1
|
Filippi L, Camedda R, Frantellizzi V, Urbano N, De Vincentis G, Schillaci O. Functional Imaging in Musculoskeletal Disorders in Menopause. Semin Nucl Med 2024; 54:206-218. [PMID: 37914617 DOI: 10.1053/j.semnuclmed.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Menopause-related musculoskeletal (MSK) disorders include osteoporosis, osteoarthritis (OA), sarcopenia and sarco-obesity. This review focuses on the applications of nuclear medicine for the functional imaging of the aforementioned clinical conditions. Bone Scan (BS) with 99mTc-labeled phosphonates, alone or in combination with MRI, can identify "fresh" vertebral collapse due to age-associated osteoporosis and provides quantitative parameters characterized by a good correlation with radiological indices in patients with OA. 18F-NaF PET, particularly when performed by dynamic scan, has given encouraging results for measuring bone turnover in osteoporosis and allows the evaluation of subchondral bone metabolic activity in OA. FDG PET can help discriminate between pathological and nonpathological vertebral fractures, especially by applying appropriate SUV-based thresholds. In OA, it can effectively image inflamed joints and support appropriate clinical management. Preliminary evidences suggest a possible application of FDG in sarco-obesity for the detection and quantification of visceral adipose tissue (VAT). Further studies are needed to better define the role of nuclear medicine in menopause-related MSK disease, especially as regards the possible impact of new radiopharmaceuticals (ie, FAPI and RGD peptides) and recent technological advances (eg, total-body PET/CT scanners).
Collapse
Affiliation(s)
- Luca Filippi
- Nuclear Medicine Unit, Department of Oncohaematology, Fondazione PTV Policlinico Tor Vergata University Hospital, Rome, Italy.
| | - Riccardo Camedda
- Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, Rome, Italy
| | - Nicoletta Urbano
- Nuclear Medicine Unit, Department of Oncohaematology, Fondazione PTV Policlinico Tor Vergata University Hospital, Rome, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, Rome, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
| |
Collapse
|
2
|
Yoon EC, Kim JS, Lim CH, Park SB, Park S, Lee KA, Kim HS. Visual Scoring of Sacroiliac Joint/Sacrum Ratios of Single-Photon Emission Computed Tomography/Computed Tomography Images Affords High Sensitivity and Negative Predictive Value in Axial Spondyloarthritis. Diagnostics (Basel) 2023; 13:diagnostics13101725. [PMID: 37238208 DOI: 10.3390/diagnostics13101725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Spondyloarthritis (SpA) is characterized by inflammatory back pain. Magnetic resonance imaging (MRI) was the earlier gold standard technique for detecting early inflammatory change. We reassessed the diagnostic utility of sacroiliac joint/sacrum (SIS) ratios of single-photon emission computed tomography/computed tomography (SPECT/CT) for identifying sacroiliitis. We aimed to investigate of SPECT/CT in diagnosing SpA using a rheumatologist's visual scoring of SIS ratios assessment. We conducted a single-center, medical records review study of patients with lower back pain who underwent bone SPECT/CT from August 2016 to April 2020. We employed semiquantitative visual bone scoring methods of SIS ratio. The uptake of each sacroiliac joint was compared to that of the sacrum (0-2). A score of 2 for the sacroiliac joint of either side was considered diagnostic of sacroiliitis. Of the 443 patients assessed, 40 had axial SpA (axSpA), 24 being radiographic axSpA and 16 being nonradiographic axSpA. The sensitivity, specificity, and positive and negative predictive values of SIS ratio of SPECT/CT for axSpA were 87.5%, 56.5%, 16.6%, and 97.8%, respectively. In receiver operating curve analysis, MRI better diagnosed axSpA than did SIS ratio of SPECT/CT. Although the diagnostic utility of SIS ratio of SPECT/CT was inferior to MRI, visual scoring of SPECT/CT affords high sensitivity and negative predictive value in axSpA. When MRI is inappropriate for certain patients, SIS ratio of SPECT/CT is an alternative tool for identifying axSpA in real practice.
