1
|
Hartoonian S, Hosseini M, Yousefi I, Mahdian M, Ghazizadeh Ahsaie M. Applications of artificial intelligence in dentomaxillofacial imaging: a systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:641-655. [PMID: 38637235 DOI: 10.1016/j.oooo.2023.12.790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/02/2023] [Accepted: 12/22/2023] [Indexed: 04/20/2024]
Abstract
BACKGROUND Artificial intelligence (AI) technology has been increasingly developed in oral and maxillofacial imaging. The aim of this systematic review was to assess the applications and performance of the developed algorithms in different dentomaxillofacial imaging modalities. STUDY DESIGN A systematic search of PubMed and Scopus databases was performed. The search strategy was set as a combination of the following keywords: "Artificial Intelligence," "Machine Learning," "Deep Learning," "Neural Networks," "Head and Neck Imaging," and "Maxillofacial Imaging." Full-text screening and data extraction were independently conducted by two independent reviewers; any mismatch was resolved by discussion. The risk of bias was assessed by one reviewer and validated by another. RESULTS The search returned a total of 3,392 articles. After careful evaluation of the titles, abstracts, and full texts, a total number of 194 articles were included. Most studies focused on AI applications for tooth and implant classification and identification, 3-dimensional cephalometric landmark detection, lesion detection (periapical, jaws, and bone), and osteoporosis detection. CONCLUSION Despite the AI models' limitations, they showed promising results. Further studies are needed to explore specific applications and real-world scenarios before confidently integrating these models into dental practice.
Collapse
Affiliation(s)
- Serlie Hartoonian
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Matine Hosseini
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Iman Yousefi
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Mahdian
- Department of Prosthodontics and Digital Technology, Stony Brook University School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Mitra Ghazizadeh Ahsaie
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Chen Y, Du P, Zhang Y, Guo X, Song Y, Wang J, Yang LL, He W. Image-based multi-omics analysis for oral science: recent progress and perspectives. J Dent 2024:105425. [PMID: 39427959 DOI: 10.1016/j.jdent.2024.105425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024] Open
Abstract
OBJECTIVES The diagnosis and treatment of oral and dental diseases rely heavily on various types of medical imaging. Deep learning-mediated multi-omics analysis can extract more representative features than those identified through traditional diagnostic methods. This review aims to discuss the applications and recent advances in image-based multi-omics analysis in oral science and to highlight its potential to enhance traditional diagnostic approaches for oral diseases. STUDY SELECTION, DATA, AND SOURCES A systematic search was conducted in the PubMed, Web of Science, and Google Scholar databases, covering all available records. This search thoroughly examined and summarized advances in image-based multi-omics analysis in oral and maxillofacial medicine. CONCLUSIONS This review comprehensively summarizes recent advancements in image-based multi-omics analysis for oral science, including radiomics, pathomics, and photographic-based omics analysis. It also discusses the ongoing challenges and future perspectives that could provide new insights into exploiting the potential of image-based omics analysis in the field of oral science. CLINICAL SIGNIFICANCE This review article presents the state of image-based multi-omics analysis in stomatology, aiming to help oral clinicians recognize the utility of combining omics analyses with imaging during diagnosis and treatment, which can improve diagnostic accuracy, shorten times to diagnosis, save medical resources, and reduce disparity in professional knowledge among clinicians.
Collapse
Affiliation(s)
- Yizhuo Chen
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Pengxi Du
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yinyin Zhang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Guo
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yujing Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jianhua Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
3
|
Min CK, Jung W, Joo S. Enhanced multistage deep learning for diagnosing anterior disc displacement in the temporomandibular joint using MRI. Dentomaxillofac Radiol 2024; 53:488-496. [PMID: 39024472 DOI: 10.1093/dmfr/twae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
OBJECTIVES This study aimed to propose a new method for the automatic diagnosis of anterior disc displacement of the temporomandibular joint (TMJ) using MRI and deep learning. By using a multistage approach, the factors affecting the final result can be easily identified and improved. METHODS This study introduces a multistage automatic diagnostic technique using deep learning. This process involves segmenting the target from MR images, extracting distance parameters, and classifying the diagnosis into 3 classes. MRI exams of 368 TMJs from 204 patients were evaluated for anterior disc displacement. In the first stage, 5 algorithms were used for the semantic segmentation of the disc and condyle. In the second stage, 54 distance parameters were extracted from the segments. In the third stage, a rule-based decision model was developed to link the parameters with the expert diagnosis results. RESULTS In the first stage, DeepLabV3+ showed the best result (95% Hausdorff distance, Dice coefficient, and sensitivity of 6.47 ± 7.22, 0.84 ± 0.07, and 0.84 ± 0.09, respectively). This study used the original MRI exams as input without preprocessing and showed high segmentation performance compared with that of previous studies. In the third stage, the combination of SegNet and a random forest model yielded an accuracy of 0.89 ± 0.06. CONCLUSIONS An algorithm was developed to automatically diagnose TMJ-anterior disc displacement using MRI. Through a multistage approach, this algorithm facilitated the improvement of results and demonstrated high accuracy from more complex inputs. Furthermore, existing radiological knowledge was applied and validated.
