of generated samples. We confirm that DDLS generates various plausible data with large coverage, following the topological rules of the target system.
Collapse