1
|
Yu SM, Zhao MM, Zheng YZ, Zhang JC, Liu ZP, Tu PF, Wang H, Wei CY, Zeng KW. Chemoproteomic Strategy Identifies PfUCHL3 as the Target of Halofuginone. Chembiochem 2024; 25:e202400269. [PMID: 38923255 DOI: 10.1002/cbic.202400269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
The human malaria parasite Plasmodium falciparum (P. falciparum) continues to pose a significant public health challenge, leading to millions of fatalities globally. Halofuginone (HF) has shown a significant anti-P. falciparum effect, suggesting its potential as a therapeutic agent for malaria treatment. In this study, we synthesized a photoaffinity labeling probe of HF to identify its direct target in P. falciparum. Our results reveal that ubiquitin carboxyl-terminal hydrolase 3 (PfUCHL3) acts as a crucial target protein of HF, which modulates parasite growth in the intraerythrocytic cycle. In particular, we discovered that HF potentially forms hydrogen bonds with the Leu10, Glu11, and Arg217 sites of PfUCHL3, thereby inducing an allosteric effect by promoting the embedding of the helix 6' region on the protein surface. Furthermore, HF disrupts the expression of multiple functional proteins mediated by PfUCHL3, specifically those that play crucial roles in amino acid biosynthesis and metabolism in P. falciparum. Taken together, this study highlights PfUCHL3 as a previously undisclosed druggable target of HF, which contributes to the development of novel anti-malarial agents in the future.
Collapse
Affiliation(s)
- Si-Miao Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Mei-Mei Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yong-Zhe Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ji-Chao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zheng-Ping Liu
- Shandong Academy of Pharmaceutical Sciences, Shandong Engineering Research Center of New Sustained and Controlled Release Formulations and Drug Targeted Delivery Systems, Jinan, 250101, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Heng Wang
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 5# Dong Dan San Tiao, Beijing, 100005, China
| | - Chun-Yan Wei
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 5# Dong Dan San Tiao, Beijing, 100005, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
2
|
Raza M, Bharti H, Chauhan C, Singal A, Jha D, Ghosh PC, Nag A. Enhanced anti-malarial efficacy of mefloquine delivered via cationic liposome in a murine model of experimental cerebral malaria. Eur J Pharm Biopharm 2024; 197:114210. [PMID: 38340876 DOI: 10.1016/j.ejpb.2024.114210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/24/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Malaria is a longstanding global health challenge that continues to afflict over 90 countries located in tropical and subtropical regions of the globe. The rise of drug-resistant malarial parasites has curtailed the therapeutic efficacy of a number of once-effective anti-malarials, including mefloquine. In the present study, we have taken advantage of drug encapsulation approach to elevate the anti-malarial potential of mefloquine. Encouragingly, our findings unveil that liposomal formulations of mefloquine outperform equivalent doses of free mefloquine, both in laboratory cultures and in a murine model of malaria. Intriguingly, a cationic liposomal mefloquine formulation, administered at four successive doses of 3 mg/kg body weight, achieves complete resolution of cerebral malaria in the murine model while avoiding noticeable toxic repercussions. Altogether, our study furnishes pre-clinical validation for a therapeutic strategy that can remarkably enhance the drug efficacy, offering a revitalizing solution for failing anti-malarials.
Collapse
Affiliation(s)
- Mohsin Raza
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Hina Bharti
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Charu Chauhan
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Aakriti Singal
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Deepa Jha
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Prahlad C Ghosh
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Alo Nag
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India.
| |
Collapse
|
3
|
Imhoff RD, Rosenthal MR, Ashraf K, Bhanot P, Ng CL, Flaherty DP. Identification of covalent fragment inhibitors for Plasmodium falciparum UCHL3 with anti-malarial efficacy. Bioorg Med Chem Lett 2023; 94:129458. [PMID: 37634761 PMCID: PMC10529062 DOI: 10.1016/j.bmcl.2023.129458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Malaria continues to be a major burden on global health, responsible for 619,000 deaths in 2021. The causative agent of malaria is the eukaryotic parasite Plasmodium. Resistance to artemisinin-based combination therapies (ACTs), the current first-line treatment for malaria, has emerged in Asia, South America, and more recently Africa, where >90% of all malaria-related deaths occur. This has necessitated the identification and investigation of novel parasite proteins and pathways as antimalarial targets, including components of the ubiquitin proteasome system. Here, we investigate Plasmodium falciparum deubiquitinase ubiquitin C-terminal hydrolase L3 (PfUCHL3) as one such target. We carried out a high-throughput screen with covalent fragments and identified seven scaffolds that selectively inhibit the plasmodial UCHL3, but not human UCHL3 or the closely related human UCHL1. After assessing toxicity in human cells, we identified four promising hits and demonstrated their efficacy against asexual P. falciparum blood stages and P. berghei sporozoite stages.
Collapse
Affiliation(s)
- Ryan D Imhoff
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Melissa R Rosenthal
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Kutub Ashraf
- Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, United States
| | - Purnima Bhanot
- Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, United States
| | - Caroline L Ng
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States; Global Center for Health Security, University of Nebraska Medical Center, Omaha, NE 68198, United States; Department of Biology, University of Omaha, Omaha, NE 68182, United States.
| | - Daniel P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States; Purdue Institute for Drug Discovery, West Lafayette, IN 47907, United States; Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN 47907, United States.
| |
Collapse
|
4
|
De Vita S, Chini MG, Bifulco G, Lauro G. Target identification by structure-based computational approaches: Recent advances and perspectives. Bioorg Med Chem Lett 2023; 83:129171. [PMID: 36739998 DOI: 10.1016/j.bmcl.2023.129171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/15/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The use of computational techniques in the early stages of drug discovery has recently experienced a boost, especially in the target identification step. Finding the biological partner(s) for new or existing synthetic and/or natural compounds by "wet" approaches may be challenging; therefore, preliminary in silico screening is even more recommended. After a brief overview of some of the most known target identification techniques, recent advances in structure-based computational approaches for target identification are reported in this digest, focusing on Inverse Virtual Screening and its recent applications. Moreover, future perspectives concerning the use of such methodologies, coupled or not with other approaches, are analyzed.
Collapse
Affiliation(s)
- Simona De Vita
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche (IS), Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy.
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy.
| |
Collapse
|
5
|
de Korne CM, van Lieshout L, van Leeuwen FWB, Roestenberg M. Imaging as a (pre)clinical tool in parasitology. Trends Parasitol 2023; 39:212-226. [PMID: 36641293 DOI: 10.1016/j.pt.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023]
Abstract
Imaging of parasites is central to diagnosis of many parasitic diseases and has thus far played an important role in the development of antiparasitic strategies. The development of novel imaging technologies has revolutionized medicine in fields other than parasitology and has also opened up new avenues for the visualization of parasites. Here we review the role imaging technology has played so far in parasitology and how it may spur further advancement. We point out possibilities to improve current microscopy-based diagnostic methods and how to extend them with radiological imaging modalities. We also highlight in vivo tracking of parasites as a readout for efficacy of new antiparasitic strategies and as a source of fundamental insights for rational design.
Collapse
Affiliation(s)
- Clarize Maria de Korne
- Leiden University Center for Infectious Diseases, Leiden University Medical Centre, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands; Interventional Molecular Imaging laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Lisette van Lieshout
- Leiden University Center for Infectious Diseases, Leiden University Medical Centre, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Fijs Willem Bernhard van Leeuwen
- Interventional Molecular Imaging laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Meta Roestenberg
- Leiden University Center for Infectious Diseases, Leiden University Medical Centre, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands.
| |
Collapse
|