Collapse
Affiliation(s)
- Chang-Ki Min
- Deparment of Oral and Maxillofacial Radiology, School of Dentistry, Institute of Oral Bioscience, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, 54907, Republic of Korea
| | - Won Jung
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, 54907, Republic of Korea
- Department of Oral Medicine, School of Dentistry, Institute of Oral Bioscience, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Subin Joo
- Department of Medical Robotics, Korea Institute of Machinery & Materials, Daegu 42994, Republic of Korea
| |
Collapse
|
4
|
Almășan O, Mureșanu S, Hedeșiu P, Cotor A, Băciuț M, Roman R, Team Project Group. An Examination of Temporomandibular Joint Disc Displacement through Magnetic Resonance Imaging by Integrating Artificial Intelligence: Preliminary Findings. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1396. [PMID: 39336437 PMCID: PMC11433800 DOI: 10.3390/medicina60091396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/11/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: This research was aimed at constructing a complete automated temporomandibular joint disc position identification system that could assist with magnetic resonance imaging disc displacement diagnosis on oblique sagittal and oblique coronal images. Materials and Methods: The study included fifty subjects with magnetic resonance imaging scans of the temporomandibular joint. Oblique sagittal and coronal sections of the magnetic resonance imaging scans were analyzed. Investigations were performed on the right and left coronal images with a closed mouth, as well as right and left sagittal images with closed and open mouths. Three hundred sagittal and coronal images were employed to train the artificial intelligence algorithm. Results: The accuracy ratio of the completely computerized articular disc identification method was 81%. Conclusions: An automated and accurate evaluation of temporomandibular joint disc position was developed by using both oblique sagittal and oblique coronal magnetic resonance imaging images.
Collapse
Affiliation(s)
- Oana Almășan
- Department of Prosthetic Dentistry and Dental Materials, Iuliu Hațieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Sorana Mureșanu
- Department of Maxillofacial Surgery and Radiology, Iuliu Hațieganu University of Medicine and Pharmacy, 37 Iuliu Hossu Street, 400029 Cluj-Napoca, Romania
| | - Petra Hedeșiu
- Emil Racoviță College, 9-11 Mihail Kogălniceanu, 400084 Cluj-Napoca, Romania
| | - Andrei Cotor
- Computer Science Department, Babes Bolyai University, 1 Mihail Kogălniceanu, 400084 Cluj-Napoca, Romania
| | - Mihaela Băciuț
- Department of Maxillofacial Surgery and Radiology, Iuliu Hațieganu University of Medicine and Pharmacy, 37 Iuliu Hossu Street, 400029 Cluj-Napoca, Romania
| | - Raluca Roman
- Department of Maxillofacial Surgery and Radiology, Iuliu Hațieganu University of Medicine and Pharmacy, 37 Iuliu Hossu Street, 400029 Cluj-Napoca, Romania
| | | |
Collapse
|
5
|
Yoon K, Kim JY, Kim SJ, Huh JK, Kim JW, Choi J. Multi-class segmentation of temporomandibular joint using ensemble deep learning. Sci Rep 2024; 14:18990. [PMID: 39160234 PMCID: PMC11333466 DOI: 10.1038/s41598-024-69814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024] Open
Abstract
Temporomandibular joint disorders are prevalent causes of orofacial discomfort. Diagnosis predominantly relies on assessing the configuration and positions of temporomandibular joint components in magnetic resonance images. The complex anatomy of the temporomandibular joint, coupled with the variability in magnetic resonance image quality, often hinders an accurate diagnosis. To surmount this challenge, we developed deep learning models tailored to the automatic segmentation of temporomandibular joint components, including the temporal bone, disc, and condyle. These models underwent rigorous training and validation utilizing a dataset of 3693 magnetic resonance images from 542 patients. Upon evaluation, our ensemble model, which combines five individual models, yielded average Dice similarity coefficients of 0.867, 0.733, 0.904, and 0.952 for the temporal bone, disc, condyle, and background class during internal testing. In the external validation, the average Dice similarity coefficients values for the temporal bone, disc, condyle, and background were 0.720, 0.604, 0.800, and 0.869, respectively. When applied in a clinical setting, these artificial intelligence-augmented tools enhanced the diagnostic accuracy of physicians, especially when discerning between temporomandibular joint anterior disc displacement and osteoarthritis. In essence, automated temporomandibular joint segmentation by our deep learning approach, stands as a promising aid in refining temporomandibular joint disorders diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Kyubaek Yoon
- Department of Artificial Intelligence and Software, Ewha Womans University, Seoul, South Korea
| | - Jae-Young Kim
- Department of Oral and Maxillofacial Surgery, Gangnam Severance Hospital, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Sun-Jong Kim
- Department of Oral and Maxillofacial Surgery, School of Medicine, College of Medicine, Ewha Womans University, Anyangcheon-Ro 1071, Yangcheon-Gu, Seoul, 158-710, South Korea
| | - Jong-Ki Huh
- Department of Oral and Maxillofacial Surgery, Gangnam Severance Hospital, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Jin-Woo Kim
- Department of Oral and Maxillofacial Surgery, School of Medicine, College of Medicine, Ewha Womans University, Anyangcheon-Ro 1071, Yangcheon-Gu, Seoul, 158-710, South Korea.