Collapse
Affiliation(s)
- Eun-Chong Yoon
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul 04401, Republic of Korea
| | - Jong-Sun Kim
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul 04401, Republic of Korea
| | - Chae Hong Lim
- Department of Nuclear Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul 04401, Republic of Korea
| | - Soo Bin Park
- Department of Nuclear Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul 04401, Republic of Korea
| | - Suyeon Park
- Department of Biostatistics, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul 04401, Republic of Korea
- Department of Applied Statistics, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Kyung-Ann Lee
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul 04401, Republic of Korea
| | - Hyun-Sook Kim
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul 04401, Republic of Korea
| |
Collapse
|
3
|
Chen L, Lyu Y, Zhang X, Zheng L, Li Q, Ding D, Chen F, Liu Y, Li W, Zhang Y, Huang Q, Wang Z, Xie T, Zhang Q, Sima Y, Li K, Xu S, Ren T, Xiong M, Wu Y, Song J, Yuan L, Yang H, Zhang XB, Tan W. Molecular imaging: design mechanism and bioapplications. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
4
|
Miwa K, Nemoto R, Masuko H, Yamao T, Kobayashi R, Miyaji N, Inoue K, Onodera H. Evaluation of quantitative accuracy among different scatter corrections for quantitative bone SPECT/CT imaging. PLoS One 2022; 17:e0269542. [PMID: 35666737 PMCID: PMC9170091 DOI: 10.1371/journal.pone.0269542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
Although scatter correction improves SPECT image contrast and thus image quality, the effects of quantitation accuracy under various conditions remain unclear. The present study aimed to empirically define the conditions for the optimal scatter correction of quantitative bone SPECT/CT images. Scatter correction was performed by applying dual and triple energy windows (DEW and TEW) with different sub-energy window widths, and effective scatter source estimation (ESSE) to CT-based scatter correction. Scattered radiation was corrected on images acquired using a triple line source (TLSP) phantom and an uniform cylinder phantom. The TLSP consisted of a line source containing 74.0 MBq of 99mTc in the middle, and a background component containing air, water or a K2HPO4 solution with a density equivalent to that of bone. The sum of all pixels in air, water and the K2HPO4 solution was measured on SPECT images. Scatter fraction (SF) and normalized mean square error (NMSE) based on counts from the air background as a reference were then calculated to assess quantitative errors due to scatter correction. The uniform cylinder phantom contained the same K2HPO4 solution and 222.0 MBq of 99mTc. The coefficient of variation (CV) was calculated from the count profile of this phantom to assess the uniformity of SPECT images across scatter correction under various conditions. Both SF and NMSE in SPECT images of phantoms containing water in the background were lower at a TEW sub-window of 3% (TEW3%), than in other scatter corrections, whereas those in K2HPO4 were lower at a DEW sub-window of 20% (DEW20%). Larger DEW and smaller TEW sub-energy windows allowed more effective correction. The CV of the uniform cylinder phantom, DEW20%, was inferior to all other tested scatter corrections. The quantitative accuracy of bone SPECT images substantially differed according to the method of scatter correction. The optimal scatter correction for quantitative bone SPECT was DEW20% (k = 1), but at the cost of slightly decreased image uniformity.
Collapse
Affiliation(s)
- Kenta Miwa
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Japan
- Department of Radiological Sciences, School of Health Sciences, International University of Health and Welfare, Tochigi, Japan
- * E-mail:
| | - Reo Nemoto
- Department of Radiological Sciences, School of Health Sciences, International University of Health and Welfare, Tochigi, Japan
| | - Hirotsugu Masuko
- Department of Radiological Sciences, School of Health Sciences, International University of Health and Welfare, Tochigi, Japan
| | - Tensho Yamao
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Japan
- Department of Radiological Sciences, School of Health Sciences, International University of Health and Welfare, Tochigi, Japan
| | - Rinya Kobayashi
- Department of Radiological Sciences, School of Health Sciences, International University of Health and Welfare, Tochigi, Japan
| | - Noriaki Miyaji
- Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kosuke Inoue
- Department of Radiological Sciences, School of Health Sciences, International University of Health and Welfare, Tochigi, Japan
| | - Hiroya Onodera
- Department of Radiological Sciences, School of Health Sciences, International University of Health and Welfare, Tochigi, Japan
| |
Collapse
|