1
|
Guse K, Pietri JE. Endosymbiont and gut bacterial communities of the brown-banded cockroach, Supella longipalpa. PeerJ 2024; 12:e17095. [PMID: 38525276 PMCID: PMC10959106 DOI: 10.7717/peerj.17095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
The brown-banded cockroach (Supella longipalpa) is a widespread nuisance and public health pest. Like the German cockroach (Blattella germanica), this species is adapted to the indoor biome and completes the entirety of its life cycle in human-built structures. Recently, understanding the contributions of commensal and symbiotic microbes to the biology of cockroach pests, as well as the applications of targeting these microbes for pest control, have garnered significant scientific interest. However, relative to B. germanica, the biology of S. longipalpa, including its microbial associations, is understudied. Therefore, the goal of the present study was to quantitatively examine and characterize both the endosymbiont and gut bacterial communities of S. longipalpa for the first time. To do so, bacterial 16S rRNA gene amplicon sequencing was conducted on DNA extracts from whole adult females and males, early instar nymphs, and late instar nymphs. The results demonstrate that the gut microbiome is dominated by two genera of bacteria known to have beneficial probiotic effects in other organisms, namely Lactobacillus and Akkermansia. Furthermore, our data show a significant effect of nymphal development on diversity and variation in the gut microbiome. Lastly, we reveal significant negative correlations between the two intracellular endosymbionts, Blattabacterium and Wolbachia, as well as between Blattabacterium and the gut microbiome, suggesting that Blattabacterium endosymbionts could directly or indirectly influence the composition of other bacterial populations. These findings have implications for understanding the adaptation of S. longipalpa to the indoor biome, its divergence from other indoor cockroach pest species such as B. germanica, the development of novel control approaches that target the microbiome, and fundamental insect-microbe interactions more broadly.
Collapse
Affiliation(s)
- Kylene Guse
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD, United States
| | - Jose E. Pietri
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
2
|
Zha C, Turner M, Ray R, Liang D, Pietri JE. Effects of copper and zinc oxide nanoparticles on German cockroach development, indoxacarb resistance, and bacterial load. PEST MANAGEMENT SCIENCE 2023; 79:2944-2950. [PMID: 36966487 PMCID: PMC10330183 DOI: 10.1002/ps.7472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 03/09/2023] [Accepted: 03/26/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The German cockroach, Blattella germanica, is a ubiquitous and medically significant urban pest. The ongoing development of insecticide resistance in global populations of B. germanica has complicated control efforts and created a need for improved tools. We previously reported that disruption of the gut microbiota by oral administration of the antimicrobial doxycycline reduced resistance in an indoxacarb resistant field strain and also delayed nymphal development and reduced adult fecundity. However, the application of doxycycline for cockroach control in the field is impractical. Here, we sought to determine whether two metal nanoparticles with known antimicrobial properties, copper (Cu) and zinc oxide (ZnO), have similar effects to doxycycline on the physiology of B. germanica and could provide more practical alternatives for control. RESULTS We found that dietary exposure to 0.1% Cu nanoparticles, but not ZnO, significantly delays the development of nymphs into adults. However, neither of the nanoparticles altered the fecundity of females, and ZnO surprisingly increased resistance to indoxacarb in a resistant field strain, in contrast to doxycycline. Semi-quantitative polymerase chain reaction (qPCR) further revealed that prolonged dietary exposure (14 days) to Cu or ZnO nanoparticles at the low concentration readily consumed by cockroaches (0.1%) does not reduce the load of the bacterial microbiota, suggesting alternative mechanisms behind their observed effects. CONCLUSIONS Together, our results indicate that ingestion of Cu nanoparticles can impact German cockroach development through an undetermined mechanism that does not involve reducing the overall load of the bacterial microbiota. Therefore, Cu may have some applications in cockroach control as a result of this activity but antagonistic effects on insecticide resistance should be considered when evaluating the potential of nanoparticles for cockroach control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chen Zha
- Apex Bait Technologies, Inc., Santa Clara, CA, USA
| | - Matthew Turner
- Sanford School of Medicine, Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD, USA
| | - Ritesh Ray
- Sanford School of Medicine, Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD, USA
| | | | - Jose E. Pietri
- Sanford School of Medicine, Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
3
|
Cazzaniga M, Domínguez-Santos R, Marín-Miret J, Gil R, Latorre A, García-Ferris C. Exploring Gut Microbial Dynamics and Symbiotic Interaction in Blattella germanica Using Rifampicin. BIOLOGY 2023; 12:955. [PMID: 37508385 PMCID: PMC10376618 DOI: 10.3390/biology12070955] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Blattella germanica harbours two cohabiting symbiotic systems: an obligate endosymbiont, Blattabacterium, located inside bacteriocytes and vertically transmitted, which is key in nitrogen metabolism, and abundant and complex gut microbiota acquired horizontally (mainly by coprophagy) that must play an important role in host physiology. In this work, we use rifampicin treatment to deepen the knowledge on the relationship between the host and the two systems. First, we analysed changes in microbiota composition in response to the presence and removal of the antibiotic with and without faeces in one generation. We found that, independently of faeces supply, rifampicin-sensitive bacteria are strongly affected at four days of treatment, and most taxa recover after treatment, although some did not reach control levels. Second, we tried to generate an aposymbiotic population, but individuals that reached the second generation were severely affected and no third generation was possible. Finally, we established a mixed population with quasi-aposymbiotic and control nymphs sharing an environment in a blind experiment. The analysis of the two symbiotic systems in each individual after reaching the adult stage revealed that endosymbiont's load does not affect the composition of the hindgut microbiota, suggesting that there is no interaction between the two symbiotic systems in Blattella germanica.