| | - Jongeun Choi
- Department of Mobility Systems Engineering, School of Mechanical Engineering, Yonsei University, 50 Yonsei Ro, Seodaemun Gu, Seoul, 03722, South Korea.
| |
Collapse
|
6
|
Yoshimi Y, Mine Y, Ito S, Takeda S, Okazaki S, Nakamoto T, Nagasaki T, Kakimoto N, Murayama T, Tanimoto K. Image preprocessing with contrast-limited adaptive histogram equalization improves the segmentation performance of deep learning for the articular disk of the temporomandibular joint on magnetic resonance images. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:128-141. [PMID: 37263812 DOI: 10.1016/j.oooo.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/11/2023] [Accepted: 01/21/2023] [Indexed: 06/03/2023]
Abstract
OBJECTIVES The objective was to evaluate the robustness of deep learning (DL)-based encoder-decoder convolutional neural networks (ED-CNNs) for segmenting temporomandibular joint (TMJ) articular disks using data sets acquired from 2 different 3.0-T magnetic resonance imaging (MRI) scanners using original images and images subjected to contrast-limited adaptive histogram equalization (CLAHE). STUDY DESIGN In total, 536 MR images from 49 individuals were examined. An expert orthodontist identified and manually segmented the disks in all images, which were then reviewed by another expert orthodontist and 2 expert oral and maxillofacial radiologists. These images were used to evaluate a DL-based semantic segmentation approach using an ED-CNN. Original and preprocessed CLAHE images were used to train and validate the models whose performances were compared. RESULTS Original and CLAHE images acquired on 1 scanner had pixel values that were significantly darker and with lower contrast. The values of 3 metrics-the Dice similarity coefficient, sensitivity, and positive predictive value-were low when the original MR images were used for model training and validation. However, these metrics significantly improved when images were preprocessed with CLAHE. CONCLUSIONS The robustness of the ED-CNN model trained on a dataset obtained from a single device is low but can be improved with CLAHE preprocessing. The proposed system provides promising results for a DL-based, fully automated segmentation method for TMJ articular disks on MRI.
Collapse
Affiliation(s)
- Yuki Yoshimi
- Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuichi Mine
- Department of Medical Systems Engineering, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Shota Ito
- Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Saori Takeda
- Department of Medical Systems Engineering, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shota Okazaki
- Department of Medical Systems Engineering, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Nakamoto
- Department of Oral and Maxillofacial Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshikazu Nagasaki
- Department of Oral and Maxillofacial Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naoya Kakimoto
- Department of Oral and Maxillofacial Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takeshi Murayama
- Department of Medical Systems Engineering, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
7
|
Surendran A, Daigavane P, Shrivastav S, Kamble R, Sanchla AD, Bharti L, Shinde M. The Future of Orthodontics: Deep Learning Technologies. Cureus 2024; 16:e62045. [PMID: 38989357 PMCID: PMC11234326 DOI: 10.7759/cureus.62045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/09/2024] [Indexed: 07/12/2024] Open
Abstract
Deep learning has emerged as a revolutionary technical advancement in modern orthodontics, offering novel methods for diagnosis, treatment planning, and outcome prediction. Over the past 25 years, the field of dentistry has widely adopted information technology (IT), resulting in several benefits, including decreased expenses, increased efficiency, decreased need for human expertise, and reduced errors. The transition from preset rules to learning from real-world examples, particularly machine learning (ML) and artificial intelligence (AI), has greatly benefited the organization, analysis, and storage of medical data. Deep learning, a type of AI, enables robots to mimic human neural networks, allowing them to learn and make decisions independently without the need for explicit programming. Its ability to automate cephalometric analysis and enhance diagnosis through 3D imaging has revolutionized orthodontic operations. Deep learning models have the potential to significantly improve treatment outcomes and reduce human errors by accurately identifying anatomical characteristics on radiographs, thereby expediting analytical processes. Additionally, the use of 3D imaging technologies such as cone-beam computed tomography (CBCT) can facilitate precise treatment planning, allowing for comprehensive examinations of craniofacial architecture, tooth movements, and airway dimensions. In today's era of personalized medicine, deep learning's ability to customize treatments for individual patients has propelled the field of orthodontics forward tremendously. However, it is essential to address issues related to data privacy, model interpretability, and ethical considerations before orthodontic practices can use deep learning in an ethical and responsible manner. Modern orthodontics is evolving, thanks to the ability of deep learning to deliver more accurate, effective, and personalized orthodontic treatments, improving patient care as technology develops.
Collapse
Affiliation(s)
- Aathira Surendran
- Department of Orthodontics & Dentofacial Orthopaedics, Sharad Pawar Dental College & Hospital, Wardha, IND
| | - Pallavi Daigavane
- Department of Orthodontics & Dentofacial Orthopaedics, Sharad Pawar Dental College & Hospital, Wardha, IND
| | - Sunita Shrivastav
- Department of Orthodontics & Dentofacial Orthopaedics, Sharad Pawar Dental College & Hospital, Wardha, IND
| | - Ranjit Kamble
- Department of Orthodontics & Dentofacial Orthopaedics, Sharad Pawar Dental College & Hospital, Wardha, IND
| | - Abhishek D Sanchla
- Department of Orthodontics & Dentofacial Orthopaedics, Sharad Pawar Dental College & Hospital, Wardha, IND
| | - Lovely Bharti
- Department of Orthodontics & Dentofacial Orthopaedics, Sharad Pawar Dental College & Hospital, Wardha, IND
| | - Mrudula Shinde
- Department of Orthodontics & Dentofacial Orthopaedics, Sharad Pawar Dental College & Hospital, Wardha, IND
| |
Collapse
|
8
|
Hase H, Mine Y, Okazaki S, Yoshimi Y, Ito S, Peng TY, Sano M, Koizumi Y, Kakimoto N, Tanimoto K, Murayama T. Sex estimation from maxillofacial radiographs using a deep learning approach. Dent Mater J 2024; 43:394-399. [PMID: 38599831 DOI: 10.4012/dmj.2023-253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The purpose of this study was to construct deep learning models for more efficient and reliable sex estimation. Two deep learning models, VGG16 and DenseNet-121, were used in this retrospective study. In total, 600 lateral cephalograms were analyzed. A saliency map was generated by gradient-weighted class activation mapping for each output. The two deep learning models achieved high values in each performance metric according to accuracy, sensitivity (recall), precision, F1 score, and areas under the receiver operating characteristic curve. Both models showed substantial differences in the positions indicated in saliency maps for male and female images. The positions in saliency maps also differed between VGG16 and DenseNet-121, regardless of sex. This analysis of our proposed system suggested that sex estimation from lateral cephalograms can be achieved with high accuracy using deep learning.