Collapse
Affiliation(s)
- Monica Cazzaniga
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain
| | - Rebeca Domínguez-Santos
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain
| | - Jesús Marín-Miret
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain
| | - Rosario Gil
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain
- Genomic and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, 46020 Valencia, Spain
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain
- Genomic and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, 46020 Valencia, Spain
| | - Carlos García-Ferris
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain
- Genomic and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, 46020 Valencia, Spain
- Department of Biochemistry and Molecular Biology, University of Valencia, 46100 Burjassot, Spain
| |
Collapse
|
4
|
Araújo MF, Castanheira EMS, Sousa SF. The Buzz on Insecticides: A Review of Uses, Molecular Structures, Targets, Adverse Effects, and Alternatives. Molecules 2023; 28:molecules28083641. [PMID: 37110875 PMCID: PMC10144373 DOI: 10.3390/molecules28083641] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Insecticides play a critical role in controlling the spread of insect-borne diseases and preserving crop health. These chemical substances are specifically formulated to kill or manage insect populations. Over the years, various types of insecticides have been developed, including organophosphates, carbamates, pyrethroids, and neonicotinoids, each with unique modes of action, physiological targets, and efficacy. Despite the advantages that insecticides offer, it is imperative to recognize the potential consequences on non-target species, the environment, and human health. It is therefore crucial to follow recommended label instructions and employ integrated pest management practices for the judicious use of insecticides. This review article provides an in-depth examination of the various types of insecticides, including their modes of action, physiological targets, environmental and human health impacts, and alternatives. The aim is to furnish a comprehensive overview of insecticides and to emphasize the significance of responsible and sustainable utilization.
Collapse
Affiliation(s)
- Maria F Araújo
- UCIBIO/REQUIMTE, BioSIM-Department of Medicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Elisabete M S Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Associate Laboratory LaPMET, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Sérgio F Sousa
- UCIBIO/REQUIMTE, BioSIM-Department of Medicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
5
|
Yang LY, Yang XJ, Zhao ZS, Zhang QL. Subcellular-Level Mitochondrial Energy Metabolism Response in the Fat Body of the German Cockroach Fed Abamectin. INSECTS 2022; 13:1091. [PMID: 36555001 PMCID: PMC9782180 DOI: 10.3390/insects13121091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/13/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Mitochondria are the leading organelle for energy metabolism. The toxic effects of environmental toxicants on mitochondrial morphology, energy metabolism, and their determination of cell fate have already been broadly studied. However, minimal research exists on effects of environmental toxicants such as pesticides on mitochondrial energy metabolism at in vitro subcellular level, particularly from an omics perspectives (e.g., metabolomics). Here, German cockroach (Blattella germanica) was fed diets with (0.01 and 0.001 mg/mL) and without abamectin, and highly purified fat body mitochondria were isolated. Swelling measurement confirmed abnormal mitochondrial swelling caused by abamectin stress. The activity of two key mitochondrial energy metabolism-related enzymes, namely succinic dehydrogenase and isocitrate dehydrogenase, was significantly affected. The metabolomic responses of the isolated mitochondria to abamectin were analyzed via untargeted liquid chromatography/mass spectrometry metabolomics technology. Fifty-two differential metabolites (DMs) were identified in the mitochondria between the 0.001 mg/mL abamectin-fed and the control groups. Many of these DMs were significantly enriched in pathways involved in ATP production and energy consumption (e.g., oxidative phosphorylation, TCA cycle, and pentose phosphate pathway). Nineteen of the DMs were typically related to energy metabolism. This study is valuable for further understanding mitochondrial toxicology under environmental toxicants, particularly its subcellular level.
Collapse
|
6
|
González-Morales MA, DeVries ZC, Santangelo RG, Kakumanu ML, Schal C. Multiple Mechanisms Confer Fipronil Resistance in the German Cockroach: Enhanced Detoxification and Rdl Mutation. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1721-1731. [PMID: 35943144 DOI: 10.1093/jme/tjac100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Populations of Blattella germanica (L.) (German cockroach) have been documented worldwide to be resistant to a wide variety of insecticides with multiple modes of action. The phenylpyrazole insecticide fipronil has been used extensively to control German cockroach populations, exclusively in baits, yet the highest reported fipronil resistance is 38-fold in a single population. We evaluated five populations of German cockroaches, collected in 2018-2019 in apartments in North Carolina and assayed in 2019, to determine the status of fipronil resistance in the state. Resistance ratios in field-collected strains ranged from 22.4 to 37.2, indicating little change in fipronil resistance over the past 20 yr. In contrast, resistance to pyrethroids continues to escalate. We also assessed the roles of detoxification enzymes in fipronil resistance with four synergists previously shown to diminish metabolic resistance to various insecticides in German cockroaches-piperonyl butoxide, S,S,S-tributyl phosphorotrithioate, diethyl maleate, and triphenyl phosphate. These enzymes appear to play a variable role in fipronil resistance. We also sequenced a fragment of the Rdl (resistant to dieldrin) gene that encodes a subunit of the GABA receptor. Our findings showed that all field-collected strains are homozygous for a mutation that substitutes serine for an alanine (A302S) in Rdl, and confers low resistance to fipronil. Understanding why cockroaches rapidly evolve high levels of resistance to some insecticides and not others, despite intensive selection pressure, will contribute to more efficacious pest management.
Collapse
Affiliation(s)
| | - Zachary C DeVries
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Richard G Santangelo
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Madhavi L Kakumanu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|