Collapse
Affiliation(s)
- Hiroki Hase
- Department of Medical Systems Engineering, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Yuichi Mine
- Department of Medical Systems Engineering, Graduate School of Biomedical and Health Sciences, Hiroshima University
- Project Research Center for Integrating Digital Dentistry, Hiroshima University
| | - Shota Okazaki
- Department of Medical Systems Engineering, Graduate School of Biomedical and Health Sciences, Hiroshima University
- Project Research Center for Integrating Digital Dentistry, Hiroshima University
| | - Yuki Yoshimi
- Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Shota Ito
- Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Tzu-Yu Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University
| | - Mizuho Sano
- Department of Medical Systems Engineering, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Yuma Koizumi
- Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Naoya Kakimoto
- School of Dentistry, College of Oral Medicine, Taipei Medical University
| | - Kotaro Tanimoto
- Department of Oral and Maxillofacial Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Takeshi Murayama
- Department of Medical Systems Engineering, Graduate School of Biomedical and Health Sciences, Hiroshima University
- Project Research Center for Integrating Digital Dentistry, Hiroshima University
| |
Collapse
|
9
|
Liu Y, Jiao Z, Yao B, Li Q. A Three-branch Jointed Feature and Topology Decoder guided by game-theoretic interactions for temporomandibular joint segmentation. Comput Biol Med 2024; 173:108373. [PMID: 38564851 DOI: 10.1016/j.compbiomed.2024.108373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Segmentation of the temporomandibular joint (TMJ) disc and condyle from magnetic resonance imaging (MRI) is a crucial task in TMJ internal derangement research. The automatic segmentation of the disc structure presents challenges due to its intricate and variable shapes, low contrast, and unclear boundaries. Existing TMJ segmentation methods often overlook spatial and channel information in features and neglect overall topological considerations, with few studies exploring the interaction between segmentation and topology preservation. To address these challenges, we propose a Three-Branch Jointed Feature and Topology Decoder (TFTD) for the segmentation of TMJ disc and condyle in MRI. This structure effectively preserves the topological information of the disc structure and enhances features. We introduce a cross-dimensional spatial and channel attention mechanism (SCIA) to enhance features. This mechanism captures spatial, channel, and cross-dimensional information of the decoded features, leading to improved segmentation performance. Moreover, we explore the interaction between topology preservation and segmentation from the perspective of game theory. Based on this interaction, we design the Joint Loss Function (JLF) to fully leverage the features of segmentation, topology preservation, and joint interaction branches. Results on the TMJ MRI dataset demonstrate the superior performance of our TFTD compared to existing methods.
Collapse
Affiliation(s)
- Yuzhao Liu
- Institute of Microelectronics of the Chinese Academy of Sciences, No. 3 Beitucheng West Road, Beijing, 100029, Beijing, China; University of Chinese Academy of Sciences, Zhongguancun South Road, Beijing, 100020, Beijing, China.
| | - Zixian Jiao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, Shanghai, China.
| | - Bin Yao
- Institute of Microelectronics of the Chinese Academy of Sciences, No. 3 Beitucheng West Road, Beijing, 100029, Beijing, China; University of Chinese Academy of Sciences, Zhongguancun South Road, Beijing, 100020, Beijing, China.
| | - Qing Li
- Institute of Microelectronics of the Chinese Academy of Sciences, No. 3 Beitucheng West Road, Beijing, 100029, Beijing, China; University of Chinese Academy of Sciences, Zhongguancun South Road, Beijing, 100020, Beijing, China.
| |
Collapse
|
10
|
Girondi CM, de Castro Lopes SLP, Ogawa CM, Braz-Silva PH, Costa ALF. Texture Analysis of Temporomandibular Joint Disc Changes Associated with Effusion Using Magnetic Resonance Images. Dent J (Basel) 2024; 12:82. [PMID: 38534306 DOI: 10.3390/dj12030082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
The purpose of this study was to identify changes in the temporomandibular joint disc affected by effusion by using texture analysis of magnetic resonance images (MRIs). METHODS A total of 223 images of the TMJ, 42 with joint effusion and 181 without, were analyzed. Three consecutive slices were then exported to MaZda software, in which two oval ROIs (one in the anterior band and another in the intermediate zone of the joint disc) were determined in each slice and eleven texture parameters were calculated by using a gray-level co-occurrence matrix. Spearman's correlation coefficient test was used to assess the correlation between texture variables and to select variables for analysis. The Mann-Whitney test was used to compare the groups. RESULTS The significance level was set at 5%, with the results demonstrating that there was no high correlation between the parameter directions. It was possible to observe a trend between the average parameters, in which the group with effusion always had smaller values than the group without effusion, except for the parameter measuring the difference in entropy. CONCLUSION The trend towards lower overall values for the texture parameters suggested a different behavior between TMJ discs affected by effusion and those not affected, indicating that there may be intrinsic changes.
Collapse
Affiliation(s)
- Camila Miorelli Girondi
- Department of Stomatology, School of Dentistry, University of São Paulo (USP), São Paulo 05508-220, SP, Brazil
| | - Sérgio Lúcio Pereira de Castro Lopes
- Department of Diagnosis and Surgery, São José dos Campos School of Dentistry, São Paulo State University (UNESP), São José dos Campos 12245-000, SP, Brazil
| | - Celso Massahiro Ogawa
- Postgraduate Program in Dentistry, Cruzeiro do Sul University (UNICSUL), São Paulo 01506-000, SP, Brazil
| | - Paulo Henrique Braz-Silva
- Department of Stomatology, School of Dentistry, University of São Paulo (USP), São Paulo 05508-220, SP, Brazil
| | - Andre Luiz Ferreira Costa
- Postgraduate Program in Dentistry, Cruzeiro do Sul University (UNICSUL), São Paulo 01506-000, SP, Brazil
| |
Collapse
|
11
|
Kazimierczak N, Kazimierczak W, Serafin Z, Nowicki P, Nożewski J, Janiszewska-Olszowska J. AI in Orthodontics: Revolutionizing Diagnostics and Treatment Planning-A Comprehensive Review. J Clin Med 2024; 13:344. [PMID: 38256478 PMCID: PMC10816993 DOI: 10.3390/jcm13020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The advent of artificial intelligence (AI) in medicine has transformed various medical specialties, including orthodontics. AI has shown promising results in enhancing the accuracy of diagnoses, treatment planning, and predicting treatment outcomes. Its usage in orthodontic practices worldwide has increased with the availability of various AI applications and tools. This review explores the principles of AI, its applications in orthodontics, and its implementation in clinical practice. A comprehensive literature review was conducted, focusing on AI applications in dental diagnostics, cephalometric evaluation, skeletal age determination, temporomandibular joint (TMJ) evaluation, decision making, and patient telemonitoring. Due to study heterogeneity, no meta-analysis was possible. AI has demonstrated high efficacy in all these areas, but variations in performance and the need for manual supervision suggest caution in clinical settings. The complexity and unpredictability of AI algorithms call for cautious implementation and regular manual validation. Continuous AI learning, proper governance, and addressing privacy and ethical concerns are crucial for successful integration into orthodontic practice.
Collapse
Affiliation(s)
- Natalia Kazimierczak
- Kazimierczak Private Medical Practice, Dworcowa 13/u6a, 85-009 Bydgoszcz, Poland
| | - Wojciech Kazimierczak
- Kazimierczak Private Medical Practice, Dworcowa 13/u6a, 85-009 Bydgoszcz, Poland
- Department of Radiology and Diagnostic Imaging, Collegium Medicum, Nicolaus Copernicus University in Torun, Jagiellońska 13-15, 85-067 Bydgoszcz, Poland
| | - Zbigniew Serafin
- Department of Radiology and Diagnostic Imaging, Collegium Medicum, Nicolaus Copernicus University in Torun, Jagiellońska 13-15, 85-067 Bydgoszcz, Poland
| | - Paweł Nowicki
- Kazimierczak Private Medical Practice, Dworcowa 13/u6a, 85-009 Bydgoszcz, Poland
| | - Jakub Nożewski
- Department of Emeregncy Medicine, University Hospital No 2 in Bydgoszcz, Ujejskiego 75, 85-168 Bydgoszcz, Poland
| | | |
Collapse
|
12
|
Ozsari S, Güzel MS, Yılmaz D, Kamburoğlu K. A Comprehensive Review of Artificial Intelligence Based Algorithms Regarding Temporomandibular Joint Related Diseases. Diagnostics (Basel) 2023; 13:2700. [PMID: 37627959 PMCID: PMC10453523 DOI: 10.3390/diagnostics13162700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Today, with rapid advances in technology, computer-based studies and Artificial Intelligence (AI) approaches are finding their place in every field, especially in the medical sector, where they attract great attention. The Temporomandibular Joint (TMJ) stands as the most intricate joint within the human body, and diseases related to this joint are quite common. In this paper, we reviewed studies that utilize AI-based algorithms and computer-aided programs for investigating TMJ and TMJ-related diseases. We conducted a literature search on Google Scholar, Web of Science, and PubMed without any time constraints and exclusively selected English articles. Moreover, we examined the references to papers directly related to the topic matter. As a consequence of the survey, a total of 66 articles within the defined scope were assessed. These selected papers were distributed across various areas, with 11 focusing on segmentation, 3 on Juvenile Idiopathic Arthritis (JIA), 10 on TMJ Osteoarthritis (OA), 21 on Temporomandibular Joint Disorders (TMD), 6 on decision support systems, 10 reviews, and 5 on sound studies. The observed trend indicates a growing interest in artificial intelligence algorithms, suggesting that the number of studies in this field will likely continue to expand in the future.
Collapse
Affiliation(s)
- Sifa Ozsari
- Department of Computer Engineering, Ankara University, 06830 Ankara, Turkey;
| | - Mehmet Serdar Güzel
- Department of Computer Engineering, Ankara University, 06830 Ankara, Turkey;
| | - Dilek Yılmaz
- Faculty of Dentistry, Baskent University, 06490 Ankara, Turkey;
| | - Kıvanç Kamburoğlu
- Department of Dentomaxillofacial Radiology, Ankara University, 06560 Ankara, Turkey;
| |
Collapse
|
13
|
Bonaldi L, Pretto A, Pirri C, Uccheddu F, Fontanella CG, Stecco C. Deep Learning-Based Medical Images Segmentation of Musculoskeletal Anatomical Structures: A Survey of Bottlenecks and Strategies. Bioengineering (Basel) 2023; 10:137. [PMID: 36829631 PMCID: PMC9952222 DOI: 10.3390/bioengineering10020137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
By leveraging the recent development of artificial intelligence algorithms, several medical sectors have benefited from using automatic segmentation tools from bioimaging to segment anatomical structures. Segmentation of the musculoskeletal system is key for studying alterations in anatomical tissue and supporting medical interventions. The clinical use of such tools requires an understanding of the proper method for interpreting data and evaluating their performance. The current systematic review aims to present the common bottlenecks for musculoskeletal structures analysis (e.g., small sample size, data inhomogeneity) and the related strategies utilized by different authors. A search was performed using the PUBMED database with the following keywords: deep learning, musculoskeletal system, segmentation. A total of 140 articles published up until February 2022 were obtained and analyzed according to the PRISMA framework in terms of anatomical structures, bioimaging techniques, pre/post-processing operations, training/validation/testing subset creation, network architecture, loss functions, performance indicators and so on. Several common trends emerged from this survey; however, the different methods need to be compared and discussed based on each specific case study (anatomical region, medical imaging acquisition setting, study population, etc.). These findings can be used to guide clinicians (as end users) to better understand the potential benefits and limitations of these tools.
Collapse
Affiliation(s)
- Lorenza Bonaldi
- Department of Civil, Environmental and Architectural Engineering, University of Padova, Via F. Marzolo 9, 35131 Padova, Italy
| | - Andrea Pretto
- Department of Industrial Engineering, University of Padova, Via Venezia 1, 35121 Padova, Italy
| | - Carmelo Pirri
- Department of Neuroscience, University of Padova, Via A. Gabelli 65, 35121 Padova, Italy
| | - Francesca Uccheddu
- Department of Industrial Engineering, University of Padova, Via Venezia 1, 35121 Padova, Italy
- Centre for Mechanics of Biological Materials (CMBM), University of Padova, Via F. Marzolo 9, 35131 Padova, Italy
| | - Chiara Giulia Fontanella
- Department of Industrial Engineering, University of Padova, Via Venezia 1, 35121 Padova, Italy
- Centre for Mechanics of Biological Materials (CMBM), University of Padova, Via F. Marzolo 9, 35131 Padova, Italy
| | - Carla Stecco
- Department of Neuroscience, University of Padova, Via A. Gabelli 65, 35121 Padova, Italy
- Centre for Mechanics of Biological Materials (CMBM), University of Padova, Via F. Marzolo 9, 35131 Padova, Italy
| |
Collapse
|
14
|
Li M, Punithakumar K, Major PW, Le LH, Nguyen KCT, Pacheco-Pereira C, Kaipatur NR, Nebbe B, Jaremko JL, Almeida FT. Temporomandibular joint segmentation in MRI images using deep learning. J Dent 2022; 127:104345. [PMID: 36368120 DOI: 10.1016/j.jdent.2022.104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/29/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Temporomandibular joint (TMJ) internal derangements (ID) represent the most prevalent temporomandibular joint disorder (TMD) in the population and its diagnosis typically relies on magnetic resonance imaging (MRI). TMJ articular discs in MRIs usually suffer from low resolution and contrast, and it is difficult to identify them. In this study, we applied two convolutional neural networks (CNN) to delineate mandibular condyle, articular eminence, and TMJ disc in MRI images. METHODS The models were trained on MRI images from 100 patients and validated on images from 40 patients using 2D slices and 3D volume as input, respectively. Data augmentation and five-fold cross-validation scheme were applied to further regularize the models. The accuracy of the models was then compared with four raters having different expertise in reading TMJ-MRI images to evaluate the performance of the models. RESULTS Both models performed well in segmenting the three anatomical structures. A Dice coefficient of about 0.7 for the articular disc, more than 0.9 for the mandibular condyle, and Hausdorff distance of about 2mm for the articular eminence were achieved in both models. The models reached near-expert performance for the segmentation of TMJ articular disc and performed close to the expert in the segmentation of mandibular condyle and articular eminence. They also surpassed non-experts in segmenting the three anatomical structures. CONCLUSION This study demonstrated that CNN-based segmentation models can be a reliable tool to assist clinicians identifying key anatomy on TMJ-MRIs. The approach also paves the way for automatic diagnosis of TMD. CLINICAL SIGNIFICANCE Accurately locating the articular disc is the hardest and most crucial step in the interpretation of TMJ-MRIs and consequently in the diagnosis of TMJ-ID. Automated software that assists in locating the articular disc and its surrounding structures would improve the reliability of TMJ-MRI interpretation, save time and assist in reader training. It will also serve as a foundation for additional automated analysis of pathology in TMJ structures to aid in TMD diagnosis.
Collapse
Affiliation(s)
- Mengxun Li
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Canada; Department of Prosthodontics, School of Stomatology, Wuhan University, China.
| | - Kumaradevan Punithakumar
- Department of Radiology and Diagnostic Imaging, Faculty of Medicine and Dentistry, University of Alberta, Canada.
| | - Paul W Major
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Canada.
| | - Lawrence H Le
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Canada; Department of Radiology and Diagnostic Imaging, Faculty of Medicine and Dentistry, University of Alberta, Canada; Department of Biomedical Engineering, University of Alberta, Canada.
| | - Kim-Cuong T Nguyen
- Department of Radiology and Diagnostic Imaging, Faculty of Medicine and Dentistry, University of Alberta, Canada; Department of Biomedical Engineering, University of Alberta, Canada.
| | | | - Neelambar R Kaipatur
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Canada.
| | - Brian Nebbe
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Canada.
| | - Jacob L Jaremko
- Department of Radiology and Diagnostic Imaging, Faculty of Medicine and Dentistry, University of Alberta, Canada.
| | - Fabiana T Almeida
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Canada.
| |
Collapse
|
15
|
Okazaki S, Mine Y, Iwamoto Y, Urabe S, Mitsuhata C, Nomura R, Kakimoto N, Murayama T. Analysis of the feasibility of using deep learning for multiclass classification of dental anomalies on panoramic radiographs. Dent Mater J 2022; 41:889-895. [PMID: 36002296 DOI: 10.4012/dmj.2022-098] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of the feasibility study was to construct deep learning models for the classification of multiple dental anomalies in panoramic radiographs. Panoramic radiographs with single supernumerary teeth and/or odontomas were considered the "case" group; panoramic radiographs with no dental anomalies were considered the "control" group. The dataset comprised 150 panoramic radiographs: 50 each of no dental anomalies, single supernumerary teeth, and odontomas. To classify the panoramic radiographs into case and control categories, we employed AlexNet, which is a convolutional neural network model. AlexNet was able to classify whole panoramic radiographs into two or three classes, according to the presence or absence of supernumerary teeth or odontomas. The performance metrics of the three-class classification were 70%, 70.8%, 70%, and 69.7% for accuracy, precision, sensitivity, and F1 score, respectively, in the macro average. These results support the feasibility of using deep learning to detect multiple dental anomalies in panoramic radiographs.
Collapse
Affiliation(s)
- Shota Okazaki
- Department of Medical System Engineering, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Yuichi Mine
- Department of Medical System Engineering, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Yuko Iwamoto
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Shiho Urabe
- Department of Medical System Engineering, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Chieko Mitsuhata
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Ryota Nomura
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Naoya Kakimoto
- Department of Oral and Maxillofacial Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Takeshi Murayama
- Department of Medical System Engineering, Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
16
|
MacDonald D, Reitzik S. "New Normal" Radiology. Int Dent J 2022; 72:448-455. [PMID: 35667883 PMCID: PMC9166288 DOI: 10.1016/j.identj.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/01/2022] Open
Abstract
COVID-19, the most recent and globally impactful zoonotic viral pandemic in the last 20 years, has now entered its third year. As the global dental profession returns to providing as full a range of services as possible, in addition to embedding the new infection-control processes that were developed for this pandemic, it should also take full advantage of digital conventional radiology (intraoral, extraoral, and panoramic radiography) and cone-beam computed tomography. Regardless of vaccinations, new or yet-to-manifest variants, and testing, some dentists may be working in communities where the asymptomatic but potentially infectious patient poses a real risk. This needs to be met with not only the whole COVID-19 panoply the dentist is already too familiar with but also the need to minimise aerosol generation production by dental radiography. A flowchart and a table that compares the attributes of the above modalities are included.
Collapse
Affiliation(s)
- David MacDonald
- Division of Oral & Maxillofacial Radiology, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada.
| | - Sabina Reitzik
- Division of Oral & Maxillofacial Radiology, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|